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1. LEFT RESIDUATED GROUPOIDS

Let (P,≤) be a poset.

An adjunction on P is a pair (·,→) of binary operations such that

xy ≤ z iff x ≤ y → z.

This condition is equivalent to the following four:

x ≤ y → xy,

(x → y)x ≤ y,

if x ≤ y, then xz ≤ yz,

if x ≤ y, then z → x ≤ z → y.

If · satisfies also the condition

if x ≤ y, then zx ≤ zy,

then the system (P, ·,→) is called a partially ordered left residu-

ated groupoid.
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A partially ordered groupoid is said to be integral if it has the

greatest element which is simulataneously its multiplicative unit.

Abbreviations:
polrig – for “partially ordered left residuated integral groupoid”,

i polrig – for “idempotent polrig”,
c polrig – for “commutative polrig”,
a polrig – for “associative polrig”.

ca polrig = pocrim (‘m’ for ‘monoid’) (W.J.Block, J.G.Raftery, 1997])

a polrig = polrim (J.G.Raftery, C.J. van Alten, 1997)

c polrig = pocrig (J.C̄ırulis, 2008)

A polrig is idempotent iff its multiplication is the meet operation.

So, i polrigs are just implicative (or Brouwerian, or relatively

pseudocomlemented) semilattices.
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A residuation subreduct (or r-subreduct, for short) of a polrig

(A, ·,→,1) is any subalgebra of the reduct (A,→,1).

r-subreducts of polrims are BCC-algebras

(or (left) residuation algebras)

(H.Ono, Y.Komori, 1985)

- ” - pocrims ” BCK-algebras

(M.Palasinski, 1982; I.Fleisher, 1988;

H.Ono, Y.Komori, 1985)

- ” - i pocrims ” Hilbert algebras

(or positive implicative BCK-algebras)

(A.Horn, 1962; A.Diego, 1965)
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A residuation subreduct (or r-subreduct, for short) of a polrig
(A, ·,→,1) is any subalgebra of the reduct (A,→,1).

r-subreducts of polrims are BCC-algebras
- ” - polrigs ” quasi-BCC-algebras

(J.Cirulis, 2009)

- ” - pocrims ” BCK-algebras
- ” - pocrigs ” quasi-BCK-algebras

J.Cirulis, 2009)

- ” - i pocrims ” Hilbert algebras
- ” - i pocigs ” quasi-Hilbert algebras

qBCC-algebra, q-BCK-algebra, qH-algebra

But: !! i pocrim = i pocrig = i polrig.
hence, qH-algebra = H-algebra.
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2. qBCC-ALGEBRAS AND qBCK-ALGEBRAS

Axiomatization

An implicative algebra is an algebra (A,→,1), where
¦ A is a poset with the greatest element 1,
¦ → is a binary operation such that

x ≤ y if and only if x → y = 1.
(H.Rasiowa, 1974)

Tonicity conditions for → (M.Dunn, 1994):

if x ≤ y, then z → x ≤ z → y,
if x ≤ y, then y → z ≤ x → z.

A tonic implicative algebra, or a TI-algebra, is an implicative al-
gebra with tonicity conditions.
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TI-algebras correspond to substructural implicational logic with-

out any structural rules, and are known also as
¦ assertional implicative posets (M.Dunn, 1994),
¦ extended-order algebras (G.Guido, P.Toto, 2008).

A qBCC-algebra is a TI-algebra satisfying the weakening rule

1 → x = x.

A qBCK-algebra is a qBCC-algebra satisfying the exchange rule

if x ≤ y → z, then y ≤ x → z.

A qH-algebra is a qBCK-algebra satisfying the contraction rule

if x ≤ x → y, then x ≤ y.

A BCC-algebra is a qBCC-algebra in which

x ≤ y → z implies that z → u ≤ x → (y → u)

(when y = 1, this gives us the tonicity law x ≤ z ⇒ z → u ≤ x → u).
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Representation

Let A := (A,→,1) be a qBCC-algebra, and let U(A) be the poset
of all nonempty upper cones of A.
Define a ternary relation B on U(A) as follows:

B(U, V, W ) :≡ (∀u ∈ U)(∀v ∈ V )(∀w)(u ≤ v → w ⊃ w ∈ W ).

Let, furthermore, A′ := U(U(A)).
Define operations ◦,⇒ and a constant 1I on A′ as follows:

X ◦ Y := {W : (∃U ∈ X)(∃V ∈ Y )B(U, V, W )},
Y ⇒ Z := {U : (∀W )(∀V ∈ Y )(B(U, V, W ) ⊃ W ∈ Z)}.
1I := A′.

Theorem. (A′, ◦,⇒,1I} is a polrig, and the mapping
h: a 7→ {U ∈ U(A): a ∈ U}

is an embedding of A into the residuation reduct of A′.
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3. THE SPACE OF IRREDUCIBLE CONES

Let A be a fixed qBCC-algebra.

A cone F ∈ U(A) is said to be irreducible if it is proper and

F = U ∩ V implies F = U or F = V for all cones U, V .

Let U∗(A) stand for the set of all irreducible cones.

Lemma (a) A cone is irreducible if and only if its complement

is up-directed (i.e., an order ideal),

(b) if a /∈ U , then there is an irreducible cone F such that U ⊆ F

and a /∈ F ,

(c) every proper cone is an intersection of irreducible cones.
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Recall that h(a) = {U ∈ U(A): a ∈ U}

Lemma. The mapping

h∗: a 7→ {F ∈ U∗(A): a ∈ F}
is still an order isomorphism of A into P(U∗(A)).

We shall need another mapping – an anti-isomorphism

g: A → P(U∗(A)) defined by

g(a) := −h∗(a) = {F ∈ U∗(A): a /∈ F}.

Theorem. The range of g is a basis of open compact sets for

a T0-topology τ on U∗(A).
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Theorem. The range of g is a basis of open compact sets for a

T0-topology τ on U∗(A).

Reminder:

A topology on a set X is a collection T of subsets of X which

contains X and is closed under finite intersections and arbitrary

unions.

Sets in T are called the open sets of the topological space (X, T ).

A subcollection of nonemty members of T is a base for T if every

open set is a union of members of this subcollection.

A subset Y of X is compact if every open cover of Y contains a

finite subcover.
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More on the compactness:

Suppose that g(a) ⊆ ⋃
(g(b): b ∈ B) for some a ∈ A and B ⊆ A.

Then every F ∈ U∗(A) contains a if B ⊆ F .

Hence, ↑a ⊆ ↑B, i.e., a ∈ ↑B.

This implies that b ≤ a for some b ∈ B and, further, g(a) ⊆ g(b)

for this b.

Consequently,

(i) every cover of a base set contains a one-element subcover,

(ii) no member of the base can be covered by its proper subsets

from the base.
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Recall: g(a) = {F ∈ U∗(A): a /∈ F}.

Let us extend the mapping g to cones of A:

g: U(A) → P(U∗(A)),

g(U) := {F ∈ U∗(A): U 6⊆ F}.

Then

g(↑a) = g(a),

g(U) =
⋃
(g(↑a): a ∈ U) =

⋃
(g(a): a ∈ U).

Theorem. The mapping g: U(A) → P(U∗(A)) is a lattice mono-

morphism, and τ = ran g.
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