

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Projekts Nr. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

A TOPOLOGICAL REPRESENTATION OF RESIDUATION SUBREDUCTS OF RESIDUATED INTEGRAL POGROUPOIDS

Jānis Cīrulis University of Latvia

email: jc@lanet.lv Workshop

"Algebra and its applications"

Daugavpils, April 28 - May 1, 2011

OVERWIEV

- 1 Left residuated groupoids
- 2 Quasi-BCC- and quasi-BCK-algebras
- 3 The space of irreducible upper cones of a qBCC-algebra

1. LEFT RESIDUATED GROUPOIDS

Let (P, \leq) be a poset.

An *adjunction* on P is a pair (\cdot, \rightarrow) of binary operations such that $xy \leq z$ iff $x \leq y \rightarrow z$.

This condition is equivalent to the following four:

$$x \leq y \rightarrow xy$$
, $(x \rightarrow y)x \leq y$, if $x \leq y$, then $xz \leq yz$, if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$.

If · satisfies also the condition

if
$$x \leq y$$
, then $zx \leq zy$,

then the system (P, \cdot, \rightarrow) is called a *partially ordered left residu*ated groupoid.

A partially ordered groupoid is said to be *integral* if it has the greatest element which is simulataneously its multiplicative unit.

Abbreviations:

```
polrig — for "partially ordered left residuated integral groupoid",
  ipolriq – for "idempotent polrig",
  cpolrig – for "commutative polrig",
  a polrig – for "associative polrig".
ca polrig = pocrim ('m' for 'monoid') (W.J.Block, J.G.Raftery, 1997])
 a polriq = polrim
                                         (J.G.Raftery, C.J. van Alten, 1997)
 c polrig = pocrig
```

(J.Cīrulis, 2008)

A polrig is idempotent iff its multiplication is the meet operation. So, i polrigs are just implicative (or Brouwerian, or relatively pseudocomlemented) semilattices.

```
A residuation subreduct (or r-subreduct, for short) of a polrig (A,\cdot,\to,1) is any subalgebra of the reduct (A,\to,1).
```

A residuation subreduct (or r-subreduct, for short) of a polrig $(A, \cdot, \rightarrow, 1)$ is any subalgebra of the reduct $(A, \rightarrow, 1)$.

```
are BCC-algebras
r-subreducts of
                 polrims
   _ '' _
                 polrigs
                               quasi-BCC-algebras
                                 (J.Cirulis, 2009)
                 pocrims
                               BCK-algebras
   _ " _
                 pocriqs
                               quasi-BCK-algebras
                                 J.Cirulis, 2009)
                 i pocrims ''
                               Hilbert algebras
                           " quasi-Hilbert algebras
                 i pocigs
```

qBCC-algebra, q-BCK-algebra, qH-algebra

But: !! i pocrim = i pocrig = i polrig. hence, qH-algebra = H-algebra.

2. qBCC-ALGEBRAS AND qBCK-ALGEBRAS

Axiomatization

An *implicative algebra* is an algebra $(A, \rightarrow, 1)$, where

- A is a poset with the greatest element 1,
- \rightarrow is a binary operation such that $x \leq y$ if and only if $x \rightarrow y = 1$. (H.Rasiowa, 1974)

Tonicity conditions for \rightarrow (M.Dunn, 1994):

if
$$x \leq y$$
, then $z \to x \leq z \to y$, if $x \leq y$, then $y \to z \leq x \to z$.

A *tonic implicative algebra*, or a *TI-algebra*, is an implicative algebra with tonicity conditions.

TI-algebras correspond to substructural implicational logic without any structural rules, and are known also as

- assertional implicative posets (M.Dunn, 1994),
- extended-order algebras (G.Guido, P.Toto, 2008).

A *qBCC-algebra* is a TI-algebra satisfying the *weakening rule* $1 \rightarrow x = x$.

A *qBCK-algebra* is a qBCC-algebra satisfying the *exchange rule* if $x \le y \to z$, then $y \le x \to z$.

A *qH-algebra* is a qBCK-algebra satisfying the *contraction rule* if $x \le x \to y$, then $x \le y$.

A BCC-algebra is a qBCC-algebra in which $x \leq y \to z$ implies that $z \to u \leq x \to (y \to u)$ (when y=1, this gives us the tonicity law $x \leq z \Rightarrow z \to u \leq x \to u$).

Representation

Let $A := (A, \rightarrow, 1)$ be a qBCC-algebra, and let $\mathcal{U}(A)$ be the poset of all nonempty upper cones of A.

Define a ternary relation B on $\mathcal{U}(A)$ as follows:

$$B(U, V, W) := (\forall u \in U)(\forall v \in V)(\forall w)(u \leq v \to w \supset w \in W).$$

Let, furthermore, $A' := \mathcal{U}(\mathcal{U}(A))$.

Define operations \circ , \Rightarrow and a constant $\mathbb{1}$ on A' as follows:

$$X \circ Y := \{W : (\exists U \in X)(\exists V \in Y)B(U, V, W)\},$$

$$Y \Rightarrow Z := \{U : (\forall W)(\forall V \in Y)(B(U, V, W) \supset W \in Z)\}.$$

$$\mathbb{1} := A'.$$

Theorem. $(A', \circ, \Rightarrow, \mathbb{I})$ is a polrig, and the mapping $h: a \mapsto \{U \in \mathcal{U}(A): a \in U\}$ is an embedding of A into the residuation reduct of A'.

3. THE SPACE OF IRREDUCIBLE CONES

Let A be a fixed qBCC-algebra.

A cone $F \in \mathcal{U}(A)$ is said to be *irreducible* if it is proper and $F = U \cap V$ implies F = U or F = V for all cones U, V. Let $\mathcal{U}^*(A)$ stand for the set of all irreducible cones.

Lemma (a) A cone is irreducible if and only if its complement is up-directed (i.e., an order ideal),

- (b) if $a \notin U$, then there is an irreducible cone F such that $U \subseteq F$ and $a \notin F$,
- (c) every proper cone is an intersection of irreducible cones.

Recall that $h(a) = \{U \in \mathcal{U}(A) : a \in U\}$

Lemma. The mapping

$$h^*: a \mapsto \{F \in \mathcal{U}^*(A): a \in F\}$$

is still an order isomorphism of A into $\mathcal{P}(\mathcal{U}^*(A))$.

We shall need another mapping – an anti-isomorphism $g: A \to \mathcal{P}(\mathcal{U}^*(A))$ defined by $q(a) := -h^*(a) = \{F \in \mathcal{U}^*(A): a \notin F\}.$

Theorem. The range of g is a basis of open compact sets for a T_0 -topology τ on $\mathcal{U}^*(A)$.

Theorem. The range of g is a basis of open compact sets for a T_0 -topology τ on $\mathcal{U}^*(A)$.

Reminder:

A *topology* on a set X is a collection T of subsets of X which contains X and is closed under finite intersections and arbitrary unions.

Sets in T are called the *open* sets of the topological space (X,T).

A subcollection of nonemty members of T is a *base* for T if every open set is a union of members of this subcollection.

A subset Y of X is *compact* if every open cover of Y contains a finite subcover.

More on the compactness:

Suppose that $g(a) \subseteq \bigcup (g(b): b \in B)$ for some $a \in A$ and $B \subseteq A$.

Then every $F \in \mathcal{U}^*(A)$ contains a if $B \subseteq F$.

Hence, $\uparrow a \subseteq \uparrow B$, i.e., $a \in \uparrow B$.

This implies that $b \leq a$ for some $b \in B$ and, further, $g(a) \subseteq g(b)$ for this b.

Consequently,

- (i) every cover of a base set contains a one-element subcover,
- (ii) no member of the base can be covered by its proper subsets from the base.

Recall: $g(a) = \{ F \in \mathcal{U}^*(A) : a \notin F \}.$

Let us extend the mapping g to cones of A:

$$g: \mathcal{U}(A) \to \mathcal{P}(\mathcal{U}^*(A)),$$

 $g(U) := \{ F \in \mathcal{U}^*(A) : U \not\subseteq F \}.$

Then

$$g(\uparrow a) = g(a),$$

 $g(U) = \bigcup (g(\uparrow a): a \in U) = \bigcup (g(a): a \in U).$

Theorem. The mapping $g: \mathcal{U}(A) \to \mathcal{P}(\mathcal{U}^*(A))$ is a lattice monomorphism, and $\tau = \operatorname{ran} g$.