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A quantifier on an ordered algebra A is a unary operation 3 which
normally is a closure operator whose range is a subalgebra of A.
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OVERVIEW

A quantifier on an ordered algebra A is a unary operation 3 which
normally is a closure operator whose range is a subalgebra of A.
(Need not be a homomorphism!)

Of interest are systems of quantifiers —
indexed families (3;: t € T')) of quantifiers on A,

where
- T is a (meet) semilattice,
= dsd¢ = dst,

- every element of A belongs to the range of some ;.



Suppose that A and B are two similar ordered algebras.
An embedding-projection pair is a pair (g,7), where

« ¢ IS an embedding of A into B,

- 7 is a residuated mapping B — A, and

« ¢ is the residual of .



Suppose that A and B are two similar ordered algebras.
An embedding-projection pair is a pair (g,7), where

« ¢ IS an embedding of A into B,

- 7 is a residuated mapping B — A, and

« ¢ is the residual of .

In this situation, the composition 7 is a quantifier on B, and
every quantifier arises this way (even with A a subalgebra of B).



Let 1" be a semilattice.
An embedding-projection algebra is a heterogeneous algebra
(At,€f, %) s<teT, Where

+ (At,€f)s<ter is a direct family of similar algebras,

» each pair (sf,w};) is an embedding-projection pair.



Let 1" be a semilattice.
An embedding-projection algebra is a heterogeneous algebra
(At ef,70) s<rer, Where

. (At7€f)s;teT is a direct family of similar algebras,

« each pair (gf,7%) is an embedding-projection pair.

The main result: under weak additional conditions,

every embedding-projection algebra whose components
are ortoposets gives rise to an ortoposet with a system
of quantifiers.



1. QUANTIFIERS ON A BOOLEAN ALGEBRA

1.1 Standard quantifier axioms (A.Tarski & F.B. Tompson
1952, P.Halmos 1955)

A quantifier on a Boolean algebra B is a unary operation 3 such
that

- 30 = 0,

» a < da,

- 3(a A 3db) = da A 3b.

Proposition. Every quantifier is an additive (even completely
additive) closure operator.



1.2 Quantifier axioms: another (equivalent) version (Ch. Davis
1954)

A quantifier on a Boolean algebra B is a unary operation 3 such

that
» a < da,
« if a < b, then da < db,
« 3(~da) = ~ da.

Origin: modal S5 operators.

Another name: a symmetric closure operator.



1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).
An operation 3 is a quantifier on a Boolean algebra B iff it is a

closure operator whose range is a subalgebra of B.



1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).
An operation 3 is a quantifier on a Boolean algebra B iff it is a

closure operator whose range is a subalgebra of B.

A subset M of B is the range of a closure operator C iff, for every p € B,
C(p) =min{z € M: p < z}.
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1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).
An operation 3 is a quantifier on a Boolean algebra B iff it is a

closure operator whose range is a subalgebra of B.

A subset M of B is the range of a closure operator C iff, for every p € B,
C(p) =min{z € M: p < z}.

One-to-one connection between quantifiers on B and those subalgebras M

for which all the minima at right exist.
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2. QUANTIFIERS ON ORTHOPOSETS

2.1 Preliminaries: orthoposets

An orthoposet (orthocomplemented poset) is a system

(P, <,~,1), where
- (P,< 1) is a poset with the greatest element,
» ~ IS a unary operation on P such that
- p < g implies that ~q < ~p,
t~~p =D,
-1 =pV ~p.
Let O := ~1; then O is the least element of P and
- 0=pA ~p.
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P — an orthoposet.

Elements p and ¢ of P are orthogonal (in symbols, p L q) if

p < ~gq.
A subset of P is orthogonal if it is does not contain O and its
elements are pairwise orthogonal.
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P — an orthoposet.

Elements p and ¢ of P are orthogonal (in symbols, p L q) if
p < ~gq.

A subset of P is orthogonal if it is does not contain O and its
elements are pairwise orthogonal.

A suborthoposet of P is any subset Py of P containing 1 and
closed under ~ .
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P — an orthoposet.

Elements p and ¢ of P are orthogonal (in symbols, p L q) if

p < ~gq.
A subset of P is orthogonal if it is does not contain O and its
elements are pairwise orthogonal.

A suborthoposet of P is any subset Py of P containing 1 and
closed under ~ .

We may view P as a partial ortholattice (P,V,A,~,1).

A suborthoposet of P is called a partial subortholattice if it is
closed also under existing joins and, hence, meets.
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2.2 Quantifiers

Proposition (M.F. Janowitz, 1963).

On an ortomodular lattice L,

(a) every standard quantifier is a symmetric closure operator,

(b) every center-valued symmetric closure operator is a standard
quantifier,

(c) there are symmetric closure operators that are not standard
quantifiers.

Moreover, not every closure retraction is a standard quantifier.
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By a quantifier on an orthoposet P we shall mean a symmetric
closure operator

ca<da, -+ifa<byb, then dJa<3Ib, +I(~Ja)=~da.
On ortholattices: I. Chajda & H. Langer 20009.
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By a quantifier on an orthoposet P we shall mean a symmetric
closure operator

ca<da, +ifa<b, then Ja<3b, - I(~da)= ~da.
On ortholattices: I. Chajda & H. Langer 20009.

Lemma (after Ch. Davis, 1954).
Every quantifier has the following properties:
- 1 =1, 40 =0,
+ Jdp = dp,
+ p < Jp iff dp < dq,
- the range of 3 is closed under existing meets and joins,
- if pV q exists, then J(pV q) = I(p) vV I(q).
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By a quantifier on an orthoposet P we shall mean a symmetric
closure operator

ca<da, -ifa<b, then Ja < 3Ib, -+ I(~Ja) = ~da.
On ortholattices: I. Chajda & H. Langer 20009.

Lemma (after Ch. Davis, 1954).
Every quantifier has the following properties:
- d1 =1, 40 =0,
+ ddp = dp,
« p < Jp iff dp < dq,
- the range of 3 is closed under existing meets and joins,
- if pV q exists, then A(pV q) = 3(p) Vv I(q).

Corollary. An operation on P is a quantifier iff it is a closure
retraction. The range of a quantifier is even a partial subortho-

lattice of P.
19



2.3 Examples of quantifiers on an orthoposet

(a) The simple quantifier:

1 ifp=1,
A(p) = { 0O otherwise.
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2.3 Examples of quantifiers on an orthoposet

(a) The simple quantifier:
1 ifp=1,
p) = { 0 otherwise.
(b) The discrete quantifier defined by
d(p) = p for all p.
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2.3 Examples of quantifiers on an orthoposet

(a) The simple quantifier:
1 ifp=1,
p) = { 0 otherwise.
(b) The discrete quantifier defined by
d(p) = p for all p.

(c) For every p distinct from 0, 1, the operation 3, defined by
(0 ifqg=0,
_ p if0#qand qg<p,
F(q) = 5 ~p if0%*qand q L p,
1 otherwise.

\

IS a quantifier.
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2.3 Examples of quantifiers on an orthoposet

(a) The simple quantifier:
1 ifp=1,

p) = { 0 otherwise.
(b) The discrete quantifier defined by

d(p) = p for all p.
(c) For every p distinct from 0,1, the operation 3, defined by

(0 ifqg=0,
if 0 %= q and g < p,

_ p
F(a) = 4 ~p if0#%gqandgq.lp,
1 otherwise.

\

IS a quantifier.

(d) If V is a maximal orthogonal subset of P, then the mapping

Jy:p—V(weV:v Yp)
is a quantifier on P (if all these joins exist).
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2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family
(34: t € T') of quantifiers on A, where

- T is a (meet) semilattice,

* JsTt = dsats

- every element of A belongs to the range of some 4.
The system is faithful if 43 = 34 only if s =t.
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2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family
(34: t € T') of quantifiers on A, where

- T is a (meet) semilattice,

* JsTt = dsats

- every element of A belongs to the range of some 4.
The system is faithful if 43 = 34 only if s =t.

An orthoposet with quantifiers, or a Q-orthoposet, is an ortho-
poset with a fixed system of quantifiers on it.
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2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family
(34: t € T') of quantifiers on A, where

- T is a (meet) semilattice,

* JsTt = dsats

- every element of A belongs to the range of some 4.
The system is faithful if 43 = 34 only if s =t.

An orthoposet with quantifiers, or a Q-orthoposet, is an ortho-
poset with a fixed system of quantifiers on it.

We shall keep the semilattice T' fixed.
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3 QUANTIFIERS AND EMBEDDING-PROJECTION
PAIRS
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3 QUANTIFIERS AND EMBEDDING-PROJECTION
PAIRS

3.1 Homomorphisms
Let P and Q be two orthoposets.

A mapping ;. P — Q) is
« 2 homomorphism if it is isotone and preserves 0, 1 and ~,
 an embedding if it is a homomorfism and
ala) < a(b) in Q only ifa<bin P,
« a canonical embedding if it is an ebedding and
a(a) = a for all a € P.
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3.2 Embedding-projection pairs
Let P and ) be two orthoposets.

An embedding-projection pair (or ep-pair) for P and @ is a pair
of mappings
(e: P—-Q,m: Q — P)
where ¢ is an embedding and, for all p € P, g € @,
(*) g < e(p) iff m(q) < p.

A pair (e,m) satisfying (*) is known as residuation pair, adjoint pair and

contravariant Galois connection.
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3.2 Embedding-projection pairs
Let P and ) be two orthoposets.

An embedding-projection pair (or ep-pair) for P and @ is a pair
of mappings
(e: P—Q,m: Q — P)
where ¢ is an embedding and, for all p € P, q € Q,
(*) g < e(p) iff m(q) < p.

A pair (e,m) satisfying (*) is known as residuation pair, adjoint pair and
contravariant Galois connection.

In particular, the projection w preserves existing joins, and the
embedding e preserves existing meets (in fact, also joins).
Moreover,

e =idp, em >idg.

30



3.3 Connections with quantifiers
Let (e,7) be an ep-pair for P and Q.

If P is a suborthoposet of  and ¢ is the canonic embedding of
P into @, then (eg,7) is said to be an ep-pair in Q.
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3.3 Connections with quantifiers

Let (e,7) be an ep-pair for P and Q.
If P is a suborthoposet of  and ¢ is the canonic embedding of
P into @, then (eg,7) is said to be an ep-pair in Q.

Proposition. Suppose that P is a suborthoposet of () and ¢ is
the canonic embedding P — ). Then (g, m) is an ep-pair in Q if

and only if w is a quantifier with range P.

Therefore, there is a one-to-one connection between quantifiers
on @ and ep-pairs in Q.
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4 EMBEDDING-PROJECTION ALGEBRAS
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4 EMBEDDING-PROJECTION ALGEBRAS

4.1 Definitions

Let 7" be a semilattice.
An embedding-projection algebra is a heterogeneous algebra A :=
(At, €7, m8) s<ter, Where
+ (A, ef)s<ter is a direct family of orthoposets,
i.e., e =idp, ¢jel = ¢},
« each pair (gf,7) is an embedding-projection pair.
An ep-algebra is said to be faithful if Bs = B¢ only if s = t.
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4 EMBEDDING-PROJECTION ALGEBRAS

4.1 Definitions

Let 7" be a semilattice.
An embedding-projection algebra is a heterogeneous algebra A :
(At €8, m8) s<teT, Where
« (Ag,ef)s<ter IS a direct family of orthoposets,
- i.e., 5 =idp, ¢jel, = ¢},
- each pair (sg,wg) is an embedding-projection pair.
An ep-algebra is said to be faithful if Bs = B¢ only if s = t.

An ep-algebra A is called an system of suborthoposets of an
orthoposet P, if
- each A; is a suborthoposet of P,
- whenever s <, g7 is the canonical embedding of As into Ay,
- P=U(As: teT).
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In an ep-algebra, every operation fygt) on A; defined by
t
19 (a) 1= nle;
IS @ quantifier.

What about components (At,fygt))sgt?
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In an ep-algebra, every operation fygt) on A; defined by
t
19 (a) 1= nle;
IS @ quantifier.

What about components (At,fygt))sgt?

Proposition The following conditions on an ep-algebra A are

equivalent:

(a) every component algebra (At,mgt))sgt is a Q-orthoposet
(relatively to the subsemilattice (t] ),

(b) the ep-algebra A itself is saturated in the sense that
efNSl o = kel whenever r,s < t.
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4.2 Equivalence of systems of quantifiers and systems of
suborthoposets

Theorem 1. Suppose that (P,3¢)icr is @ Q-orthoposet. Let
« A; = ran 34, and
efr As — Ay and pi: By — Bs with s <t be mappings defined
by
ei(p) :=p, pie) = 3s(q).
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4.2 Equivalence of systems of quantifiers and systems of
suborthoposets

Theorem 1. Suppose that (P,3¢)icr is @ Q-orthoposet. Let
« A; = ran 34, and
efr As — Ay and pi: By — Bs with s <t be mappings defined
by
e;(p) :=p, pi(g) :=3s(q).
Then
(a) the system A := (At,ef,pg)sgteT is a saturated ep-system of
suborthoposets of P,
(b) it is faithful iff the system of quantifiers (3;: t € T') is faithful.
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Theorem 2. Suppose that an ep-algebra A := (A, ef, 75) s<ter
IS a saturated ep-system of suborthoposets of an orthoposet P.
Let, for every t € T', d; be an operation on P defined as follows:

if p € As, then 3u(p) :=75,(p) (= 7/ (p) If u=>s1).

40



Theorem 2. Suppose that an ep-algebra A := (A, ef, 75) s<ter

IS a saturated ep-system of suborthoposets of an orthoposet P.

Let, for every t € T', d; be an operation on P defined as follows:
if pe As, then F(p) :==nf(p) (=7n/(p) if u>s,t).

Then

(a) the definition of J;(p) is correct: the element does not
depend on the choice of s,

(b) the operation 3; is a quantifier on P with range P,

(¢) the system (P,3¢)icr is an orthoposet with quantifiers,
(d) it is faithful iff A is faithful.
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Theorem 2. Suppose that an ep-algebra A := (A, ef, 75) s<ter

IS a saturated ep-system of suborthoposets of an orthoposet P.

Let, for every t € T', d; be an operation on P defined as follows:
if pe As, then F(p) :==nf(p) (=7n/(p) if u>s,t).

Then

(a) the definition of J;(p) is correct: the element does not
depend on the choice of s,

(b) the operation 3; is a quantifier on P with range P,

(¢) the system (P,3¢)icr is an orthoposet with quantifiers,

(d) it is faithful iff A is faithful.

These transformations (systems of quantifiers into (saturated)
systems of suborthoposets and back) are mutually inverse.
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5 FROM ep-ALGEBRAS TO Q-ORTHOPOSETS
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5 FROM ep-ALGEBRAS TO Q-ORTHOPOSETS

In this section, A = (At,sf,wg) IS a saturated ep-algebra such
that

- all components A; are disjoint,

» N0 embeding g7 is surjective.
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5 FROM ep-ALGEBRAS TO Q-ORTHOPOSETS

In this section, A = (At,sf,wg) IS a saturated ep-algebra such
that

- all components A; are disjoint,
» N0 embeding g7 is surjective.

The first step is to construct an orthoposet P such that the
algebra A is isomorphic to an ep-system of suborthoposets of P.
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5 FROM ep-ALGEBRAS TO Q-ORTHOPOSETS

In this section, A = (At,sf,wg) IS a saturated ep-algebra such
that

- all components A; are disjoint,
» N0 embeding g7 is surjective.

The first step is to construct an orthoposet P such that the
algebra A is isomorphic to an ep-system of suborthoposets of P.

This yields the main result: A induces on P a system of quan-
tifiers.

46



Let A* .= U(A;:teT).

Proposition. The relation < on A* defined as follows:
for a € As and b € Ay,
a <X b iff thereis c € Asns such that e (ns,,(a)) Cb
IS a preorder.

a7



Let A* .= U(A;:teT).

Proposition. The relation < on A* defined as follows:
for a € As and b € Ay,
a =<b Iiff there is c € Asas such that
7s.(a) Ccand g(c) Co,
IS a preorder.

Let
- &~ be the congruence relation on A* corresponding to <,
- |a| be the equivalence class of a € A*,
- P = A" /~.
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Introduce on P a binary relation < and a unary operation ~:
la| < |b] ;== a’ <V for some a’ € |a| and b &’ |b],
~la| =q:=|-al,

and put
1:=|14| for some s €T,

where 15 € Ag.
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Introduce on P a binary relation < and a unary operation ~:
la| < |b] ;== a’ <V for some a’ € |a| and b &’ |b],
~la| =q:=|—a,

and put
1:=]1s| for some s € T,

where 15 € Ag.

Theorem 3. (a) The above definitions are correct, and
(P,<,~,0,1) is an ortoposet.
(b) Each subset P :={|a|: a € A} is a suborthoposet of P.
(c) The system (P, ef, pl)s<te, Where

- e7 is the canonic embedaing Py — Py,

. pl is a mapping P; — Ps defind by

p(lal) = |m5a:(a)l,

IS an ep-system of suborthoposets, which is isomorphic to the
original ep-algebra A.
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