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OVERVIEW

A quantifier on an ordered algebra A is a unary operation ∃ which

normally is a closure operator whose range is a subalgebra of A.

(Need not be a homomorphism!)
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OVERVIEW

A quantifier on an ordered algebra A is a unary operation ∃ which

normally is a closure operator whose range is a subalgebra of A.

(Need not be a homomorphism!)

Of interest are systems of quantifiers –

indexed families (∃t: t ∈ T ) of quantifiers on A,

where
¦ T is a (meet) semilattice,
¦ ∃s∃t = ∃s∧t,
¦ every element of A belongs to the range of some ∃t.
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Suppose that A and B are two similar ordered algebras.

An embedding-projection pair is a pair (ε, π), where
¦ ε is an embedding of A into B,
¦ π is a residuated mapping B → A, and
¦ ε is the residual of π.
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Suppose that A and B are two similar ordered algebras.

An embedding-projection pair is a pair (ε, π), where
¦ ε is an embedding of A into B,
¦ π is a residuated mapping B → A, and
¦ ε is the residual of π.

In this situation, the composition επ is a quantifier on B, and

every quantifier arises this way (even with A a subalgebra of B).
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Let T be a semilattice.

An embedding-projection algebra is a heterogeneous algebra

(At, ε
s
t , π

t
s)s≤t∈T , where

¦ (At, ε
s
t)s≤t∈T is a direct family of similar algebras,

¦ each pair (εs
t , π

t
s) is an embedding-projection pair.
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Let T be a semilattice.

An embedding-projection algebra is a heterogeneous algebra

(At, ε
s
t , π

t
s)s≤t∈T , where

¦ (At, ε
s
t)s≤t∈T is a direct family of similar algebras,

¦ each pair (εs
t , π

t
s) is an embedding-projection pair.

The main result: under weak additional conditions,

every embedding-projection algebra whose components

are ortoposets gives rise to an ortoposet with a system

of quantifiers.
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1. QUANTIFIERS ON A BOOLEAN ALGEBRA

1.1 Standard quantifier axioms (A.Tarski & F.B.Tompson

1952, P.Halmos 1955)

A quantifier on a Boolean algebra B is a unary operation ∃ such

that
¦ ∃0 = 0,
¦ a ≤ ∃a,
¦ ∃(a ∧ ∃b) = ∃a ∧ ∃b.

Proposition. Every quantifier is an additive (even completely

additive) closure operator.
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1.2 Quantifier axioms: another (equivalent) version (Ch. Davis

1954)

A quantifier on a Boolean algebra B is a unary operation ∃ such

that
¦ a ≤ ∃a,
¦ if a ≤ b, then ∃a ≤ ∃b,
¦ ∃(∼∃a) = ∼∃a.

Origin: modal S5 operators.

Another name: a symmetric closure operator.
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1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).

An operation ∃ is a quantifier on a Boolean algebra B iff it is a

closure operator whose range is a subalgebra of B.
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1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).

An operation ∃ is a quantifier on a Boolean algebra B iff it is a

closure operator whose range is a subalgebra of B.

A subset M of B is the range of a closure operator C iff, for every p ∈ B,

C(p) = min{x ∈ M : p ≤ x}.
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1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).

An operation ∃ is a quantifier on a Boolean algebra B iff it is a

closure operator whose range is a subalgebra of B.

A subset M of B is the range of a closure operator C iff, for every p ∈ B,

C(p) = min{x ∈ M : p ≤ x}.

One-to-one connection between quantifiers on B and those subalgebras M

for which all the minima at right exist.
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2. QUANTIFIERS ON ORTHOPOSETS

2.1 Preliminaries: orthoposets

An orthoposet (orthocomplemented poset) is a system

(P,≤,∼ ,1), where
¦ (P,≤ 1) is a poset with the greatest element,
¦ ∼ is a unary operation on P such that

¦ p ≤ q implies that ∼ q ≤ ∼ p,
¦ ∼∼ p = p,
¦ 1 = p ∨ ∼ p.

Let 0 := ∼1; then 0 is the least element of P and
¦ 0 = p ∧ ∼ p.
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P – an orthoposet.

Elements p and q of P are orthogonal (in symbols, p ⊥ q) if

p ≤ ∼ q.

A subset of P is orthogonal if it is does not contain 0 and its

elements are pairwise orthogonal.
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P – an orthoposet.

Elements p and q of P are orthogonal (in symbols, p ⊥ q) if

p ≤ ∼ q.

A subset of P is orthogonal if it is does not contain 0 and its

elements are pairwise orthogonal.

A suborthoposet of P is any subset P0 of P containing 1 and

closed under ∼ .
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P – an orthoposet.

Elements p and q of P are orthogonal (in symbols, p ⊥ q) if

p ≤ ∼ q.

A subset of P is orthogonal if it is does not contain 0 and its

elements are pairwise orthogonal.

A suborthoposet of P is any subset P0 of P containing 1 and

closed under ∼ .

We may view P as a partial ortholattice (P,∨,∧,∼ ,1).

A suborthoposet of P is called a partial subortholattice if it is

closed also under existing joins and, hence, meets.
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2.2 Quantifiers

Proposition (M.F. Janowitz, 1963).

On an ortomodular lattice L,

(a) every standard quantifier is a symmetric closure operator,

(b) every center-valued symmetric closure operator is a standard

quantifier,

(c) there are symmetric closure operators that are not standard

quantifiers.

Moreover, not every closure retraction is a standard quantifier.
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By a quantifier on an orthoposet P we shall mean a symmetric

closure operator

¦ a ≤ ∃a, ¦ if a ≤ b, then ∃a ≤ ∃b, ¦ ∃(∼∃a) = ∼∃a.
On ortholattices: I. Chajda & H. Länger 2009.
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By a quantifier on an orthoposet P we shall mean a symmetric

closure operator

¦ a ≤ ∃a, ¦ if a ≤ b, then ∃a ≤ ∃b, ¦ ∃(∼∃a) = ∼∃a.
On ortholattices: I. Chajda & H. Länger 2009.

Lemma (after Ch.Davis, 1954).

Every quantifier has the following properties:
¦ ∃1 = 1, ∃0 = 0,
¦ ∃∃p = ∃p,
¦ p ≤ ∃p iff ∃p ≤ ∃q,
¦ the range of ∃ is closed under existing meets and joins,
¦ if p ∨ q exists, then ∃(p ∨ q) = ∃(p) ∨ ∃(q).
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By a quantifier on an orthoposet P we shall mean a symmetric

closure operator

¦ a ≤ ∃a, ¦ if a ≤ b, then ∃a ≤ ∃b, ¦ ∃(∼∃a) = ∼∃a.
On ortholattices: I. Chajda & H. Länger 2009.

Lemma (after Ch.Davis, 1954).

Every quantifier has the following properties:
¦ ∃1 = 1, ∃0 = 0,
¦ ∃∃p = ∃p,
¦ p ≤ ∃p iff ∃p ≤ ∃q,
¦ the range of ∃ is closed under existing meets and joins,
¦ if p ∨ q exists, then ∃(p ∨ q) = ∃(p) ∨ ∃(q).

Corollary. An operation on P is a quantifier iff it is a closure

retraction. The range of a quantifier is even a partial subortho-

lattice of P .
19



2.3 Examples of quantifiers on an orthoposet

(a) The simple quantifier:

∃(p) =

{
1 if p = 1,
0 otherwise.
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2.3 Examples of quantifiers on an orthoposet

(a) The simple quantifier:

∃(p) =

{
1 if p = 1,
0 otherwise.

(b) The discrete quantifier defined by

∃(p) = p for all p.
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2.3 Examples of quantifiers on an orthoposet

(a) The simple quantifier:

∃(p) =

{
1 if p = 1,
0 otherwise.

(b) The discrete quantifier defined by

∃(p) = p for all p.

(c) For every p distinct from 0,1, the operation ∃p defined by

∃p(q) =





0 if q = 0,
p if 0 6= q and q ≤ p,

∼ p if 0 6= q and q ⊥ p,
1 otherwise.

is a quantifier.
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2.3 Examples of quantifiers on an orthoposet

(a) The simple quantifier:

∃(p) =

{
1 if p = 1,
0 otherwise.

(b) The discrete quantifier defined by

∃(p) = p for all p.

(c) For every p distinct from 0,1, the operation ∃p defined by

∃p(q) =





0 if q = 0,
p if 0 6= q and q ≤ p,

∼ p if 0 6= q and q ⊥ p,
1 otherwise.

is a quantifier.

(d) If V is a maximal orthogonal subset of P , then the mapping

∃V : p 7→ ∨
(v ∈ V : v 6⊥ p)

is a quantifier on P (if all these joins exist).
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2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family

(∃t: t ∈ T ) of quantifiers on A, where
¦ T is a (meet) semilattice,
¦ ∃s∃t = ∃s∧t,
¦ every element of A belongs to the range of some ∃t.

The system is faithful if ∃s = ∃t only if s = t.

24



2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family

(∃t: t ∈ T ) of quantifiers on A, where
¦ T is a (meet) semilattice,
¦ ∃s∃t = ∃s∧t,
¦ every element of A belongs to the range of some ∃t.

The system is faithful if ∃s = ∃t only if s = t.

An orthoposet with quantifiers, or a Q-orthoposet, is an ortho-

poset with a fixed system of quantifiers on it.
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2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family

(∃t: t ∈ T ) of quantifiers on A, where
¦ T is a (meet) semilattice,
¦ ∃s∃t = ∃s∧t,
¦ every element of A belongs to the range of some ∃t.

The system is faithful if ∃s = ∃t only if s = t.

An orthoposet with quantifiers, or a Q-orthoposet, is an ortho-

poset with a fixed system of quantifiers on it.

We shall keep the semilattice T fixed.
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3 QUANTIFIERS AND EMBEDDING-PROJECTION

PAIRS
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3 QUANTIFIERS AND EMBEDDING-PROJECTION

PAIRS

3.1 Homomorphisms

Let P and Q be two orthoposets.

A mapping ε: P → Q is
¦ a homomorphism if it is isotone and preserves 0, 1 and ∼ ,
¦ an embedding if it is a homomorfism and

α(a) ≤ α(b) in Q only if a ≤ b in P ,
¦ a canonical embedding if it is an ebedding and

α(a) = a for all a ∈ P .
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3.2 Embedding-projection pairs

Let P and Q be two orthoposets.

An embedding-projection pair (or ep-pair) for P and Q is a pair

of mappings

(ε: P → Q, π: Q → P )

where ε is an embedding and, for all p ∈ P , q ∈ Q,

(*) q ≤ ε(p) iff π(q) ≤ p.

A pair (ε, π) satisfying (*) is known as residuation pair, adjoint pair and

contravariant Galois connection.
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3.2 Embedding-projection pairs

Let P and Q be two orthoposets.

An embedding-projection pair (or ep-pair) for P and Q is a pair
of mappings

(ε: P → Q, π: Q → P )
where ε is an embedding and, for all p ∈ P , q ∈ Q,
(*) q ≤ ε(p) iff π(q) ≤ p.

A pair (ε, π) satisfying (*) is known as residuation pair, adjoint pair and

contravariant Galois connection.

In particular, the projection π preserves existing joins, and the
embedding ε preserves existing meets (in fact, also joins).
Moreover,

πε =idP , επ ≥ idQ.
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3.3 Connections with quantifiers

Let (ε, π) be an ep-pair for P and Q.

If P is a suborthoposet of Q and ε is the canonic embedding of

P into Q, then (ε, π) is said to be an ep-pair in Q.
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3.3 Connections with quantifiers

Let (ε, π) be an ep-pair for P and Q.

If P is a suborthoposet of Q and ε is the canonic embedding of

P into Q, then (ε, π) is said to be an ep-pair in Q.

Proposition. Suppose that P is a suborthoposet of Q and ε is

the canonic embedding P → Q. Then (ε, π) is an ep-pair in Q if

and only if π is a quantifier with range P .

Therefore, there is a one-to-one connection between quantifiers

on Q and ep-pairs in Q.
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4 EMBEDDING-PROJECTION ALGEBRAS
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4 EMBEDDING-PROJECTION ALGEBRAS

4.1 Definitions

Let T be a semilattice.

An embedding-projection algebra is a heterogeneous algebra A :=

(At, ε
s
t , π

t
s)s≤t∈T , where

¦ (At, ε
s
t)s≤t∈T is a direct family of orthoposets,

i.e., εs
s =idBs

, εs
tε

r
s = εr

t ,

¦ each pair (εs
t , π

t
s) is an embedding-projection pair.

An ep-algebra is said to be faithful if Bs = Bt only if s = t.
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4 EMBEDDING-PROJECTION ALGEBRAS

4.1 Definitions

Let T be a semilattice.
An embedding-projection algebra is a heterogeneous algebra A :=
(At, ε

s
t , π

t
s)s≤t∈T , where

¦ (At, ε
s
t)s≤t∈T is a direct family of orthoposets,

i.e., εs
s =idBs

, εs
tε

r
s = εr

t ,
¦ each pair (εs

t , π
t
s) is an embedding-projection pair.

An ep-algebra is said to be faithful if Bs = Bt only if s = t.

An ep-algebra A is called an system of suborthoposets of an
orthoposet P , if

¦ each At is a suborthoposet of P ,
¦ whenever s ≤ t, εs

t is the canonical embedding of As into At,
¦ P =

⋃
(At: t ∈ T ).
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In an ep-algebra, every operation γ
(t)
s on At defined by

γ
(t)
s (a) := πt

sε
s
t

is a quantifier.

What about components (At, γ
(t)
s )s≤ t?
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In an ep-algebra, every operation γ
(t)
s on At defined by

γ
(t)
s (a) := πt

sε
s
t

is a quantifier.

What about components (At, γ
(t)
s )s≤ t?

Proposition The following conditions on an ep-algebra A are

equivalent:

(a) every component algebra (At, γ
(t)
s )s≤t is a Q-orthoposet

(relatively to the subsemilattice (t] ),

(b) the ep-algebra A itself is saturated in the sense that

εr∧s
t πr

r∧s = πt
sε

r
t whenever r, s ≤ t.
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4.2 Equivalence of systems of quantifiers and systems of

suborthoposets

Theorem 1. Suppose that (P, ∃t)t∈T is a Q-orthoposet. Let
¦ At := ran∃t, and
¦ es

t : As → At and pt
s: Bt → Bs with s ≤ t be mappings defined

by

es
t(p) := p, pt

s(q) := ∃s(q).

38



4.2 Equivalence of systems of quantifiers and systems of

suborthoposets

Theorem 1. Suppose that (P, ∃t)t∈T is a Q-orthoposet. Let
¦ At := ran∃t, and
¦ es

t : As → At and pt
s: Bt → Bs with s ≤ t be mappings defined

by

es
t(p) := p, pt

s(q) := ∃s(q).

Then

(a) the system A := (At, e
s
t , p

t
s)s≤t∈T is a saturated ep-system of

suborthoposets of P ,

(b) it is faithful iff the system of quantifiers (∃t: t ∈ T ) is faithful.
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Theorem 2. Suppose that an ep-algebra A := (At, ε
s
t , π

t
s)s≤t∈T

is a saturated ep-system of suborthoposets of an orthoposet P .

Let, for every t ∈ T , ∃t be an operation on P defined as follows:

if p ∈ As, then ∃t(p) := πs
s∧t(p) (= πu

t (p) if u ≥ s, t).
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Theorem 2. Suppose that an ep-algebra A := (At, ε
s
t , π

t
s)s≤t∈T

is a saturated ep-system of suborthoposets of an orthoposet P .

Let, for every t ∈ T , ∃t be an operation on P defined as follows:

if p ∈ As, then ∃t(p) := πs
s∧t(p) (= πu

t (p) if u ≥ s, t).

Then

(a) the definition of ∃t(p) is correct: the element does not

depend on the choice of s,

(b) the operation ∃t is a quantifier on P with range Pt,

(c) the system (P, ∃t)t∈T is an orthoposet with quantifiers,

(d) it is faithful iff A is faithful.
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Theorem 2. Suppose that an ep-algebra A := (At, ε
s
t , π

t
s)s≤t∈T

is a saturated ep-system of suborthoposets of an orthoposet P .

Let, for every t ∈ T , ∃t be an operation on P defined as follows:

if p ∈ As, then ∃t(p) := πs
s∧t(p) (= πu

t (p) if u ≥ s, t).

Then

(a) the definition of ∃t(p) is correct: the element does not

depend on the choice of s,

(b) the operation ∃t is a quantifier on P with range Pt,

(c) the system (P, ∃t)t∈T is an orthoposet with quantifiers,

(d) it is faithful iff A is faithful.

These transformations (systems of quantifiers into (saturated)

systems of suborthoposets and back) are mutually inverse.
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5 FROM ep-ALGEBRAS TO Q-ORTHOPOSETS
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5 FROM ep-ALGEBRAS TO Q-ORTHOPOSETS

In this section, A := (At, ε
s
t , π

t
s) is a saturated ep-algebra such

that
¦ all components At are disjoint,
¦ no embeding εs

t is surjective.
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5 FROM ep-ALGEBRAS TO Q-ORTHOPOSETS

In this section, A := (At, ε
s
t , π

t
s) is a saturated ep-algebra such

that
¦ all components At are disjoint,
¦ no embeding εs

t is surjective.

The first step is to construct an orthoposet P such that the

algebra A is isomorphic to an ep-system of suborthoposets of P .
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5 FROM ep-ALGEBRAS TO Q-ORTHOPOSETS

In this section, A := (At, ε
s
t , π

t
s) is a saturated ep-algebra such

that
¦ all components At are disjoint,
¦ no embeding εs

t is surjective.

The first step is to construct an orthoposet P such that the

algebra A is isomorphic to an ep-system of suborthoposets of P .

This yields the main result: A induces on P a system of quan-

tifiers.
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Let A∗ :=
⋃
(At: t ∈ T ).

Proposition. The relation ¹ on A∗ defined as follows:

for a ∈ As and b ∈ At,

a ¹ b iff there is c ∈ As∧t such that εs∧t
t (πs

s∧t(a)) ⊆ b

is a preorder.
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Let A∗ :=
⋃
(At: t ∈ T ).

Proposition. The relation ¹ on A∗ defined as follows:

for a ∈ As and b ∈ At,

a ¹ b iff there is c ∈ As∧t such that

πs
s∧t(a) ⊆ c and εs∧t

t (c) ⊆ b,

is a preorder.

Let
¦ ≈ be the congruence relation on A∗ corresponding to ¹,
¦ |a| be the equivalence class of a ∈ A∗,
¦ P := A∗/≈.
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Introduce on P a binary relation ≤ and a unary operation ∼ :

|a| ≤ |b| :≡ a′ ¹ b′ for some a′ ∈ |a| and b ∈′ |b|,
∼ |a| = q :≡ | − a|,

and put

1 := |1s| for some s ∈ T ,

where 1s ∈ As.
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Introduce on P a binary relation ≤ and a unary operation ∼ :

|a| ≤ |b| :≡ a′ ¹ b′ for some a′ ∈ |a| and b ∈′ |b|,
∼ |a| = q :≡ | − a|,

and put

1 := |1s| for some s ∈ T ,

where 1s ∈ As.

Theorem 3. (a) The above definitions are correct, and

(P,≤,∼ ,0,1) is an ortoposet.

(b) Each subset Pt := {|a|: a ∈ At} is a suborthoposet of P .

(c) The system (Pt, e
s
t , p

t
s)s≤t∈T , where

¦ es
t is the canonic embedding Ps → Pt,

¦ pt
s is a mapping Pt → Ps defind by

pt
s(|a|) = |πs

s∧t(a)|,
is an ep-system of suborthoposets, which is isomorphic to the

original ep-algebra A.

50


