

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Projekts Nr. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

ORTHOPOSETS WITH QUANTIFIERS

Jānis Cīrulis University of Latvia

email: jc@lanet.lv

Workshop

"Zastosowania Algebry w Logice i Informatice"

Zakopane, March 7-12, 2011

OVERVIEW

A *quantifier* on an ordered algebra A is a unary operation \exists which normally is a closure operator whose range is a subalgebra of A. (Need not be a homomorphism!)

OVERVIEW

A *quantifier* on an ordered algebra A is a unary operation \exists which normally is a closure operator whose range is a subalgebra of A. (Need not be a homomorphism!)

Of interest are systems of quantifiers – indexed families $(\exists_t : t \in T)$ of quantifiers on A, where

- T is a (meet) semilattice,
- $\exists_s \exists_t = \exists_{s \wedge t}$,
- every element of A belongs to the range of some \exists_t .

Suppose that A and B are two similar ordered algebras. An *embedding-projection pair* is a pair (ε, π) , where

- ε is an embedding of A into B,
- π is a residuated mapping $B \to A$, and
- ε is the residual of π .

Suppose that A and B are two similar ordered algebras. An *embedding-projection pair* is a pair (ε, π) , where

- ε is an embedding of A into B,
- π is a residuated mapping $B \to A$, and
- ε is the residual of π .

In this situation, the composition $\varepsilon\pi$ is a quantifier on B, and every quantifier arises this way (even with A a subalgebra of B).

Let T be a semilattice.

An embedding-projection algebra is a heterogeneous algebra $(A_t, \varepsilon_t^s, \pi_s^t)_{s < t \in T}$, where

- $(A_t, \varepsilon_t^s)_{s < t \in T}$ is a direct family of similar algebras,
- each pair $(\varepsilon_t^s, \pi_s^t)$ is an embedding-projection pair.

Let T be a semilattice.

An embedding-projection algebra is a heterogeneous algebra $(A_t, \varepsilon_t^s, \pi_s^t)_{s \le t \in T}$, where

- $(A_t, \varepsilon_t^s)_{s < t \in T}$ is a direct family of similar algebras,
- each pair $(\varepsilon_t^s, \pi_s^t)$ is an embedding-projection pair.

The main result: under weak additional conditions, every embedding-projection algebra whose components are ortoposets gives rise to an ortoposet with a system of quantifiers.

1. QUANTIFIERS ON A BOOLEAN ALGEBRA

1.1 Standard quantifier axioms (A.Tarski & F.B.Tompson 1952, P.Halmos 1955)

A quantifier on a Boolean algebra B is a unary operation \exists such that

- $\exists 0 = 0$,
- $a \leq \exists a$,
- $\exists (a \land \exists b) = \exists a \land \exists b.$

Proposition. Every quantifier is an additive (even completely additive) closure operator.

1.2 Quantifier axioms: another (equivalent) version (Ch. Davis 1954)

A quantifier on a Boolean algebra ${\cal B}$ is a unary operation \exists such that

- $a \leq \exists a$,
- if $a \leq b$, then $\exists a \leq \exists b$,
- $\exists (\sim \exists a) = \sim \exists a$.

Origin: modal S5 operators.

Another name: a symmetric closure operator.

1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).

An operation \exists is a quantifier on a Boolean algebra B iff it is a closure operator whose range is a subalgebra of B.

1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).

An operation \exists is a quantifier on a Boolean algebra B iff it is a closure operator whose range is a subalgebra of B.

A subset M of B is the range of a closure operator C iff, for every $p \in B$, $C(p) = \min\{x \in M : p \le x\}$.

1.3 Quantifiers are closure retractions

Proposition (P. Halmos 1955).

An operation \exists is a quantifier on a Boolean algebra B iff it is a closure operator whose range is a subalgebra of B.

A subset M of B is the range of a closure operator C iff, for every $p \in B$, $C(p) = \min\{x \in M \colon p \le x\}.$

One-to-one connection between quantifiers on ${\cal B}$ and those subalgebras ${\cal M}$ for which all the minima at right exist.

2. QUANTIFIERS ON ORTHOPOSETS

2.1 Preliminaries: orthoposets

An *orthoposet* (*orthocomplemented poset*) is a system $(P, \leq, \sim, 1)$, where

- $(P, \leq 1)$ is a poset with the greatest element,
- ullet \sim is a unary operation on P such that
 - $p \leq q$ implies that $\sim q \leq \sim p$,
 - $\sim \sim p = p$,
 - $1 = p \lor \sim p$.

Let $0 := \sim 1$; then 0 is the least element of P and

•
$$0 = p \land \sim p$$
.

P – an orthoposet.

Elements p and q of P are *orthogonal* (in symbols, $p \perp q$) if $p \leq \sim q$.

A subset of P is *orthogonal* if it is does not contain 0 and its elements are pairwise orthogonal.

P – an orthoposet.

Elements p and q of P are *orthogonal* (in symbols, $p \perp q$) if $p \leq \sim q$.

A subset of P is *orthogonal* if it is does not contain 0 and its elements are pairwise orthogonal.

A *suborthoposet* of P is any subset P_0 of P containing 1 and closed under \sim .

P – an orthoposet.

Elements p and q of P are *orthogonal* (in symbols, $p \perp q$) if $p \leq \sim q$.

A subset of P is *orthogonal* if it is does not contain 0 and its elements are pairwise orthogonal.

A *suborthoposet* of P is any subset P_0 of P containing 1 and closed under \sim .

We may view P as a partial ortholattice $(P, \vee, \wedge, \sim, 1)$.

A suborthoposet of P is called a *partial subortholattice* if it is closed also under existing joins and, hence, meets.

2.2 Quantifiers

Proposition (M.F. Janowitz, 1963).

On an ortomodular lattice L,

- (a) every standard quantifier is a symmetric closure operator,
- (b) every center-valued symmetric closure operator is a standard quantifier,
- (c) there are symmetric closure operators that are not standard quantifiers.

Moreover, not every closure retraction is a standard quantifier.

By a quantifier on an orthoposet P we shall mean a symmetric closure operator

```
• a \leq \exists a, • if a \leq b, then \exists a \leq \exists b, • \exists (\sim \exists a) = \sim \exists a.
```

On ortholattices: I. Chajda & H. Länger 2009.

By a quantifier on an orthoposet P we shall mean a symmetric closure operator

•
$$a \leq \exists a$$
, • if $a \leq b$, then $\exists a \leq \exists b$, • $\exists (\sim \exists a) = \sim \exists a$.

On ortholattices: I. Chajda & H. Länger 2009.

Lemma (after Ch. Davis, 1954).

Every quantifier has the following properties:

- $\exists 1 = 1, \exists 0 = 0,$
- $\exists\exists p=\exists p$,
- $p \leq \exists p \text{ iff } \exists p \leq \exists q$,
- the range of ∃ is closed under existing meets and joins,
- if $p \lor q$ exists, then $\exists (p \lor q) = \exists (p) \lor \exists (q)$.

By a *quantifier* on an orthoposet P we shall mean a symmetric closure operator

```
• a \leq \exists a, • if a \leq b, then \exists a \leq \exists b, • \exists (\sim \exists a) = \sim \exists a.
```

On ortholattices: I. Chajda & H. Länger 2009.

Lemma (after Ch. Davis, 1954).

Every quantifier has the following properties:

- $\exists 1 = 1, \exists 0 = 0,$
- $\exists\exists p=\exists p$,
- $p \leq \exists p \text{ iff } \exists p \leq \exists q$,
- the range of ∃ is closed under existing meets and joins,
- if $p \vee q$ exists, then $\exists (p \vee q) = \exists (p) \vee \exists (q)$.

Corollary. An operation on P is a quantifier iff it is a closure retraction. The range of a quantifier is even a partial subortholattice of P.

(a) The *simple* quantifier:

$$\exists (p) = \begin{cases} 1 & \text{if } p = 1, \\ 0 & \text{otherwise.} \end{cases}$$

(a) The *simple* quantifier:

$$\exists (p) = \begin{cases} 1 & \text{if } p = 1, \\ 0 & \text{otherwise.} \end{cases}$$

(b) The discrete quantifier defined by $\exists (p) = p$ for all p.

(a) The simple quantifier:

$$\exists (p) = \begin{cases} 1 & \text{if } p = 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (b) The discrete quantifier defined by $\exists (p) = p$ for all p.
- (c) For every p distinct from 0,1, the operation \exists_p defined by

$$\exists_p(q) = \left\{ \begin{array}{ll} 0 & \text{if } q = 0, \\ p & \text{if } 0 \neq q \text{ and } q \leq p, \\ \sim p & \text{if } 0 \neq q \text{ and } q \perp p, \\ 1 & \text{otherwise.} \end{array} \right.$$

is a quantifier.

(a) The *simple* quantifier:

$$\exists (p) = \begin{cases} 1 & \text{if } p = 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (b) The discrete quantifier defined by $\exists (p) = p$ for all p.
- (c) For every p distinct from 0,1, the operation \exists_p defined by

$$\exists_p(q) = \left\{ egin{array}{ll} 0 & ext{if } q = 0, \\ p & ext{if } 0
eq q ext{ and } q \leq p, \\ \sim p & ext{if } 0
eq q ext{ and } q \perp p, \\ 1 & ext{otherwise}. \end{array}
ight.$$

is a quantifier.

(d) If V is a maximal orthogonal subset of P, then the mapping $\exists_V : p \mapsto \bigvee (v \in V : v \not\perp p)$

is a quantifier on P (if all these joins exist).

2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family $(\exists_t : t \in T)$ of quantifiers on A, where

- T is a (meet) semilattice,
- $\exists_s \exists_t = \exists_{s \wedge t}$,
- every element of A belongs to the range of some \exists_t .

The system is *faithful* if $\exists_s = \exists_t$ only if s = t.

2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family $(\exists_t : t \in T)$ of quantifiers on A, where

- T is a (meet) semilattice,
- $\exists_s \exists_t = \exists_{s \wedge t}$,
- every element of A belongs to the range of some \exists_t .

The system is *faithful* if $\exists_s = \exists_t$ only if s = t.

An *orthoposet with quantifiers*, or a *Q-orthoposet*, is an orthoposet with a fixed system of quantifiers on it.

2.4 Orthoposets with quantifiers.

A system of quantifiers on an orthoposet is an indexed family $(\exists_t: t \in T)$ of quantifiers on A, where

- T is a (meet) semilattice,
- $\exists_s \exists_t = \exists_{s \wedge t}$,
- every element of A belongs to the range of some \exists_t .

The system is *faithful* if $\exists_s = \exists_t$ only if s = t.

An *orthoposet with quantifiers*, or a *Q-orthoposet*, is an orthoposet with a fixed system of quantifiers on it.

We shall keep the semilattice T fixed.

3 QUANTIFIERS AND EMBEDDING-PROJECTION PAIRS

3 QUANTIFIERS AND EMBEDDING-PROJECTION PAIRS

3.1 Homomorphisms

Let P and Q be two orthoposets.

A mapping ε : $P \to Q$ is

- a *homomorphism* if it is isotone and preserves 0, 1 and \sim ,
- an *embedding* if it is a homomorfism and $\alpha(a) \leq \alpha(b)$ in Q only if $a \leq b$ in P,
- a *canonical embedding* if it is an ebedding and $\alpha(a) = a$ for all $a \in P$.

3.2 Embedding-projection pairs

Let P and Q be two orthoposets.

An embedding-projection pair (or ep-pair) for P and Q is a pair of mappings

(
$$\varepsilon$$
: $P \to Q, \pi$: $Q \to P$)

where ε is an embedding and, for all $p \in P$, $q \in Q$,

(*)
$$q \le \varepsilon(p)$$
 iff $\pi(q) \le p$.

A pair (ε, π) satisfying (*) is known as residuation pair, adjoint pair and contravariant Galois connection.

3.2 Embedding-projection pairs

Let P and Q be two orthoposets.

An $embedding-projection\ pair\ (or\ ep-pair)\ for\ P\ and\ Q\ is\ a\ pair\ of\ mappings$

$$(\varepsilon: P \to Q, \pi: Q \to P)$$

where ε is an embedding and, for all $p \in P$, $q \in Q$,

(*)
$$q \le \varepsilon(p)$$
 iff $\pi(q) \le p$.

A pair (ε, π) satisfying (*) is known as residuation pair, adjoint pair and contravariant Galois connection.

In particular, the projection π preserves existing joins, and the embedding ε preserves existing meets (in fact, also joins). Moreover.

$$\pi \varepsilon = \mathrm{id}_P, \quad \varepsilon \pi \ge \mathrm{id}_Q.$$

3.3 Connections with quantifiers

Let (ε, π) be an ep-pair for P and Q. If P is a suborthoposet of Q and ε is the canonic embedding of P into Q, then (ε, π) is said to be an ep-pair in Q.

3.3 Connections with quantifiers

Let (ε, π) be an ep-pair for P and Q.

If P is a suborthoposet of Q and ε is the canonic embedding of P into Q, then (ε, π) is said to be an ep-pair $\operatorname{in} Q$.

Proposition. Suppose that P is a suborthoposet of Q and ε is the canonic embedding $P \to Q$. Then (ε, π) is an ep-pair in Q if and only if π is a quantifier with range P.

Therefore, there is a one-to-one connection between quantifiers on Q and ep-pairs in Q.

4 EMBEDDING-PROJECTION ALGEBRAS

4 EMBEDDING-PROJECTION ALGEBRAS

4.1 Definitions

Let T be a semilattice.

An embedding-projection algebra is a heterogeneous algebra $A := (A_t, \varepsilon_t^s, \pi_s^t)_{s < t \in T}$, where

• $(A_t, \varepsilon_t^s)_{s < t \in T}$ is a direct family of orthoposets,

i.e.,
$$\varepsilon_s^s = \mathrm{id}_{B_s}$$
, $\varepsilon_t^s \varepsilon_s^r = \varepsilon_t^r$,

• each pair $(\varepsilon_t^s, \pi_s^t)$ is an embedding-projection pair.

An ep-algebra is said to be *faithful* if $B_s = B_t$ only if s = t.

4 EMBEDDING-PROJECTION ALGEBRAS

4.1 Definitions

Let T be a semilattice.

An embedding-projection algebra is a heterogeneous algebra $A := (A_t, \varepsilon_t^s, \pi_s^t)_{s < t \in T}$, where

• $(A_t, \varepsilon_t^s)_{s < t \in T}$ is a direct family of orthoposets,

i.e.,
$$\varepsilon_s^s = \mathrm{id}_{B_s}$$
, $\varepsilon_t^s \varepsilon_s^r = \varepsilon_t^r$,

• each pair $(\varepsilon_t^s, \pi_s^t)$ is an embedding-projection pair.

An ep-algebra is said to be *faithful* if $B_s = B_t$ only if s = t.

An ep-algebra A is called an *system of suborthoposets* of an orthoposet P, if

- each A_t is a suborthoposet of P,
- whenever $s \leq t$, ε_t^s is the canonical embedding of A_s into A_t ,
- $P = \bigcup (A_t : t \in T)$.

In an ep-algebra, every operation $\gamma_s^{(t)}$ on A_t defined by $\gamma_s^{(t)}(a):=\pi_s^t\varepsilon_t^s$ is a quantifier.

What about components $(A_t, \gamma_s^{(t)})_{s < t}$?

In an ep-algebra, every operation $\gamma_s^{(t)}$ on A_t defined by $\gamma_s^{(t)}(a):=\pi_s^t\varepsilon_t^s$ is a quantifier.

What about components $(A_t, \gamma_s^{(t)})_{s < t}$?

Proposition The following conditions on an ep-algebra A are equivalent:

- (a) every component algebra $(A_t, \gamma_s^{(t)})_{s \leq t}$ is a Q-orthoposet (relatively to the subsemilattice (t]),
- (b) the ep-algebra A itself is *saturated* in the sense that $\varepsilon_t^{r \wedge s} \pi_{r \wedge s}^r = \pi_s^t \varepsilon_t^r$ whenever $r, s \leq t$.

4.2 Equivalence of systems of quantifiers and systems of suborthoposets

Theorem 1. Suppose that $(P, \exists_t)_{t \in T}$ is a Q-orthoposet. Let

- $A_t := \operatorname{ran} \exists_t$, and
- e_t^s : $A_s \to A_t$ and p_s^t : $B_t \to B_s$ with $s \le t$ be mappings defined by

$$e_t^s(p) := p, \quad p_s^t(q) := \exists_s(q).$$

4.2 Equivalence of systems of quantifiers and systems of suborthoposets

Theorem 1. Suppose that $(P, \exists_t)_{t \in T}$ is a Q-orthoposet. Let

- $A_t := \operatorname{ran} \exists_t$, and
- e_t^s : $A_s \to A_t$ and p_s^t : $B_t \to B_s$ with $s \le t$ be mappings defined by

$$e_t^s(p) := p, \quad p_s^t(q) := \exists_s(q).$$

Then

- (a) the system $A := (A_t, e_t^s, p_s^t)_{s \le t \in T}$ is a saturated ep-system of suborthoposets of P,
- (b) it is faithful iff the system of quantifiers $(\exists_t: t \in T)$ is faithful.

Theorem 2. Suppose that an ep-algebra $A:=(A_t, \varepsilon_t^s, \pi_s^t)_{s \leq t \in T}$ is a saturated ep-system of suborthoposets of an orthoposet P. Let, for every $t \in T$, \exists_t be an operation on P defined as follows: if $p \in A_s$, then $\exists_t(p) := \pi_{s \wedge t}^s(p) \quad (= \pi_t^u(p) \text{ if } u \geq s, t)$.

Theorem 2. Suppose that an ep-algebra $A:=(A_t, \varepsilon_t^s, \pi_s^t)_{s \leq t \in T}$ is a saturated ep-system of suborthoposets of an orthoposet P. Let, for every $t \in T$, \exists_t be an operation on P defined as follows: if $p \in A_s$, then $\exists_t(p) := \pi_{s \wedge t}^s(p) \quad (= \pi_t^u(p) \text{ if } u \geq s, t)$.

Then

- (a) the definition of $\exists_t(p)$ is correct: the element does not depend on the choice of s,
- (b) the operation \exists_t is a quantifier on P with range P_t ,
- (c) the system $(P, \exists_t)_{t \in T}$ is an orthoposet with quantifiers,
- (d) it is faithful iff A is faithful.

Theorem 2. Suppose that an ep-algebra $A := (A_t, \varepsilon_t^s, \pi_s^t)_{s \le t \in T}$ is a saturated ep-system of suborthoposets of an orthoposet P. Let, for every $t \in T$, \exists_t be an operation on P defined as follows:

if
$$p \in A_s$$
, then $\exists_t(p) := \pi^s_{s \wedge t}(p) \quad (= \pi^u_t(p) \text{ if } u \geq s, t).$

Then

- (a) the definition of $\exists_t(p)$ is correct: the element does not depend on the choice of s,
- (b) the operation \exists_t is a quantifier on P with range P_t ,
- (c) the system $(P, \exists_t)_{t \in T}$ is an orthoposet with quantifiers,
- (d) it is faithful iff A is faithful.

These transformations (systems of quantifiers into (saturated) systems of suborthoposets and back) are mutually inverse.

In this section, $A:=(A_t,\varepsilon_t^s,\pi_s^t)$ is a saturated ep-algebra such that

- all components A_t are disjoint,
- no embeding ε_t^s is surjective.

In this section, $A:=(A_t,\varepsilon_t^s,\pi_s^t)$ is a saturated ep-algebra such that

- all components A_t are disjoint,
- no embeding ε_t^s is surjective.

The first step is to construct an orthoposet P such that the algebra A is isomorphic to an ep-system of suborthoposets of P.

In this section, $A:=(A_t,\varepsilon_t^s,\pi_s^t)$ is a saturated ep-algebra such that

- all components A_t are disjoint,
- no embeding ε_t^s is surjective.

The first step is to construct an orthoposet P such that the algebra A is isomorphic to an ep-system of suborthoposets of P.

This yields the main result: A induces on P a system of quantifiers.

Let $A^* := \bigcup (A_t : t \in T)$.

Proposition. The relation \leq on A^* defined as follows:

for $a \in A_s$ and $b \in A_t$,

 $a \leq b$ iff there is $c \in A_{s \wedge t}$ such that $\varepsilon_t^{s \wedge t}(\pi_{s \wedge t}^s(a)) \subseteq b$ is a preorder.

Let $A^* := \bigcup (A_t : t \in T)$.

Proposition. The relation \leq on A^* defined as follows:

for $a \in A_s$ and $b \in A_t$,

 $a \leq b$ iff there is $c \in A_{s \wedge t}$ such that

$$\pi^s_{s \wedge t}(a) \subseteq c \text{ and } \varepsilon^{s \wedge t}_t(c) \subseteq b,$$

is a preorder.

Let

- \approx be the congruence relation on A^* corresponding to \leq ,
- |a| be the equivalence class of $a \in A^*$,
- $P := A^*/\approx$.

Introduce on P a binary relation \leq and a unary operation \sim :

$$|a| \le |b| :\equiv a' \le b'$$
 for some $a' \in |a|$ and $b \in '|b|$,

$$\sim |a| = q :\equiv |-a|$$
,

and put

 $1 := |1_s|$ for some $s \in T$,

where $1_s \in A_s$.

Introduce on P a binary relation \leq and a unary operation \sim :

$$|a| \le |b| :\equiv a' \le b'$$
 for some $a' \in |a|$ and $b \in '|b|$, $\sim |a| = q :\equiv |-a|$,

and put

 $1 := |1_s|$ for some $s \in T$,

where $1_s \in A_s$.

Theorem 3. (a) The above definitions are correct, and $(P, \leq, \sim, 0, 1)$ is an ortoposet.

- (b) Each subset $P_t := \{|a|: a \in A_t\}$ is a suborthoposet of P.
- (c) The system $(P_t, e_t^s, p_s^t)_{s < t \in T}$, where
 - ullet e_t^s is the canonic embedding $P_s
 ightarrow P_t$,
 - p_s^t is a mapping $P_t \to P_s$ defind by

$$p_s^t(|a|) = |\pi_{s \wedge t}^s(a)|,$$

is an ep-system of suborthoposets, which is isomorphic to the original ep-algebra A.