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ARE THERE ESSENTIALLY INCOMPLETE INFORMATION

SYSTEMS ?

I.e., can every information system be simulated by a complete

system?
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OVERVIEW

1. Start: information systems

2. Descriptor space of an IS
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4. Logic of an IS
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1. INFORMATION SYSTEMS

By a (non-deterministic) information system we mean a quadru-

ple a quadruple S := (X, V, S,∆), where
¦ X is a set of variables,
¦ V is a family of sets (Vx: x ∈ X), each Vx being the domain of

values for x,
¦ S is a set of entities called reference points,
¦ ∆ is a family of (non-deterministic) assignments–functions

(δs: s ∈ S) on X; each δs assigns a non-empty subset of Vx

to a variable x (Think of elements of δs(x) as values of x possible at s.)
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1.1. Some interpretations of an abstract IS

• In an information system in the sense of Z.Pawlak,
¦ reference points are thought of as some objects,
¦ variables are their attributes.

Under this interpretation,

In Formal Concept Analysis, IS = Many-valued formal context.

[R.Wille, B.Ganter].

In theory of programming, IS = Many-valued Chu space [W.Pratt].
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• In the field of AI, an IS may be reinterpreted as a kind of ques-
tion answering system: think of

¦ variables as questions that can be put to the system,
¦ each Vx as a stock of possible answers to a question x.
¦ reference points as knowledge states of the system,

• In automata theory, a non-deterministic automaton A gives rise
to an IS, where

¦ input strings play the role of variables,
¦ for an input string x, Vx is the set of strings of the same length
in the output alphabet; these are the potential “values’ of x,

¦ states of A play the role of reference points,
¦ δs is the derived output function for the state s: given an input
string x, it returns a corresponding output string of A in this
state.
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• A physical system S can conditionally be treated as IS: take

states of S for the reference points, observables of S for the

attributes, the set R of reals for each Vx. If p(s, x) is the proba-

bility measure on R corresponding in the state s to the observ-

able x, take for δs(x) the least closed Borel set A ⊆ R such that

p(s, c)(A) = 1.
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1.2. IS with inclusion dependencies

Inclusion dependencies

It may happen that some variable x is a part, in that of other

sense, of another variable. This is the case, for example, when

variables of an IS are complex attributes (i.e., sets of primitive

attributes) of some objects, or if they are inputs of an automa-

ton, etc.

If x is a part of y, then the variable x functionally depends on y;

this kind of dependencies is called inclusion dependencies.
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A charcteristic peculiarity of the dependency relation in this

case is that it is antisymmetric.
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Frames with inclusions

We say that a pair F := (X, V ) is a frame (with inclusions) if

1. X is a poset (X, C) in which
¦ every pair of elements {x, y} bounded from above has the

join x O y,
¦ every pair of elements {x, y} has the meet x M y,
¦ there is the least element o.

2. V is a family (Vx, dy
x)xCy∈X of sets Vx and mappings dy

x: Vy →
Vx such that
¦ dx

x = idVx, dy
xdz

y = dz
x,

¦ for all u, v ∈ ValxOy,

if dxOy
x (u) = dxOy

x (v) and dxOy
y (u) = dxOy

y (v), then u = v,
¦ Vo is a singleton {ı}.
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A terminological explanation:

A poset in which every pair of elements bounded from above

has a join is known as nearsemilattice. A nearsemilattice in

which every pair of elements has a meet is called a nearlattice.

Therefore, the set of variables X is actually a nearlattice with

zero.

In database theory, nearsemilattices with zero are known as a weak version

of approximation domains; a domain is said to be multiplicative if it is a

nearlattice.

Notation:

If x C y, we, given values u ∈ Ax and v ∈ Vy, shall write

v[x] instead of dy
x(v) (restriction of v to x).
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Assignments

In a frame with inclusions, an assignment is a function δ on X

that assigns a non-empty subset of Vx to every x ∈ X so that

¦ if x C y, then δ(x) = {v[x]: v ∈ δ(y)},
¦ δ(x O y) = {w ∈ VxOy: w[x] ∈ δ(x) and w[y] ∈ δ(y)}.

An assignment is said to be univalent if every δ(x) is a singleton,
and proper if there is no other description δ′ with δ′(x) ⊆ δ(x)
for all x.

A proper description need not be univalent.

There are frames that admit only the trivial description λ with

λ(x) = Vx for all x.
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Information systems

An information system with inclusion dependencies is a quadruple

S := (X, V, X,∆), where
¦ (X, V ) is a frame,
¦ S is a nonempty set (of reference point),
¦ ∆ is a family (δx: x ∈ X) of assignments.
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Information systems are the first kind of our quantum-like

structures: they are non-stochastic analogues of physical sys-

tems.

We shall see that the logic of S is completely determined by its

frame.
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Let F := (A, V ) be a frame.

A (crisp) descriptor in F is any pair (x, u) with u ∈ Vx.

(Interpretation: (x, u) is a piece of information saying that x has a value u.)

The set K of all descriptors is called the information space of F .

Every assignment, considered as a set of ordered pairs, is a subset

of K Let Kx stand for the set of all descriptors (x, u) with a fixed

first component.
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Information space is a direct analogue of the outcome space

of a physical system.
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The extended information space K∗ of F is the set of all non-

crisp descriptors (x, a), where a ⊆ Vx can be interpreted as a

non-crisp descriptor.

(Interpretation: (x, A) is a piece of information saying that x has a value in

a.)
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The extended information space is an analogue of the event

space of a physical system.
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The logic L of F will be obtained by factorizing K∗ w.r.t. an

appropriate equivalence relation.

All three spaces K, K∗, L will be equipped with some structure.

Any of ordered partial algebras so obtained, considered up to

isomorphism, contains full information about the initial frame.

States and assignments appear as certain ideals in these algebras.
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2. INFORMATION SPACE OF A FRAME

We say that descriptors (x, u) and (y, v) agree with each other

(in symbols, (x, u) ∼ (y, v)) if u[x M y] = v[x M y].

The relation ∼ is reflexive and symmetric, but need not be tran-

sitive. Descriptions from the same subset Kx agree only if they

are equal.

Note that the sets Kx are mutually disjoint. If ∼ is also transitive,

let K′ := K/∼, and let K′
x be the subset of K′ corresponding to

Kx. Let T := {K′
x: x ∈ X}. Then

²
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the pair (K′, T ) is a kind of test space for F .
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A descriptor (x, u) is said to be a restriction of (y, v) (in symbols,

(x, u) @ (y, v)) if these descriptors agree and x C y, i.e.,
®
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ª
(x, u) @ (y, v) :≡ x C y and u = v[x] .

(This is an information ordering of K: (x, u) “contains less information” than

(y, v).)
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Theorem (JC [2004])

(a) The relation @ is an ordering of K with the least element

⊥ := (o, ı). (recall that o is the least variable and ι is its single value)

(b) If (x, u), (y, v) @ (z, w), then the descriptor

(x, u) t (y, v) := (x O y, w[x O y])

is the join of (x, u) and (y, v).

(c) The binary operation ←−u (projection) defined by

(x, u)←−u (y, v) := (x M y, v[x M y])

is idempotent, associative, and satisfies the condition

(x, u)←−u (y, v)←−u (x, u) = (y, v)←−u (x, u);

it is also commutative in every principal order ideal of K.

(d) The operation ←−u is related to @ by the condition

(x, y) @ (x, y) iff (x, y)←−u (y, v) = (x, u).
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The theorem suggests to consider an information space of a

frame as a partial algebra (K,t,
←−u ,⊥), in which

¦ (K,t,⊥) is a nearsemilattice with zero,
¦ (K,

←−u ,⊥) is a right-normal idempotent semigroup with zero,
¦ the natural ordering of the idempotent semigroup coincides

with the nearsemilattice ordering.

Such algebras have been called right normal skew nearlattices

(with zero).

Theorem (J.C. [2004])

Every right normal skew nearlattice with zero is isomorphic to

the information space of a frame, which is determined uniquely

up to isomorphism.
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An ideal of an information space K is a nonempty downward

closed subset of K that is closed also under existing joins.

An ideal is said to be extensive if to every descriptor (x, u) ∈ K

there is a descriptor (y, v) ∈ I with (y, v)←−u (x, u) = (x, u)

Note that an assignment can be considered as a set of pairs (x, u) and is,

hence, a subset of K.

Proposition (J.C. [2002])

A subset of K is an assignment if and only if it is an extensive

ideal.

An assignment is deterministic iff this ideal is a join semilattice.
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Therefore,

Up to isomorphisms, there is a bijective connection between

information systems with inclusions and (abstract) information

spaces equipped with a family of extensive ideals.
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3. EXTENDED INFORMATION SPACE

A frame F := (X, V ).
Its extended information space K∗.
We occasionally shall identify a non-crisp description (x, a) ∈ K∗
with the subset {(x, u): u ∈ a} of K.

Every subset K∗
x := {(x, a): a ⊆ Vx} of K∗ is a Boolean algebra

isomorphic to Bx := P(Vx).
For x C y, there is a pair of mappings εx

y: Bx → By and π
y
x: By →

Bx defined by

εx
y(a) := {v ∈ Vy: v[x] ∈ a} dy

x-preimage of a,

π
y
x(b) := {(v[x]: v ∈ b} dy

x-image of b.

The heterogeneous algebra (Bx, εx
y, π

y
x)xCy∈X is the starting point

for investigation the structure of K∗.
21



Proposition

¦ The operations εx
y and π

y
x have the following properties:

¦ both εx
y and π

y
x are isotone,

¦ π
y
xεx

y = idx, εx
yπ

y
x ⊆ idy,

¦ εx
x = idx, π

y
y = idy,

¦ ε
y
zεx

y = εx
z , π

y
xπz

y = πz
x,

¦ ε
xMy
y πx

xMy = πz
yεx

z whenever x, y ≤ z.

In particular, εx
y is a Boolean embedding Bx → By.
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3.1. Some operations on the extended information space

The operations t and ←−u of the information space K naturally

induce similar operations on K∗:
¦ (x, a) t (y, b) := {(x, u) t (y, v): u ∈ a, v ∈ b}

= (x O y, εx
xOy(a) ∩ ε

y
xOy(b)),

¦ (x, a)←−u (y, b) := {(x, u)←−u (y, v): u ∈ a, v ∈ b}
= (x M y, π

y
x(b)).

Therefore, t is a partial operation defined iff x and y are com-

patible. There is also a unary operation − defined by

¦ −(x, a) := (x,−a),

and a derived binary operation u defined by

¦ (x, a) u (y, b) := ((x, a)←−u (y, b)) ∪ ((y, b)←−u (x, a))

= (x M y, πx
xMy(a) ∪ π

y
xMy(b)).
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We now consider the extended information space K∗ as an alge-

bra (K∗,t,u,−).

Proposition

The algebra (K∗,t,u) is a nearlattice with the natural ordering

@ given by

(x, a) @ (y, b) :≡ x C y and π
y
x(b) ⊆ a.

Moreover, there again is a bijective correspondence between

assignments in the frame F and certain ideals of the nearlattice

K∗.
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As @ is an information ordering, not a logical one, we obtain:

(x, a) @ (y, b) iff b ⊆ a,

(x, a) t (x, b) = (x, a ∩ b),

(x, a) u (x, b) = (x, a ∪ b).
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An operation − on a nearlattice is called a local complementation

if it satisfies conditions
¦ −− ξ = ξ,
¦ ξ t −ξ always exists, and

O(ξ) @ η iff ξ @ I(η),

where the operations O and I are defined by

O(ξ) := ξ u −ξ, I(ξ) := ξ t −ξ.

Such an operation is indeed a complementation in every interval

[O(ξ), I(ξ)].
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Now,

the extended information space K∗ is a locally complemented

nearlattice (in which an interval [O(x, a), I(x, a)] is dually iso-

morphic to Bx),

and the class of those l.c. nearlattices isomorphic to the extended

information space of some IS is characterised by a few additional

equational axioms.
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The extended information space may equivalently be treated as

an algebra (K∗,t,
←−u ,−). Its reduct again is a right normal skew

nearlattice.
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3.2. Subsumption in K∗

Considering now elements of K∗ as events, we now define a

subsumption relation ¹ on K∗:
(x, a) ¹ (y, b) :≡ ε

xMy
y (πx

xMy(a)) ⊆ b;

equivalently,

if u ∈ a and (x, u) ∼ (y, v) for some v ∈ Vy, then v ∈ b.

This relation is a preorder; the inequality (x, a) ¹ (y, b) may be

read as “whenever x has a value in a, y has a value in b”.

The corresponding equivalence relation ≈ preserves operations

−,t,
←−u , but not u.
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LOGIC OF A FRAME

Let F be a frame.

A logic L of F is defined to be the poset (K∗/≈,≤), where ≤ is

the order relation induced by ¹.

We also denote by
¦ 0 the equivalence class of (x,∅) for any x,
¦ 1 the equivalence class of (x, Vx) for any x,
¦ ∧ the partial operation induced on L by t,
¦ ⊥ the operation induced by −,
¦ ∨ the partial operation defined by p ∨ q := (p⊥ ∧ q⊥)⊥,
¦ ◦ the operation induced by ←−u ,
¦ Lx the set of equivalence classes of all (x, a) with a ⊆ Vx.
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Proposition

(a) each Lx is closed under these operations and is isomorphic

to Bx,

(b) L =
⋃
(Lx: x ∈ X),

(c) Lx ⊆ Ly iff x C y,

(d) LxMy = Lx ∩ Ly,

(e) L0 = {0,1}.

Proposition

The algebra (L,≤,⊥,0,1) is an orthoposet .
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Proposition

The algebra (L,∨,∧,⊥,0,1) is a partial Boolean algebra in the

sense that
¦ p∨ q and p∧ q are defined iff both p and q belong to the same

Lx,
¦ each Lx supports a Boolean subalgebra of L isomorphic to

Bx.
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Proposition

(a) The algebra (L, ◦) is a right-normal idempotent semigroup.

(b) Every operation Qp on L defined by Qp(q) := p ◦ q is a

closure operator satisfying the condition

Qp((Qp(q))⊥) = Qp((q))⊥.

(c) If p = |(x, a)|, then the range of Qp is Lx.
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