

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Projekts Nr. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

ORTHONEARSEMILATTICES: EXAMPLES AND SOME STRUCTURE THEOREMS

Jānis Cīrulis University of Latvia

email: jc@lanet.lv

Algebra and its applications Sokka (Estonia), April 27-29, 2012

OVERVIEW

- 1. Basic definitions
 - (nearsemilattices, orthomodular posets, orthogonality, orthoalgebras)
- 2. Examples
- 3. Structure of an othonearsemilattice

[G] GUDDER, S:

An order for quantum observables, Math. Slovaca **56** (2006), 573–589.

[P&V] PULMANNOVÁ, S., VINCEKOVÁ, E.:

Remarks on the order for quantum observables, Math. Slovaca **57** (2007), 589–600.

1. BASIC DEFINITIONS

1.1 Nearlattices and nearsemilattices

A *nearlattice* is usually defined as a meet semilattice in which every initial segment is a lattice.

Equivalently, it is a semilattice possessing the upper bound property.

(every pair of elements having an upper bound has a least upper bound)

By definition, a *nearsemilattice* is a poset possessing the upper bound property.

[A poset in which every initial segment is a join semilattice is a weaker structure.]

Every (semi)lattice is a near(semi)lattice.

In any poset, we shall write $a \mid b$ to mean "the join of a and b exists", and call such elements compatible.

In a nearsemilattice, this is the case if and only if the elements a and b have a common upper bound.

We assume that a near(semi)lattice has the least element 0, and consider it as a partial algebra $(A, \vee, 0)$, resp. $(A, \vee, \wedge, 0)$.

1.2 Orthomodular posets and lattices

Let A be a poset with the least element 0.

A binary relation \bot on A is an *orthogonality* if it satisfies the following conditions:

- if $x \perp y$, then $y \perp x$,
- if $x \leq y$ and $y \perp z$, then $x \perp z$,
- $x \perp 0$.

A unary operation $^{\perp}$ on A is an *othocomplementation* if it satisfies the following conditions:

- $x^{\perp \perp} = x$,
- if $x \leq y$, then $y^{\perp} \leq x^{\perp}$,
- $x \wedge x^{\perp} = 0$ (then also $x \vee y \perp = 1$).

An *orthoposet* is a poset equipped with an othocomplementation.

In an orthocomplemented poset, the relation \bot defined by $x \bot y$ iff $y \le x^\bot$

is an orthogonality.

Conversely, if \bot is an orthogonality on a poset A and, for every x, there is the largest element x^{\bot} orthogonal to x, then the operation \bot is an orthocomplementation.

An orthoposet is said to be orthomodular if

- if $x \perp y$, then $x \vee y$ exists,
- if $x \le y$, then $y = x \lor z$ for some z with $x \perp z$.

A lattice ordered orthomodular poset is called an *orthomodular lattice*.

A generalized orthomodular poset is a poset B which is an order ideal of an orthomodular poset A and satisfies the conditions

- for every $x \in A$, either $x \in B$ or $x^{\perp} \in B$,
- for all $x, y \in B$, their join in B is also their join in A.

1.3 Orthogonality on a nearsemilattice

An *orthonearsemilattice* is a nearsemilattice equipped with orthogonality such that

- if $x \perp y$, then $x \mid y$,
- if $x \le y$, then $y = x \lor z$ for some y with $x \perp z$,
- if $x \perp y$, $x \perp z$ and $x \vee y = x \vee z$, then y = z.

A nearsemilattice is said to be *orthomodular* if it is an orthonearsemilattice in which

• if $x \perp y$, $x \perp z$ and $y \mid z$, then $x \perp y \vee z$.

Any upper_semilattice_ordered orthomodular poset is an orthomodular nearsemilattice in this sense. Any orthomodular lattice is an orthomodular nearlattice.

In an orthonearsemilattice,

• if $x \perp x$, then x = 0.

In an orthomodular nearsemilattice,

- if $x \ | \ y$, then $x \perp y \lor z$ iff $x \perp y$ and $x \perp z$,
- every finite subset of mutually orthogonal elements has a join.
- every initial segment of an orthonearsemilattice is an orthomodular lattice.

1.4 Generalized orthoalgebras

A generalized orthoalgebra is a system $(A, \oplus, 0)$, where

- ullet \oplus is a partial binary operation and
- 0 is a nullary operation on A, satisfying the conditions (we write here, for arbitrary terms s and t, $s \perp t$ to mean that $s \oplus t$ is defined):
- if $x \perp y$, then $y \perp x$ and $x \oplus y = y \oplus x$,
- if $x \perp y$ and $x \oplus y \perp z$, then

$$y\perp z, x\perp y\oplus z$$
 and $(x\oplus y)\oplus z=x\oplus (y\oplus z)$,

- $x \perp 0$ and $x \oplus 0 = x$,
- if $x\perp y$, $x\perp z$ and $x\oplus y=x\oplus z$, then y=z,
- if $x \perp x$, then x = 0.

The relation \leq defined on a generalized orthoalgebra by $x \leq y$ if and only if $y = x \oplus z$ for some z with $x \perp z$ is the *natural ordering* of A.

In a generalized orthoalgebra,

- the relation \perp is an orthogonality,
- $x \oplus y$ is a minimal upper bound of x and y.

An *orthoalgebra* is a generalized orthoalgebra with the largest element.

Thus, every initial segment of a generalized orthoalgebra is an orthoalgebra.

2. EXAMPLES

2.1 Nearlattices of sets

A collection S of subsets of some set X is a nearlattice if it is closed under \cap , contains \varnothing and satisfies the condition

if $K, L, M \in S$ and $K \cup L \subseteq M$, then $K \cup L \in S$.

Every initial segment of this nearlattice is a Boolean lattice.

If $K \perp L$ is defined by $K \cap L = \emptyset$, then S becomes an orthomodular orthonearlattice.

In particular, if \approx is a tolerance relation on X, call a subset $K \subseteq X$ coherent if elements of K are mutually tolerant.

The set of all coherent subsets of X is a nearlattice of sets.

2.2 Nearlattices of functions

Let I and V be non-empty sets, and let PF(I,V) be the the set of all partial functions $I \to V$, including the empty function λ . Then $(PF, \cup, \cap, \lambda)$ is a nearlattice (of sets).

More generally, a *functional nearlattice* is any nearlattice (A, \cup, \cap, λ) , where F is a subset of PF. It is said to be *closed* if it is closed under all unions existing in PF.

However, \bot is defined in PF by $\varphi \bot \psi$ iff $\operatorname{dom} \varphi \cap \operatorname{dom} \psi = \varnothing$.

Then PF becomes

- an orthomodular nearlattice,
- a generalized orthoalgebra with \oplus defined by $\varphi \oplus \psi := \varphi \cup \psi$ for $\varphi \perp \psi$.

2.3 Random variables [S.Gudder, 2006]

```
(\Omega, \mathcal{A}, \mu) a probability space the set of random variables on \Omega (the set of measurable functions \Omega \to \mathbb{R}) supp f \{\omega \in \Omega \colon f(\omega) \neq 0\} f \perp g fg = 0 (supp f \cap \operatorname{supp} g = \varnothing) f \oplus g f + g for f \perp g g = f \oplus h for some h (supp f \subseteq \operatorname{supp} g and f | \operatorname{supp} f = g | \operatorname{supp} f)
```

Results [G]:

- M(A) is a generalized orthogogebra, with \leq the natural order.
- $M(\mathcal{A})$ is a nearlattice (with zero function 0 as the least element),
- every initial segment of M(A) is a Boolean algebra.

[P&V]:

• M(A) is a generalized orthomodular poset.

[C]:

M(A) is isomorphic to a closed functional nearlattice in $PF(\Omega, \mathbb{R}_0)$.

$$\mathbb{R}_0 := \mathbb{R} \setminus \{0\}$$

2.4 Operators on a Hilbert space [Gudder, 2006]

```
\mathcal{H} a Hilbert space O,\ I the zero and identity operators on \mathcal{H} the set of bounded selfadjoint operators on \mathcal{H} ran A the closure of the subspace ran A A \perp B AB = O (ran A \perp ran B) A \oplus B A + B for A \perp B A \oplus B A \oplus B and A \oplus B and A \oplus B ran A \oplus B and A \oplus B and A \oplus B ran B \oplus B
```

Results [G]:

- $S(\mathcal{H})$ is a generalized orthoalgebra, with \leq the natural ordering,
- every initial segment of $S(\mathcal{H})$ is isomorphic to

a certain orthomodular lattice,

• hence, every pair of operators bounded above has a join and a meet in $S(\mathcal{H})$.

[P&V]:

- $S(\mathcal{H})$ is "almost" a generalized orthomodular poset,
- $S(\mathcal{H})$ is a nearlattice: all meets exist.

[C]:

- The conclusion of [G] about existence of joins is right,
- $S(\mathcal{H})$ is an orthomodular nearlattice,
- $S(\mathcal{H})$ is a generalized orthomodular poset.

3. STRUCTURE OF ORTHONEARLATTICES

Theorem 1

Suppose that A is a nearlsemilattice and that \bot is a binary relation on A. The following assertions are equivalent:

- (a) A is an orthonearsemilattice with \bot the requisite orthogonality,
- (b) every initial segment [0,p] of A is an orthoposet, and $x\perp y$ iff $y\leq x_p^\perp$ for some p.

 $(x_p^{\perp} \text{ is the orthocomplement of } x \in [0, p])$

Corollary

Every initial segment of an orthonearsemilattice A is an orthomodular lattice (with joins and meets as in A).

Corollary

An orthomodular nearsemilattice is a generalized orthomodular poset.

Theorem 2

Suppose that $(A, \vee, 0)$ is a nearsemilattice, and that

- \perp is a binary relation on A, and
- \oplus is a partial binary relation on A.

The following assertions are equivalent:

(a) $(A, \vee, 0, \perp)$ is an orthonearsemilattice, and \oplus satisfies the condition

 $x \oplus y = z$ if and only if $x \perp y$ and $z = x \vee y$.

(b) $(A, \oplus, 0)$ is a generalized orthoalgebra (with regard to \bot) and \oplus satisfies the conditions

 $x \leq y$ is its natural ordering,

if $x \perp y$, then $x \mid y$ and $x \vee y = x \oplus y$.

Corollary

A generalized orthoalgebra possesing the upper bound property is an orthonearsemilattice.

Theorem 3

Suppose that A is a poset vith 0 and that \bot is a binary relation on A. The folloing assertions are equivalent:

- (a) A is an orthonearsemilattice,
- (b) A is a weak commutative BCK-algebra, i.e. it admits a binary operation such that
- if $x \le y$, then $z y \le z x$,
- $y x \leq y$,
- x 0 = x,
- x (x y) = y (y x).