CONTRIBUTIONS TO GENERAL ALGEBRA 20 Proceedings of the Salzburg Conference 2011 (AAA81) Verlag Johannes Heyn, Klagenfurt 2011

SYMMETRIC CLOSURE OPERATORS ON ORTHOPOSETS

JĀNIS CĪRULIS

ABSTRACT. A closure operator on an orthoposet is said to be symmetric if its range is closed under orthocomplementation. On a Boolean algebra, an operation is a symmetric closure operator if and only if it is a quantifier; this may be not the case in weaker structures. We compare symmetric closure operators and quantifiers on ortholattices and orthomodular lattices. We also associate a symmetric closure operator with every sufficiently complete maximal orthogonal subset of an orthoposet and present conditions under which two such closure operators permute.

1. INTRODUCTION

In Section 7 of [8], M.J. Janowitz called a closure operator on an involution poset *symmetric*, if its range is closed under involution. On orthomodular lattices, such closure operators have been studied as early as in [8, 16, 17], and on Boolean algebras already at beginnings of algebraic modal logic; see [4] and references therein. They appear also in the contemporary theory of rough sets as a kind of approximation operators; see for example [19, 21] (but the term 'symmetric closure operator' has also several other meanings in other branches of mathematics and in computer science).

A symmetric closure operator (*sc-operator*, for short) on a Boolean algebra is just a quantifier, an operation satisfying axioms (C_6) , (C_1) , (C_{11}) below (such an operation is the algebraic counterpart of the existential quantification in the classical first-order logic). The two concepts usually diverge in weaker structures, and many authors have preferred to consider sc-operators, or some particular kind of them, as the right algebraic analogues of logical existential quantifiers in such cases. See Section 2 for more detail.

²⁰¹⁰ Mathematics Subject Classification. Primary 06A15; secondary 06C15.

Key words and phrases. Ortholattice, orthoposet, quantifier, relatively complete subalgebra, symmetric closure operator.

This work was supported by ESF project No.2009/0216/1DP/1.1.1.2.0/09/ APIA/VIAA/044.

In the next section of the paper the necessary information about orthoposets and sc-operators on them is collected and the notation is fixed. Scoperators and quantifiers on orthomodular lattices and on general ortholattices are compared in Section 3. Section 4 contains the main results of the paper. We show there that every maximal orthogonal subset V of an arbitrary orthoposet P (provided that certain subsets of V have the join in P) induces an sc-operator on P, and we find a sufficient condition under which two such induced sc-operators permute, with their composition being an induced sc-operator again.

2. Preliminaries: orthoposets and sc-operators

Recall that an *orthoposet* is a system $(P, \leq, {}^{\perp}, 0, 1)$, where $(P, \leq, 0, 1)$ is a bounded poset and the operation ${}^{\perp}$ is an orthocomplementation on L, i.e.:

$$p \le q$$
 implies that $q^{\perp} \le p^{\perp}$, $p^{\perp \perp} = p$, $1 = p \lor p^{\perp}$, $0 = p \land p^{\perp}$

 $(a \lor b \text{ and } a \land b \text{ stand for the l.u.b. and g.l.b. of } a \text{ and } b, \text{ respectively})$. Then $1 = 0^{\perp}$ and $0 = 1^{\perp}$. The De Morgan duality laws hold in an orthoposet in the following form: if one side in

$$(p \wedge q)^{\perp} = p^{\perp} \vee q^{\perp}, \quad (p \vee q)^{\perp} = p^{\perp} \wedge q^{\perp}$$

is defined, then the other one is, and both are equal. The elements p and q of P are said to be *orthogonal* (in symbols, $p \perp q$) if $p \leq q^{\perp}$. The orthogonality relation has the following evident properties, which we shall use without explicit reference:

$$p \perp 0;$$
 if $p \perp q$ then $q \perp p;$ $p \perp p$ if and only if $p = 0;$
if $p \leq q$ and $q \perp r$ then $p \perp r;$
 $p \leq q$ if and only if, for all $r \in P, q \perp r$ implies that $p \perp r.$

Moreover, if $P_0 \subseteq P$ and $q = \bigvee P_0$, then

(1)
$$r \perp q$$
 if and only if, for all $p \in P_0, r \perp p$.

We write $r \perp P_0$ to mean that r is orthogonal to all elements of a subset P_0 of P. In particular, always $r \perp \emptyset$.

An orthoposet is said to be *finitely orthocomplete* if $p \perp q$ implies that $p \lor q$ is defined, and *orthomodular* if, in addition, $p \leq q$ implies that $q = p \lor r$ for some r with $r \perp p$. An *ortholattice* is an orthocomplemented lattice, and an *orthomodular lattice* is an orthomodular ortholattice. In an ortholattice, the last condition is equivalent to the *orthomodular identity*

if
$$p \leq q$$
, then $p \vee (p^{\perp} \wedge q) = q$.

20

An orthoposet is said to be *Boolean* if $p \perp q$ whenever $p \wedge q = 0$ (the converse always holds true). A finitely orthocomplete Boolean orthoposet is orthomodular, and an ortholattice that is Boolean in this sense is a Boolean algebra (see [20]).

We now return to sc-operators.

Proposition 2.1. An sc-operator C on an orthoposet has the following properties:

 $\begin{array}{ll} (\mathsf{C}_1): & p \leq \mathsf{C}p, \\ (\mathsf{C}_2): & if \ p \leq q, \ then \ \mathsf{C}p \leq \mathsf{C}q, \\ (\mathsf{C}_3): & \mathsf{C}\mathsf{C}p = \mathsf{C}p, \\ (\mathsf{C}_4): & \mathsf{C}((\mathsf{C}p)^{\perp}) = (\mathsf{C}p)^{\perp}, \\ (\mathsf{C}_5): & \mathsf{C}1 = 1, \\ (\mathsf{C}_6): & \mathsf{C}0 = 0, \\ (\mathsf{C}_7): & \mathsf{C}((\mathsf{C}p)^{\perp}) \leq p^{\perp}, \\ (\mathsf{C}_8): & p \leq \mathsf{C}q \ if \ and \ only \ if \ \mathsf{C}p \leq \mathsf{C}q, \\ (\mathsf{C}_9): \ the \ range \ of \ \mathsf{C} \ is \ closed \ under \ existing \ meets \ and \ joins, \\ (\mathsf{C}_{10}): & if \ p \lor q \ exists, \ then \ \mathsf{C}(p \lor q) = \mathsf{C}p \lor \mathsf{C}q. \end{array}$

Proof. The first four items repeat the definition of an sc-operator mentioned in the Introduction (due to (C_3) , the condition " $(C_p)^{\perp} = C_q$ for some q" is equivalent to (C_4)).

 (C_5) follows from (C_1) . (C_6) is induced by (C_5) and (C_4) : $C0 = C((C1)^{\perp}) = (C1)^{\perp} = 0$. (C_7) follows by (C_1) and (C_4) as $^{\perp}$ is antitone. (C_8) is a well-known property of C as a closure operator, which follows from (C_1) , (C_2) and (C_3) .

 (C_9) Suppose that $r := Cp \wedge Cq$ exists; we shall prove that r = Cr. Clearly, $r \leq Cr$ by (C_1) . On the other hand, $Cr \leq CCp = Cp$ by (C_2) and (C_3) , and likewise $Cr \leq Cq$. Thus, $Cr \leq r$ and, finally, Cr = r. The assertion on joins now follows by virtue of (C_3) and the De Morgan laws.

(C₁₀) Suppose that $r := p \lor q$ exists. As $r' := Cp \lor Cq$ exists and equals to C(r') by (C₉), we get $r \le r' = C(r')$ by (C₁). Now (C₈) implies that $Cr \le C(r') = r'$; the reverse inequality holds in virtue of (C₁).

In fact, (C_3) is a consequence of (C_4) . Let r := Cp; by (C_4) , then $r^{\perp} = C(r^{\perp})$ and also $CCp = C(r^{\perp\perp}) = C((C(r^{\perp}))^{\perp}) = (C(r^{\perp}))^{\perp} = r^{\perp\perp} = Cp$. Therefore, symmetric closure operators can be characterised by three axioms (C_1) , (C_2) and (C_4) . Observe that substituting of Cp for p in (C_7) , together with (C_3) , gives us a half of (C_4) ; the other half follows directly from (C_1) . This is why in the literature (C_7) sometimes replaces (C_4) in the definition of a symmetric closure operator.

A suborthoposet, or just a subalgebra, of an orthoposet P is any subset of P with the inherited ordering that contains 0 and 1 and is closed under orthocomplementation. We may consider in P also the partial operations of join and meet, and thus view it as a partial ortholattice $(P, \lor, \land, \downarrow, 0, 1)$. A

partial subortholattice of P is then any suborthoposet that is closed under existing joins and, hence, also existing meets. Recall, furthermore, that, in any poset P, a subset P_0 is a range of a closure operator (necessarily unique) if and only if it is relatively complete in the sense that, for every $p \in P$, the subset $P_0(p) := \{q \in P_0 : p \leq q\}$ has a least element \bar{p} . The mapping $p \mapsto \bar{p}$ is then the closure operator corresponding to P_0 .

The subsequent corollary to Proposition 2.1 is an orthoposet version of [17, Theorem 3] for orthomodular lattices.

Corollary 2.2. An operation C on P is an sc-operator if and only if its range is a relatively complete subalgebra of P. If this is the case, then the range of C is even a partial subortholattice of P.

This connection between sc-operators and relatively complete subalgebras is bijective.

Remark. For Boolean algebras, the above characteristic of sc-operators (i.e., quantifiers) is contained in Theorems 3 and 4 of [6]. Theorem 16 of [1] asserts, in particular, that such a connection holds between sc-operators (called quantifiers there) and relatively complete sublattices of any ortholattice. However, it is implicitly assumed in the proof of the theorem that a relatively complete sublattice of an ortholattice is, in fact, closed under orthocomplementation.

3. SC-OPERATORS AND QUANTIFIERS

In algebraic logic, a(n existential) quantifier, or cylindrification, on a Boolean algebra A is a unary operation C satisfying axioms (C_1) , (C_6) and the quasi-multiplicative law

(C₁₁): $C(p \wedge Cq) = Cp \wedge Cq;$

see [6, Part 1] and [7, Sect. 1.3]. An equivalent axiom system for quantifiers consists of (C_1) , (C_2) and (C_4) . The axiom (C_2) is sometimes replaced by the formally stronger additivity rule

 (C_{12}) : $\mathsf{C}(a \lor b) = \mathsf{C}a \lor \mathsf{C}b;$

cf. [7, p. 177]. Therefore, the notions of quantifier and sc-operator in a Boolean algebra coincide. Both axiom systems (sometimes together with some special additional axioms) have been used to define quantifiers also in more general algebras (see [2, 5, 11, 14, 18], resp. [1, 3, 12, 13, 15]).

However, as noted on p. 1244 of [9], even in an orthomodular lattice L a symmetric closure operator does not necessarily possess the property (C_{11}): all symmetric closure operators on L satisfy (C_{11}) if an only if L is a Boolean algebra. On the other hand, a quantifier C on L is always a symmetric closure operator (Theorem 2(iv) in [9]): at first,

(2)
$$0 = \mathsf{C}0 = \mathsf{C}(\mathsf{C}p \land (\mathsf{C}p)^{\perp}) = \mathsf{C}p \land \mathsf{C}((\mathsf{C}p)^{\perp})$$

by (C_6) and (C_{11}) ; then $(C_p)^{\perp} = (C_p)^{\perp} \vee (C_p \wedge C((C_p)^{\perp})) = C((C_p)^{\perp})$ in virtue of the orthomodular identity (as $(C_p)^{\perp} \leq C((C_p)^{\perp})$ by (C_1)).

Now let L be an arbitrary ortholattice. The identity (2) also shows that a quantifier C on L satisfies the inequality $C((Cp)^{\perp}) \leq (Cp)^{\perp}$ if its range is Boolean. As the reverse inequality always holds due to (C_1) , a quantifier with a Boolean range is an sc-operator. However, an arbitrary quantifier on L need not be an sc-operator.

Example. Let *L* be the ortholattice consisting of two (maximal) chains $0 < b^{\perp} < a < 1$ and $0 < a^{\perp} < b < 1$. The operation C defined by the table

1)	0	a^{\perp}	b^{\perp}	a	b	1
C	p	0	b	a	a	b	1

satisfies (C_6) , (C_1) and (C_{11}) , but its range $\{0, a, b, 1\}$ is not closed under \perp . Therefore, (C_4) is not fulfilled.

An element c of an ortholattice L is said to be central if, for every $p \in L$, $(p \wedge c) \lor (p \wedge c^{\perp}) = p$. The subset of all central elements of the lattice L is its center. The next theorem gives a sufficient condition for an sc-operator on an ortholattice to be a quantifier. That every center-valued sc-operator (i.e., sc-operator whose range lies in the center) is a quantifier on an orthomodular lattice, was stated on p. 1244 of [9] without proof.

Theorem 3.1. Suppose that L is an ortholattice and C is a center-valued sc-operator on L. If its range is orthomodular, then C satisfies (C_{11}) .

Proof. First observe that, due to the first two properties of orthocomplementation and the De Morgan laws, the orthomodular identity can be rewritten as

if
$$q^{\perp} \leq p^{\perp}$$
, then $p^{\perp} \wedge (p \vee q^{\perp}) = q^{\perp}$

and further as

(3) if
$$q \le p$$
, then $(q \lor p^{\perp}) \land p = q$.

Now we can follow the final part of the proof of Theorem 3 in [6]. First, $p = (p \land Cq) \lor (p \land (Cq)^{\perp}) \le (p \land Cq) \lor (Cq)^{\perp}$. Then, $Cp \le C((p \land Cq) \lor (Cq)^{\perp}) = C(p \land Cq) \lor (Cq)^{\perp}$ by (C_2) , (C_{10}) and (C_4) , and further $Cp \land Cq \le (C(p \land Cq) \lor (Cq)^{\perp}) \land Cq = C(p \land Cq) - \text{see}$ (3) and (C_2) . The converse inequality $C(p \land Cq) \le Cp \land Cq$ is obvious by (C_2) and (C_3) .

4. SC-OPERATORS INDUCED BY MAXIMAL ORTHOGONAL SUBSETS

A subset P_0 of an orthoposet P is said to be *orthogonal* if it is empty or its elements differ from 0 and are mutually orthogonal. A standard argument using Zorn's lemma shows that every orthogonal subset is included in a maximal one. We shall say that an orthogonal set is *summable* if it has a least upper

bound (join) in P; thus, in a finitely orthocomplete orthoposet every finite orthogonal subset is summable. P is called *orthocomplete* if every orthogonal subset of P is summable. An orthocomplete Boolean orthoposet is a Boolean algebra [20, Theorem 3.6].

Throughout this section, let P be a fixed orthoposet. For any maximal orthogonal subset V of P, we denote by V^* the set of those elements of P that are the join of some subset of V. It follows from the subsequent lemma that V^* is a suborthoposet, hence, a partial subortholattice of P.

Lemma 4.1. Suppose that V is a maximal orthogonal set. If $p = \bigvee U$ for some $U \subseteq V$, then

- (a) for all $v \in V$, $v \in U$ if and only if $v \leq p$,
- (b) $\bigvee (V \setminus U)$ exists and equals to p^{\perp} .

Proof. (a) Clearly, if $v \in U$, then $v \leq p$. If $v \in V$ and $v \leq p$, then $v \perp u$ for every $u \notin U$, as $u \perp p$ by (1). Hence, $v \in U$.

(b) By (1), $p \perp v$ for every $v \in V \setminus U$, and then p^{\perp} is an upper bound of $V \setminus U$. If q is one more upper bound, then $q^{\perp} \perp V \setminus U$, $q \perp p$ (by (1)) and $p^{\perp} \leq q$.

Therefore, for every $p \in P$,

(4) if
$$p \in V^*$$
, then, for all $v \in V$, either $v \le p$ or $v \perp p$,

(5)
$$p \in V^*$$
 if and only if $p = \bigvee \{v \in V \colon v \le p\}.$

Moreover, an element of V^* is the join of just one subset of V. Further, V^* is a Boolean suborthoposet of P, and the mapping $p \mapsto \{v \in V : v \leq p\}$ establishes a bijective connection between V^* and the set of summable subsets of V. This mapping is actually an embedding of the partial ortholattice V^* into the Boolean algebra $\mathcal{P}(V)$. It follows that V^* is isomorphic to the latter if the set V is orthocomplete (i.e., every subset of V has a join).

Lemma 4.2. If the join $p_V := \bigvee \{v \in V : v \not\perp p\}$ exists for some $p \in P$, then it is the least element of V^* above p.

Proof. Clearly, $p_V \in V^*$. Furthermore, Lemma 4.1(b) implies that $p_V^{\perp} = \bigvee \{ v \in V : v \perp p \}$. Hence, $p \perp p_V^{\perp}$ (see (1)), i.e., $p \leq p_V$. Further, if $p \leq q$ for some $q \in V^*$, and if $v \in V$, then $v \not\perp p$ implies that $v \not\perp q$, i.e., $v \leq q$ (see (4)). It then follows that also $p_V \leq q$.

The next result immediately follows from this lemma by Corollary 2.2.

Theorem 4.3. If V is a maximal orthogonal set for which all joins p_V exist, then V^* is a relatively complete suborthoposet of P, and the mapping $C_V: p \mapsto p_V$ is the corresponding sc-operator. Therefore,

(6)
$$\mathsf{C}_V(p) = \bigvee \{ v \in V \colon v \not\perp p \}.$$

It also follows from the theorem that ran $C_V = V^*$ and that $C_V = C_{V'}$ only if V = V'. Even when all quantifiers C_V are defined, they need not permute.

Example. Let $P := 2^3$ be the eight-element Boolean algebra generated by three atoms p, q and r. Consider the maximal orthogonal subsets $U := \{p \lor r, q\}$ and $V := \{q \lor r, p\}$. Then $\mathsf{C}_U p = p \lor r$, $\mathsf{C}_V p = p$ and, further, $\mathsf{C}_U \mathsf{C}_V p = p \lor r$, $\mathsf{C}_V \mathsf{C}_U p = 1$. Thus, C_U and C_V do not permute.

Let V stand for the set of all maximal orthogonal subsets of P. The relation \leq on V defined by

(7)
$$U \leq V$$
 if and only if $U \subseteq V^*$ (if and only if $U^* \subseteq V^*$)

is an ordering with the least element $\{1\}$ and atoms $\{p, p^{\perp}\}$. Evidently, $U \leq V$ only if to every $v \in V$ there is an element $u \in U$ (necessary unique) such that $v \leq u$. Several characterisations of the relation \leq in terms of sc-operators are given in Theorem 4.5 below.

Lemma 4.4. If $U \leq V$ and p_U exists for some p, then $(p_U)_V$ exists, and both are equal. If also p_V exists, then $(p_V)_U$ exists, and $p_U = (p_V)_U$.

Proof. Suppose that p_U exists. We use (5), (4) and (1):

$$p_U = \bigvee \{u: u \not\perp p \text{ and } u \in U\}$$

$$= \bigvee \{\bigvee \{v \in V: v \leq u\}: u \not\perp p \text{ and } u \in U\}$$

$$= \bigvee \{v \in V: v \leq u \text{ and } u \not\perp p \text{ for some } u \in U\}$$

$$= \bigvee \{v \in V: v \not\perp u \text{ for some } u \in U \text{ with } u \not\perp p\}$$

$$= \bigvee \{v \in V: v \not\perp \bigvee \{u \in U: u \not\perp p\}\}$$

$$= (p_U)_V.$$

Likewise, if p_U and p_V exist, then, using (5), (1), (4) and once more (1),

$$p_U = \bigvee \{ u \in U \colon u \not\perp p \}$$

$$= \bigvee \{ u \in U \colon \bigvee \{ v \in V \colon v \leq u \} \not\perp p \}$$

$$= \bigvee \{ u \in U \colon v \not\perp p \text{ for some } v \in V \text{ with } v \leq u \}$$

$$= \bigvee \{ u \in U \colon u \not\perp v \text{ for some } v \in V \text{ with } v \not\perp p \}$$

$$= \bigvee \{ u \in U \colon u \not\perp \bigvee \{ v \in V \colon v \not\perp p \} \}$$

$$= (p_V)_U,$$

J. CĪRULIS

and both assertions are proved.

Theorem 4.5. Suppose that $U, V \in V$ and that the sc-operators C_U and C_V are defined. Then the conditions (a) $U \leq V$, (b) $C_U C_V = C_U$, (c) $C_V C_U = C_U$, (d) ran $C_U \subseteq$ ran C_V , (e) $C_U \geq C_V$ (*i.e.*, $C_U p \geq C_V p$ for every $p \in P$) are equivalent.

Proof. It immediately follows from the preceding lemma that (b) and (c) follow from (a). Further, (c) means that the range of C_U is included in the set of fixed points of C_V ; so, (c) implies (d). In turn, (d) implies (a) by the definition of \leq . By (C₁), (b) implies also (e). At last, (e) implies that $C_V C_U \leq C_U$ — see (C₂) and (C₃); the reverse inequality follows from (C₁) and (C₂). Therefore, (c) is a consequence of (e).

Suppose that the meet $U \wedge V$ of U and V exists in V. We shall say that the sets U and V are *correlated* if, for all $u \in U$ and $v \in V$,

(8)
$$u \perp v$$
 if and only if $u, v \leq w$ for no $w \in U \land V$.

This is the case, for example, if $U \leq V$. Observe that the "if" part of (8) is, in fact, trivial and always holds. However, the condition (8) is not always satisfied: it is obviously false when $U \wedge V$ is the least element in V.

Lemma 4.6. Suppose that U and V are correlated and that $p \in U^*$. Then $p_V = p_{U \wedge V}$ in the sense that if one side of the equality is defined, then the other also is and both are equal.

Proof. We shall use (5), (1) and (4). If $p_{U \wedge V}$ is defined, then

$$p_{U \wedge V} = \bigvee \{ w \in U \wedge V \colon w \not\perp p \}$$

= $\bigvee \{ w \in U \wedge V \colon w \not\perp \bigvee \{ u \in U \colon u \leq p \} \}$
= $\bigvee \{ w \in U \wedge V \colon w \not\perp u \text{ for some } u \in U \text{ with } u \leq p \}$
(*) = $\bigvee \{ w \in U \wedge V \colon u \leq w \text{ and } u \leq p \text{ for some } u \in U \}.$

Conversely, if the join (*) is defined, then also $p_{U \wedge V}$ is. Further, if p_V is defined, then, using (5), (1), (8) and associativity of \bigvee ,

$$p_V = \bigvee \{ v \in V \colon v \not\perp p \}$$

= $\bigvee \{ v \in V \colon v \not\perp \bigvee \{ u \in U \colon u \leq p \} \}$
= $\bigvee \{ v \in V \colon v \not\perp u \text{ and } u \leq p \text{ for some } u \in U \}$

26

$$= \bigvee \{ v \in V \colon [(\text{there is } w \in U \land V \text{such that } v \leq w \text{ and } u \leq w) \\ \text{and } u \leq p] \text{ for some } u \in U \} \\ = \bigvee \{ v \in V \colon \text{there is } w \in U \land V \text{ [such that } v \leq w \\ \text{and } (u \leq w \text{ and } u \leq p \text{ for some } u \in U)] \} \\ (**) = \bigvee \{ \bigvee \{ v \in V \colon v \leq w \} \colon w \in U \land V \\ \text{and } (u \leq w \text{ and } u \leq p \text{ for some } u \in U) \}.$$

Conversely, if the join (**) is defined, then p_V is. But (*) and (**), when defined, are equal in virtue of (5).

Theorem 4.7. Suppose that $U, V \in V$, $U \wedge V$ exists, and the sc-operators C_U and C_V are defined. Then $C_V C_U = C_{U \wedge V}$ if and only if U and V are correlated.

Proof. Recall that $p := \mathsf{C}_U q \in U^*$ for arbitrary $q \in P$, and suppose that U and V are correlated. Then

$$\mathsf{C}_V\mathsf{C}_U q = \mathsf{C}_V p = \mathsf{C}_{U \wedge V} p = \mathsf{C}_{U \wedge V}\mathsf{C}_U q = \mathsf{C}_{U \wedge V} q$$

in virtue of Lemmas 4.6 and 4.4. To prove the converse, suppose that $\mathsf{C}_V\mathsf{C}_U p = \mathsf{C}_{U\wedge V} p$ for all $p \in P$, and choose $u \in U$ and $v \in V$ so that $u \perp v$. As $\mathsf{C}_U u = u$, then $\mathsf{C}_V u = \mathsf{C}_{U\wedge V} u$. By choice of $v, v \perp v'$ for all $v' \in V$ with $v' \not\perp u$, so that, by (6) and (1), $v \perp \mathsf{C}_V u$ and, further, $v \perp \mathsf{C}_{U\wedge V} u$, i.e., $v \perp w$ for all $w \in U \wedge V$ with $w \not\perp u$. Therefore, the inequalities $u \leq w$ and $v \leq w$ are incompatible: This gives us the "only if" part of (8); as we already know, its "if" part is true.

Corollary 4.8. If U, V are correlated and the sc-operators C_U and C_V are defined, then they permute and their composition also is an sc-operator induced by a maximal orthogonal subset of P.

References

- I. Chajda, H. Länger: Quantifiers on lattices with an antitone involution. Demonstr. Math., 42 (2009), 241–246.
- [2] R. Cignoli: Quantifiers on distributive algebras. Discr. Math., 96 (1991), 183-197.
- [3] J. Cīrulis: Orthoposets with quantifiers. Bull. Sect. Logic (Lódź), 41 (2012) (submitted).
- [4] C. Davis: Modal operators, equivalence relations, and projective algebras. Amer. Math. J., 76 (1954), 747–762.
- [5] G. Georgescu, A. Iorgulescu, I. Leuştean: Monadic and closure MV-algebras. Mult.-Valued Log., 3 (1998), 235–257.
- [6] P.R. Halmos: Algebraic Logic, I. Monadic Boolean algebras. Compositio Math., 12 (1957), 219–249.
- [7] L. Henkin, D.J. Monk, A. Tarski: Cylindric Algebras, Part I. North Holland, Amsterdam e.a. 1971, 1985.
- [8] M.F. Janowitz: Residuated closure operators. Port. Math., 26 (1967), 221-252.

- [9] M.F. Janowitz: Quantifiers and orthomodular lattices. Pacific J. Math., 13 (1963), 1241–1249.
- [10] M.F. Janowitz: Quantifier theory on quasi-orthomodular lattices. Ill. J. Math., 9 (1965), 660-676.
- [11] A. Monteiro, A. Varsavsky: Algebras de Heyting monadicas. Actas delas X Jornadas de la Unión Mat. Argentina (1957), 52–62. French translation: Algebres de Heyting monadiques. Notas de logica matematica. 1. Bahia Blanca, Argentina: Instituto de Matematica, Universidad Nacional del Sur. 1974.
- [12] A. Di Nola, R. Grigolia: On monadic MV-algebras. Ann. Pure Appl. Logic, 128 (2004), 125–139.
- [13] J. Rachůnek, F. Švrček: Monadic bounded commutative residuated *l*-monoids. Order, 25 (2008), 157–175.
- [14] L. Román: A characterization of quantic quantifiers in orthomodular lattices. Theory Appl. Categ., 16 (2006), 206–217.
- [15] J.D. Rutledge: On the definition of an infinitely-many-valued predicate calculus. J. Symb. Log., 25 (1960), 212–216.
- [16] G.T. Rüttimann: Projections on orthomodular lattices. In: Found. Quantum Mech. Ordered Lin. Spaces, Lecture Notes Phys., 29 (1974), 334–341.
- [17] G.T. Rüttimann: Decomposition of projections on orthomodular lattices. Can. Math. Bull., 18 (1975), 263–267.
- [18] D. Schwartz: Theorie der polyadischen MV-Algebren endlicher Ordnung. Math. Nachr., 78 (1977), 131–138.
- [19] H. Thiele: On axiomatic characterisations of crisp approximation operators. Inf. Sci., 129 (2000), 221–226.
- [20] J. Tkadlec: Boolean orthoposets concreteness and orthocompleteness. Math. Bohemica, 119 (1994), 123–128.
- [21] Li Tongjun: On axiomatic characterization of approximation operators based on atomic Boolean algebras. In: Wang, Guoyin (ed.) et al., Rough sets and knowledge technology. Lecture Notes Comput. Sci., 4062 (2006), 129–134.

FACULTY OF COMPUTING, UNIVERSITY OF LATVIA, RIGA, LATVIA *E-mail address*: jc@lanet.lv