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SYMMETRIC CLOSURE OPERATORS ON ORTHOPOSETS

JĀNIS CĪRULIS

Abstract. A closure operator on an orthoposet is said to be symmetric if
its range is closed under orthocomplementation. On a Boolean algebra, an
operation is a symmetric closure operator if and only if it is a quantifier;
this may be not the case in weaker structures. We compare symmetric clo-
sure operators and quantifiers on ortholattices and orthomodular lattices.
We also associate a symmetric closure operator with every sufficiently com-
plete maximal orthogonal subset of an orthoposet and present conditions
under which two such closure operators permute.

1. Introduction

In Section 7 of [8], M.J. Janowitz called a closure operator on an involution
poset symmetric, if its range is closed under involution. On orthomodular
lattices, such closure operators have been studied as early as in [8, 16, 17],
and on Boolean algebras already at beginnings of algebraic modal logic; see
[4] and references therein. They appear also in the contemporary theory of
rough sets as a kind of approximation operators; see for example [19, 21] (but
the term ‘symmetric closure operator’ has also several other meanings in other
branches of mathematics and in computer science).

A symmetric closure operator (sc-operator, for short) on a Boolean algebra
is just a quantifier, an operation satisfying axioms (C6), (C1), (C11) below (such
an operation is the algebraic counterpart of the existential quantification in
the classical first-order logic). The two concepts usually diverge in weaker
structures, and many authors have preferred to consider sc-operators, or some
particular kind of them, as the right algebraic analogues of logical existential
quantifiers in such cases. See Section 2 for more detail.
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In the next section of the paper the necessary information about ortho-
posets and sc-operators on them is collected and the notation is fixed. Sc-
operators and quantifiers on orthomodular lattices and on general ortholat-
tices are compared in Section 3. Section 4 contains the main results of the
paper. We show there that every maximal orthogonal subset V of an arbi-
trary orthoposet P (provided that certain subsets of V have the join in P )
induces an sc-operator on P , and we find a sufficient condition under which two
such induced sc-operators permute, with their composition being an induced
sc-operator again.

2. Preliminaries: orthoposets and sc-operators

Recall that an orthoposet is a system (P,≤,⊥, 0, 1), where (P,≤, 0, 1) is a
bounded poset and the operation ⊥ is an orthocomplementation on L, i.e.:

p ≤ q implies that q⊥ ≤ p⊥, p⊥⊥ = p, 1 = p ∨ p⊥, 0 = p ∧ p⊥

(a ∨ b and a ∧ b stand for the l.u.b. and g.l.b. of a and b, respectively). Then
1 = 0⊥ and 0 = 1⊥. The De Morgan duality laws hold in an orthoposet in the
following form: if one side in

(p ∧ q)⊥ = p⊥ ∨ q⊥, (p ∨ q)⊥ = p⊥ ∧ q⊥

is defined, then the other one is, and both are equal. The elements p and q of
P are said to be orthogonal (in symbols, p ⊥ q) if p ≤ q⊥. The orthogonal-
ity relation has the following evident properties, which we shall use without
explicit reference:

p ⊥ 0; if p ⊥ q then q ⊥ p; p ⊥ p if and only if p = 0;
if p ≤ q and q ⊥ r then p ⊥ r;

p ≤ q if and only if, for all r ∈ P , q ⊥ r implies that p ⊥ r.

Moreover, if P0 ⊆ P and q =
∨

P0, then

(1) r ⊥ q if and only if, for all p ∈ P0, r ⊥ p.

We write r ⊥ P0 to mean that r is orthogonal to all elements of a subset P0

of P . In particular, always r ⊥ ∅.
An orthoposet is said to be finitely orthocomplete if p ⊥ q implies that p∨ q

is defined, and orthomodular if, in addition, p ≤ q implies that q = p ∨ r for
some r with r ⊥ p. An ortholattice is an orthocomplemented lattice, and an
orthomodular lattice is an orthomodular ortholattice. In an ortholattice, the
last condition is equivalent to the orthomodular identity

if p ≤ q, then p ∨ (p⊥ ∧ q) = q.
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An orthoposet is said to be Boolean if p ⊥ q whenever p∧ q = 0 (the converse
always holds true). A finitely orthocomplete Boolean orthoposet is orthomod-
ular, and an ortholattice that is Boolean in this sense is a Boolean algebra
(see [20]).

We now return to sc-operators.

Proposition 2.1. An sc-operator C on an orthoposet has the following prop-
erties:

(C1) : p ≤ Cp,
(C2) : if p ≤ q, then Cp ≤ Cq,
(C3) : CCp = Cp,
(C4) : C((Cp)⊥) = (Cp)⊥,
(C5) : C1 = 1,
(C6) : C0 = 0,
(C7) : C((Cp)⊥) ≤ p⊥,
(C8) : p ≤ Cq if and only if Cp ≤ Cq,
(C9) : the range of C is closed under existing meets and joins,

(C10) : if p ∨ q exists, then C(p ∨ q) = Cp ∨ Cq.

Proof. The first four items repeat the definition of an sc-operator mentioned
in the Introduction (due to (C3), the condition “(Cp)⊥ = Cq for some q” is
equivalent to (C4)).

(C5) follows from (C1). (C6) is induced by (C5) and (C4): C0 = C((C1)⊥) =
(C1)⊥ = 0. (C7) follows by (C1) and (C4) as ⊥ is antitone. (C8) is a well-known
property of C as a closure operator, which follows from (C1), (C2) and (C3).

(C9) Suppose that r := Cp∧Cq exists; we shall prove that r = Cr. Clearly,
r ≤ Cr by (C1). On the other hand, Cr ≤ CCp = Cp by (C2) and (C3), and
likewise Cr ≤ Cq. Thus, Cr ≤ r and, finally, Cr = r. The assertion on joins
now follows by virtue of (C3) and the De Morgan laws.

(C10) Suppose that r := p ∨ q exists. As r′ := Cp ∨ Cq exists and equals
to C(r′) by (C9), we get r ≤ r′ = C(r′) by (C1). Now (C8) implies that
Cr ≤ C(r′) = r′; the reverse inequality holds in virtue of (C1).

In fact, (C3) is a consequence of (C4). Let r := Cp; by (C4), then r⊥ = C(r⊥)
and also CCp = C(r⊥⊥) = C((C(r⊥))⊥) = (C(r⊥))⊥ = r⊥⊥ = Cp. Therefore,
symmetric closure operators can be characterised by three axioms (C1), (C2)
and (C4). Observe that substituting of Cp for p in (C7), together with (C3),
gives us a half of (C4); the other half follows directly from (C1). This is why
in the literature (C7) sometimes replaces (C4) in the definition of a symmetric
closure operator.

A suborthoposet, or just a subalgebra, of an orthoposet P is any subset
of P with the inherited ordering that contains 0 and 1 and is closed under
orthocomplementation. We may consider in P also the partial operations of
join and meet, and thus view it as a partial ortholattice (P,∨,∧,⊥, 0, 1). A
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partial subortholattice of P is then any suborthoposet that is closed under
existing joins and, hence, also existing meets. Recall, furthermore, that, in
any poset P, a subset P0 is a range of a closure operator (necessarily unique)
if and only if it is relatively complete in the sense that, for every p ∈ P , the
subset P0(p) := {q ∈ P0 : p ≤ q} has a least element p̄. The mapping p �→ p̄ is
then the closure operator corresponding to P0.

The subsequent corollary to Proposition 2.1 is an orthoposet version of [17,
Theorem 3] for orthomodular lattices.

Corollary 2.2. An operation C on P is an sc-operator if and only if its range
is a relatively complete subalgebra of P . If this is the case, then the range of
C is even a partial subortholattice of P .

This connection between sc-operators and relatively complete subalgebras
is bijective.

Remark. For Boolean algebras, the above characteristic of sc-operators (i.e.,
quantifiers) is contained in Theorems 3 and 4 of [6]. Theorem 16 of [1] asserts,
in particular, that such a connection holds between sc-operators (called quan-
tifiers there) and relatively complete sublattices of any ortholattice. However,
it is implicitly assumed in the proof of the theorem that a relatively complete
sublattice of an ortholattice is, in fact, closed under orthocomplementation.

3. Sc-operators and quantifiers

In algebraic logic, a(n existential) quantifier, or cylindrification, on a
Boolean algebra A is a unary operation C satisfying axioms (C1), (C6) and
the quasi-multiplicative law

(C11) : C(p ∧ Cq) = Cp ∧ Cq;
see [6, Part 1] and [7, Sect. 1.3]. An equivalent axiom system for quantifiers
consists of (C1), (C2) and (C4). The axiom (C2) is sometimes replaced by the
formally stronger additivity rule

(C12) : C(a ∨ b) = Ca ∨ Cb;
cf. [7, p. 177]. Therefore, the notions of quantifier and sc-operator in a Boolean
algebra coincide. Both axiom systems (sometimes together with some special
additional axioms) have been used to define quantifiers also in more general
algebras (see [2, 5, 11, 14, 18], resp. [1, 3, 12, 13, 15]).

However, as noted on p. 1244 of [9], even in an orthomodular lattice L a
symmetric closure operator does not necessarily possess the property (C11):
all symmetric closure operators on L satisfy (C11) if an only if L is a Boolean
algebra. On the other hand, a quantifier C on L is always a symmetric closure
operator (Theorem 2(iv) in [9]): at first,

(2) 0 = C0 = C(Cp ∧ (Cp)⊥) = Cp ∧ C((Cp)⊥)
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by (C6) and (C11); then (Cp)⊥ = (Cp)⊥∨(Cp∧C((Cp)⊥)) = C((Cp)⊥) in virtue
of the orthomodular identity (as (Cp)⊥ ≤ C((Cp)⊥) by (C1)).

Now let L be an arbitrary ortholattice. The identity (2) also shows that
a quantifier C on L satisfies the inequality C((Cp)⊥) ≤ (Cp)⊥ if its range is
Boolean. As the reverse inequality always holds due to (C1), a quantifier with
a Boolean range is an sc-operator. However, an arbitrary quantifier on L need
not be an sc-operator.

Example. Let L be the ortholattice consisting of two (maximal) chains 0 <
b⊥ < a < 1 and 0 < a⊥ < b < 1. The operation C defined by the table

p 0 a⊥ b⊥ a b 1
Cp 0 b a a b 1

satisfies (C6), (C1) and (C11), but its range {0, a, b, 1} is not closed under ⊥.
Therefore, (C4) is not fulfilled.

An element c of an ortholattice L is said to be central if, for every p ∈ L,
(p ∧ c) ∨ (p ∧ c⊥) = p. The subset of all central elements of the lattice L is
its center. The next theorem gives a sufficient condition for an sc-operator on
an ortholattice to be a quantifier. That every center-valued sc-operator (i.e.,
sc-operator whose range lies in the center) is a quantifier on an orthomodular
lattice, was stated on p. 1244 of [9] without proof.

Theorem 3.1. Suppose that L is an ortholattice and C is a center-valued
sc-operator on L. If its range is orthomodular, then C satisfies (C11).

Proof. First observe that, due to the first two properties of orthocomplemen-
tation and the De Morgan laws, the orthomodular identity can be rewritten
as

if q⊥ ≤ p⊥, then p⊥ ∧ (p ∨ q⊥) = q⊥

and further as

(3) if q ≤ p, then (q ∨ p⊥) ∧ p = q.

Now we can follow the final part of the proof of Theorem 3 in [6]. First,
p = (p ∧ Cq) ∨ (p ∧ (Cq)⊥) ≤ (p ∧ Cq) ∨ (Cq)⊥. Then, Cp ≤ C((p ∧ Cq) ∨
(Cq)⊥) = C(p ∧ Cq) ∨ (Cq)⊥ by (C2), (C10) and (C4), and further Cp ∧ Cq ≤
(C(p ∧ Cq) ∨ (Cq)⊥) ∧ Cq = C(p ∧ Cq) — see (3) and (C2). The converse
inequality C(p ∧ Cq) ≤ Cp ∧ Cq is obvious by (C2) and (C3).

4. Sc-operators induced by maximal orthogonal subsets

A subset P0 of an orthoposet P is said to be orthogonal if it is empty or its
elements differ from 0 and are mutually orthogonal. A standard argument us-
ing Zorn’s lemma shows that every orthogonal subset is included in a maximal
one. We shall say that an orthogonal set is summable if it has a least upper
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bound (join) in P ; thus, in a finitely orthocomplete orthoposet every finite
orthogonal subset is summable. P is called orthocomplete if every orthogonal
subset of P is summable. An orthocomplete Boolean orthoposet is a Boolean
algebra [20, Theorem 3.6].

Throughout this section, let P be a fixed orthoposet. For any maximal
orthogonal subset V of P , we denote by V ∗ the set of those elements of P that
are the join of some subset of V . It follows from the subsequent lemma that
V ∗ is a suborthoposet, hence, a partial subortholattice of P .

Lemma 4.1. Suppose that V is a maximal orthogonal set. If p =
∨

U for
some U ⊆ V , then

(a) for all v ∈ V, v ∈ U if and only if v ≤ p,
(b)

∨
(V \ U) exists and equals to p⊥.

Proof. (a) Clearly, if v ∈ U , then v ≤ p. If v ∈ V and v ≤ p, then v ⊥ u for
every u /∈ U , as u ⊥ p by (1). Hence, v ∈ U .

(b) By (1), p ⊥ v for every v ∈ V \ U , and then p⊥ is an upper bound of
V \ U . If q is one more upper bound, then q⊥ ⊥ V \ U , q ⊥ p (by (1)) and
p⊥ ≤ q.

Therefore, for every p ∈ P ,

if p ∈ V ∗, then, for all v ∈ V , either v ≤ p or v ⊥ p,(4)

p ∈ V ∗ if and only if p =
∨

{v ∈ V : v ≤ p}.(5)

Moreover, an element of V ∗ is the join of just one subset of V . Further,
V ∗ is a Boolean suborthoposet of P , and the mapping p �→ {v ∈ V : v ≤ p}
establishes a bijective connection between V ∗ and the set of summable subsets
of V . This mapping is actually an embedding of the partial ortholattice V ∗
into the Boolean algebra P(V ). It follows that V ∗ is isomorphic to the latter
if the set V is orthocomplete (i.e., every subset of V has a join).

Lemma 4.2. If the join pV :=
∨{v ∈ V : v 
⊥ p} exists for some p ∈ P , then

it is the least element of V ∗ above p.

Proof. Clearly, pV ∈ V ∗. Furthermore, Lemma 4.1(b) implies that p⊥V =∨{v ∈ V : v ⊥ p}. Hence, p ⊥ p⊥V (see (1)), i.e., p ≤ pV . Further, if p ≤ q for
some q ∈ V ∗, and if v ∈ V , then v 
⊥ p implies that v 
⊥ q, i.e., v ≤ q (see (4)).
It then follows that also pV ≤ q.

The next result immediately follows from this lemma by Corollary 2.2.

Theorem 4.3. If V is a maximal orthogonal set for which all joins pV exist,
then V ∗ is a relatively complete suborthoposet of P , and the mapping CV : p �→
pV is the corresponding sc-operator.
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Therefore,

(6) CV (p) =
∨

{v ∈ V : v 
⊥ p}.
It also follows from the theorem that ranCV = V ∗ and that CV = CV ′ only if
V = V ′. Even when all quantifiers CV are defined, they need not permute.

Example. Let P := 23 be the eight-element Boolean algebra generated by
three atoms p, q and r. Consider the maximal orthogonal subsets U := {p ∨
r, q} and V := {q ∨ r, p}. Then CU p = p∨ r, CV p = p and, further, CUCV p =
p ∨ r, CV CU p = 1. Thus, CU and CV do not permute.

Let V stand for the set of all maximal orthogonal subsets of P . The relation
≤ on V defined by

(7) U ≤ V if and only if U ⊆ V ∗ (if and only if U∗ ⊆ V ∗)

is an ordering with the least element {1} and atoms {p, p⊥}. Evidently, U ≤ V
only if to every v ∈ V there is an element u ∈ U (necessary unique) such that
v ≤ u. Several characterisations of the relation ≤ in terms of sc-operators are
given in Theorem 4.5 below.

Lemma 4.4. If U ≤ V and pU exists for some p, then (pU)V exists, and both
are equal. If also pV exists, then (pV)U exists, and pU = (pV)U .

Proof. Suppose that pU exists. We use (5), (4) and (1):

pU =
∨

{u : u 
⊥ p and u ∈ U}
=

∨
{
∨

{v ∈ V : v ≤ u} : u 
⊥ p and u ∈ U}
=

∨
{v ∈ V : v ≤ u and u 
⊥ p for some u ∈ U}

=
∨

{v ∈ V : v 
⊥ u for some u ∈ U with u 
⊥ p}
=

∨
{v ∈ V : v 
⊥

∨
{u ∈ U : u 
⊥ p}}

= (pU)V .

Likewise, if pU and pV exist, then, using (5), (1), (4) and once more (1),

pU =
∨

{u ∈ U : u 
⊥ p}
=

∨
{u ∈ U :

∨
{v ∈ V : v ≤ u} 
⊥ p}

=
∨

{u ∈ U : v 
⊥ p for some v ∈ V with v ≤ u}
=

∨
{u ∈ U : u 
⊥ v for some v ∈ V with v 
⊥ p}

=
∨

{u ∈ U : u 
⊥
∨

{v ∈ V : v 
⊥ p}}
= (pV)U ,
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and both assertions are proved.

Theorem 4.5. Suppose that U, V ∈ V and that the sc-operators CU and CV

are defined. Then the conditions (a) U ≤ V , (b) CUCV = CU , (c) CV CU = CU ,
(d) ran CU ⊆ ranCV , (e) CU ≥ CV (i.e., CU p ≥ CV p for every p ∈ P ) are
equivalent.

Proof. It immediately follows from the preceding lemma that (b) and (c) follow
from (a). Further, (c) means that the range of CU is included in the set of
fixed points of CV ; so, (c) implies (d). In turn, (d) implies (a) by the definition
of ≤. By (C1), (b) implies also (e). At last, (e) implies that CV CU ≤ CU — see
(C2) and (C3); the reverse inequality follows from (C1) and (C2). Therefore,
(c) is a consequence of (e).

Suppose that the meet U ∧ V of U and V exists in V . We shall say that
the sets U and V are correlated if, for all u ∈ U and v ∈ V ,

(8) u ⊥ v if and only if u, v ≤ w for no w ∈ U ∧ V.

This is the case, for example, if U ≤ V . Observe that the “if” part of (8)
is, in fact, trivial and always holds. However, the condition (8) is not always
satisfied: it is obviously false when U ∧ V is the least element in V .

Lemma 4.6. Suppose that U and V are correlated and that p ∈ U∗. Then
pV = pU∧V in the sense that if one side of the equality is defined, then the
other also is and both are equal.

Proof. We shall use (5), (1) and (4). If pU∧V is defined, then

pU∧V =
∨

{w ∈ U ∧ V : w 
⊥ p}
=

∨
{w ∈ U ∧ V : w 
⊥

∨
{u ∈ U : u ≤ p}}

=
∨

{w ∈ U ∧ V : w 
⊥ u for some u ∈ U with u ≤ p}
(∗) =

∨
{w ∈ U ∧ V : u ≤ w and u ≤ p for some u ∈ U}.

Conversely, if the join (∗) is defined, then also pU∧V is. Further, if pV is
defined, then, using (5), (1), (8) and associativity of

∨
,

pV =
∨

{v ∈ V : v 
⊥ p}
=

∨
{v ∈ V : v 
⊥

∨
{u ∈ U : u ≤ p}}

=
∨

{v ∈ V : v 
⊥ u and u ≤ p for some u ∈ U}
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=
∨

{v ∈ V : [(there is w ∈ U ∧ V such that v ≤ w and u ≤ w)

and u ≤ p] for some u ∈ U}
=

∨
{v ∈ V : there is w ∈ U ∧ V [such that v ≤ w

and (u ≤ w and u ≤ p for some u ∈ U)]}
(∗∗) =

∨
{
∨

{v ∈ V : v ≤ w} : w ∈ U ∧ V

and (u ≤ w and u ≤ p for some u ∈ U)}.
Conversely, if the join (∗∗) is defined, then pV is. But (∗) and (∗∗), when
defined, are equal in virtue of (5).

Theorem 4.7. Suppose that U, V ∈ V , U ∧ V exists, and the sc-operators
CU and CV are defined. Then CV CU = CU∧V if and only if U and V are
correlated.

Proof. Recall that p := CU q ∈ U∗ for arbitrary q ∈ P , and suppose that U
and V are correlated. Then

CV CU q = CV p = CU∧V p = CU∧V CU q = CU∧V q

in virtue of Lemmas 4.6 and 4.4. To prove the converse, suppose that CV CU p =
CU∧V p for all p ∈ P , and choose u ∈ U and v ∈ V so that u ⊥ v. As CU u = u,
then CV u = CU∧V u. By choice of v, v ⊥ v′ for all v′ ∈ V with v′ 
⊥ u, so
that, by (6) and (1), v ⊥ CV u and, further, v ⊥ CU∧V u, i.e., v ⊥ w for all
w ∈ U ∧ V with w 
⊥ u. Therefore, the inequalities u ≤ w and v ≤ w are
incompatible: This gives us the “only if” part of (8); as we already know, its
“if” part is true.

Corollary 4.8. If U, V are correlated and the sc-operators CU and CV are
defined, then they permute and their composition also is an sc-operator induced
by a maximal orthogonal subset of P .
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[4] C. Davis: Modal operators, equivalence relations, and projective algebras. Amer. Math.

J., 76 (1954), 747–762.
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