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OVERVIEW

1. What is quantum logic here?

2. Mackey-Ma̧czyński approach.

3. Why computer science?

4. Physical systems and their logic – another look.

Main message of the lecture:

From a certain point of view, physical systems, or, at last, cer-

tain models of them, are information systems of particular kind.

There also many other particular kinds of IS with their specific

features. Some of these peculiarities have a good sense also in

the context of physical systems, and taking them into account

may lead to more specific models of PS and quantum logics.
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1. WHAT IS QUANTUM LOGIC HERE?

1.1. A model of a physical system

A physical system S is usually characterized by the following
data:
¦ a set of observables O,
¦ a set of states S,
¦ a valuation p: S ×O → P,
where P is the set of all probability measures on R.

These data are subject to some or other conditions.
For example, a system S := (O, S, p) in which
¾
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p(s, x) = p(t, x) for all x ∈ O only if s = t and

p(s, x) = p(s, y) for all s ∈ S only if x = y

will be called extensional.
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1.2. Reminder: probability measures

Let B stand for the set of all Borel sets of the real line R.

(B is the smallest collection of subsets of R that contains all open inter-

vals and is closed under set complementation and countable (i.e., finite or

denumerable) unions.)

A (σ-additive) probability measure is a function m: B → [0,1]

such that
¦ m(∅) = 0, m(R) = 1,
¦ m(A1 ∪A2 ∪ · · ·) = m(A1) + m(A2) + · · ·

for any countable sequence of mutually disjoint sets Ai.
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1.3. Logic of a system

An event in S is a pair (x, A) ∈ O × B
(meaning: x has a value in A).

We assume that

a system determines a subsumption relation on E,

the set of all events.

So there is
¦ a preorder ¹ on E ,
(e ¹ e′ means: if an event e occurs, then e′ also occurs),
¦ the corresponding equivalence relation ≈.

The equivalence classes of ≈ are considered as experimental
propositions about S.
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The logic of S is defined to be the set L := E/≈ of all

propositions. Subsumption ¹ induces, in a standard way,

an order relation ≤ on L (entailment for propositions).

We further assume that

subsumption has the following basic properties:
'
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¹1: if A ⊆ B, then (x, A) ¹ (y, B),

¹2: (x,∅) ¹ (y,∅),

¹3: if (x, A) ¹ (y, B), then (y,−B) ¹ (x,−A).

Then, in particular, the following definitions of propositions 0,1

and a unary operation ⊥ on L are correct:
¦ 0 := |(x,∅)|,
¦ 1 := |(x,R)|,
¦ |(x, A)|⊥ := |(x,−A)|.
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If these conditions are fulfilled, then the logic L is a bounded

involution poset (L,≤,⊥,0,1).

This means that
¦ (L,≤,0,1) is a bounded poset,
¦ ⊥ is an involution:

p⊥⊥ = p, p ≤ q ⇒ q⊥ ≤ p⊥.

Below, ‘involution poset’ will always mean ‘bounded involution

poset.

In this lecture,

a quantum logic is any involution poset isomorphic to the logic

of some physical system.
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1.4. A few special classes of involution posets

In an involution poset, elements p and q are said to be orthogonal
(in symbols, p ⊥ q) if p ≤ q⊥ (equivalently, if q ≤ p⊥).

An orthoposet is an involution poset in which ⊥ is a complemen-
tation:
0 = p ∧ p⊥, 1 = p ∨ p⊥.

An orthoposet is
¦ ⊥-complete (or finitely complete) if p∨ q exists whenever p ⊥ q,
¦ σ-complete if every countable subset of mutually orthogonal
elements has a join,

¦ orthomodular [σ-orthomodular] if it is ⊥- [resp., σ-] complete
and

p ≤ q ⇒ q = p ∨ (p ∨ q⊥)⊥.
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1.5. More on subsumption in E

One more natural condition on ¹ could be®

­

©

ª
¹4: if (x, A) ¹ (y, B1), (y, B2), then (x, A) ¹ (y, B1 ∩B2).

Equivalently,

if (x, A1), (x, A2) ¹ (y, B), then (x, A1 ∪A2) ¹ (y, B).

If the condition ¹4 also is fulfilled, then L is an orthoposet.

Call an element p of an involution poset regular if p 6⊥ p. A

subalgebra of an involution poset is an orthoposet if and only if

the only irregular element in it is 0.
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2. A SPECIALIZATION: MACKEY-MA̧CZIŃSKI

APPROACH

G.W. Mackey, The mathematical foundations of quantum me-

chanics, W.A. Benjamin Inc., Amsterdam, N.-Y., 1963, 1980.

M.J. Ma̧czyński, A remark on Mackey’s axiom system for quan-

tum mechanics, Bull. Acad. Pol. Sci., Sr. Sci. Math. Astron.

Phys. 15 (1967), 583-587.
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2.1. Preliminaries

Let P be an orthoposet.

If P is σ-orthocomplete, then a probability measure on P is a

mapping m: P → [0,1] such that
¦ m(0) = 0 and m(1) = 1,
¦ m(p1 ∨ p2 ∨ · · ·) = m(p1) + m(p2) + · · ·

whenever all pi are mutually orthogonal.

A set M of such measures is full if
¦ p ≤ q iff (∀m ∈ M) m(p) ≤ m(q).

A ⊥-complete orthoposet admitting a full system of probability

measures is orthomodular.
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A σ-homomorphism from B to P (called also a P -valued measure

on B) is a mapping B → P such that
¦ if A ∩B = ∅, then µ(A) ⊥ µ(B),
¦ µ(∅) = 0 and µ(R) = 1,
¦ µ(A1 ∪A2 ∪ · · ·) = µ(A1) ∨ µ(A2) ∨ · · ·

whenever all Ai are mutually disjoint.

A set N of such homomorphisms is surjective if to every p ∈ P

there is µ ∈ N and A ∈ B such that µ(A) = p.
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2.2 Ma̧cziński systems

An M-system is a physical system S, in which
the following axioms hold.
®
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ªAxiom1®
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ªS is extensional.

Events (x, A) and (y, B) are said to be mutually exclusive if
p(s, x)(A) + p(s, y)(B) ≤ 1 for all s

®

­

©

ªAxiom2'
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Every countable sequence of mutually exclusive events

(x1, A1), (x2, A2), . . .

is summable: there is an event (y, B) such that

p(s, y)(B) = p(s, x1)(A1) + p(s, x2)(A2) + · · ·
for all s.
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This (unique) event is called the orthosum of the sequence, and

is denoted by
∑

i(xi, Ai).

Lemma [R.V. Kadison (1951)].

The orthosum
∑

i(xi, Ai) is a least upper bound of the events

(xi, Ai), i = 1,2, . . ., w.r.t. ¹.
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Subsumption on E is defined by

(x, A) ¹ (y, B) :≡ for all s, p(s, x)(A) ≤ p(s, y)(B).

It is indeed a preorder and has the three basic properties ¹1–¹3.
Also,®

­

©

ª
(x, A) ≈ (y, B) iff, for all s, p(s, x)(A) = p(s, y)(B).

Moreover, then
¦ to every state s there is a probability measure ms on L defined
as follows:

²
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¯

°
ms(|(x, A)|) := v(s, x)(A) ;

¦ to every observable x there is a σ-homomorphism µx: B → L

defined as follows:²

±

¯

°
µx(A) := |(x, A)|.
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Proposition. [M.Ma̧czyński]

(a) The logic L of S is a σ-complete orthoposet.

(b) The set M := {ms: s ∈ S} is a full set of probability mea-

sures on L (hence, L is even orthomodular).

(c) The set N := {µx: x ∈ O} is a surjective set of σ-

homomorphisms B → L.

(d) Both mappings s 7→ ms and x 7→ µx are injective.

Let us call the triple (L, M, N) the extended logic of the initial

system S.
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Now:

An (abstract) logic is defined to be any σ-orthomodular poset.

An extended logic is defined to be a triple (L, M, N), where L

is a logic, M is a full set of probability measures on L, and N

is a surjective set of σ-homomorphisms B → L.

Elements of M are called states on L, and those of N , observ-

ables on L.

The set of all states on L is always full, and the set of all

observables on L is always surjective.

Thus, any quantum logic (extended quantum logic) is a logic
(extended logic) in this sense. It turns out that the converse
also holds true.
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Representation theorem [Ma̧czyński].

Let (L.M, N) be an extended logic. For each pair (m, µ) ∈
M × N define a function p(m, µ): B → [0,1] by putting

p(m, µ)(A) := m(µ(A)). Then (M, N, p) is an M-system, and

its extended logic is isomorphic to (L, M, N).

Corollary.

The described constructions yield a bijective (up to isomor-

phism) correspondence between M-systems and extended log-

ics.

Therefore, in Mackey-Ma̧czyński approach,

a quantum logic = an σ-orthoomodular poset.
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2.3. Subsumption as an additional primitive of S?

Another subsumption relation on E:
[J.M. Jauch, Foundations of Quantum Mechanics. Addison-
Wesley, 1968.
C. Piron Foundations of Quantum Physics, W.A. Benjamin,
1976.]

²

±

¯

°
(x, A) ¹′ (y, B) :≡ (∀s) if p(s, x)(A) = 1, then p(s, y)(B) = 1.

Evidently, if (x, A) ¹ (y, B), then (x, A) ¹′ (y, B).
Thus, ¹ has thiner equivalence classes, and ¹′ generally leads to
a different logic.

Should the logic of a system depend on anything aside the

system itself?
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3. WHY COMPUTER SCIENCE?

3.1. Information systems

A (simple) (deterministic) information system in the sense of

Z.Pawlak is a quadruple (Ob, At, V al, f), where
¦ Ob is a set of entities called objects,
¦ At is a set of variables called attributes (of the objects),
¦ V al is a set of values of the attributes,
¦ f , the information function, is a mapping of type Ob×At → V al.

A finite information system may be thought of as a table (or

relation) whose rows represent the objects, and columns are la-

belled by attributes. If o ∈ Ob and a ∈ A, then the corresponding

entry in the table is f(o, a).
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In a stochastic information system the deterministic information

function f : Ob × At → V al is replaced by a function p which

associates a probability distribution on V al to every pair (o, x) ∈
Ob×At.

Example 1.

A physical system (O, S, p) may be presented as a stohastic in-

formation system (S, O,R, p), where
¦ states are treated as objects,
¦ observables are treated as their attributes,
¦ the real numbers are values of the attributes,
¦ the valuation takes the role of the stohastic information func-

tion.
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Example 2.
An automaton: take for Ob its set of states, for At, the set
of input strings, for V al, the set of output strings, for f , the
derived output function, which, in a given state, associates the
corresponding output string to every input string.
This is a deterministic information system.

Values of attributes need not be real numbers.

One can similarly view non-deterministic, stochastic, fuzzy au-
tomata etc.

Uncertainty in an information system need not be stochastic:

instead of probability distributions on the value set, there could

be crisp, fuzzy, rough or multi-subsets, lists, approximations,

various priority functions e.c.
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Variation: The set of output strings V al could naturally be split

into disjoint subsets V alx (x ∈ At), each consisting of all output

strings of the same length as x, and then f(o, a) ∈ V ala.

The set of attributes need not be homogeneous: each at-

tribute x may have its own domain of values V ala, and then

the third component V al is rather a family (V alx: x ∈ At).
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Example 3, Relational datbases. Pregiven are some set of

(primitive) attributes A and a value domain D for them (gen-

erally, each variable x could have its own domain Dx).

¦ A complex attribute, or a relation type is a finite subset of A;

let RT stand for some set of relational types.
¦ A row of type t ∈ RT is a function t → D (i.e., an element of the

power Dt); each row is considered as a description of an object

possessing attributes from t.
¦ A relation, or table, of type t is any set of rows of type t. Let

Relt stand for the set of all relations of type t (i.e., for the powerset

of Dt), and let Rel stand for the family (Relt: t ∈ RT ),
¦ A database is a collection of relations, one for each type in RT .
¦ A database can be updated, or changed in some other way; let

DB be the collection of all databases that can be stored in a

given storage device.
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¦ Any relation type can be regarded as a very simple query to the

database; let f be the interpreting function, which calculates

the relation (from the current database) that corresponds to

such a query.

Now, the quadruple (DB, RT, Rel, f) is an example of an deter-

ministic information system.

Relations with undefined, null, approximate e.c. entries lead us in

the same way to various non-deterministic database information

systems.



Attributes in an information system may be subject to some

constraints, for example, various functional and other depen-

dencies.

For instance,
¦ some observables of a physical system are functions of others,
¦ if an input string α of an automaton is an initial segment of
another input string β, then there is an evident functional de-
pendency of α from β: every output string in Valβ determines
an output string in Valα,

¦ in a relation type, attributes are rarely absolutely independet,
¦ relation types themselves are correlated due to the common
attributes in various types.

Such constraints should be specified in the description of an

information system.
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4. PHYSICAL SYSTEMS – ANOTHER LOOK

We shall discuss a model of a physical system with explicitly

fixed functional dependencies between observables and with a

separate value set for each observable.

The logic of such a system turns out to be completely determined

by the dependency structure of observables and their value sets

(of course, under certain definition of subsumtion relation). So,

probabilities, and even states, do not play so essential role here.
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4.1. General description
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We now consider a physical system S as a quadruple

(O, V, S, p), where
¦ O := (O,←) is a preordered set of observables,
¦ V := (Vx, dy

x)x←y∈O is a family of Borel subsets Vx of R and

surjective Borel functions dy
x: Vy → Vx such that

dx
x = idVx, dy

xdz
y = dz

x,
¦ S is a set of states,
¦ p is a valuation – a mapping S ×O → P,

all subject to axioms specified below.

(A real function f is Borel if f−1(A) ∈ B for every A ∈ B.)
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Comments

1) On (O,←): (← a preorder)

we read x ← y as “x (functionally) depends on y ”.

2) On (Vx, dy
x)x←y∈O: (dy

x: Vy → Vx for x ← y)

¦ each Vx here is a domain of possible values for x, and the
function dy

x is the dependency of x on y.
¦ informally, if x ← y and y has a value v, then x has the value

dy
x(v).

¦ a dependency dy
x (with x ← y) was required to be surjective

because x here can take only values determined by those of y.

3) On p: S ×O → P:
¦ each p(s, o) is a probability measure concentrated on Vx,
¦ p(s, o)(A) is the probability that x has a value in A in a state s.
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Oncemore:

'
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Let us now consider a physical system S as a quadruple

(O, V, S, p), where
¦ O := (O,←) is a preordered set of observables,
¦ V := (Vx, dy

x)x←y∈O is a family of Borel subsets Vx of R and

surjective Borel functions dy
x: Vy → Vx such that

dx
x = idVx, dy

xdz
y = dz

x,
¦ S is a set of states,
¦ p is a valuation – a mapping S ×O → P,

all subject to axioms specified below.
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4.2. Further axioms

Observables x and y are said to be equivalent if x ← y and

y ← x.

A set X of observables is said to be compatible if there is an

observable y such that X ← y (i.e., x ← y for all x ∈ X).

Informally, it is reasonable to regard that

• only compatible observables can be measured simultaneously,

• every compatible set of observables X is equivalent to some
single observable y in the sense that
¦ X depends on y, and
¦ conversely, the “current” value of y is completely deter-
mined by the “current” values of observables in X.
(y “depends on” X)
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In other words, a compatible set of observables should have a

l.u.b. w.r.t. ← (determined uniquely up to equivalence); conse-

quently, a nonempty set should have a g.l.b. w.r.t.

We consider an empty set as compatible; this implies that there

are observables that depend on every other observable. It is

naturally to consider that these are the constant observables.

For our purposes, a finitary version of these constructions will

be enough.
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ªAxiom 1:'

&

$

%

In the preordered set (O,←)
¦ every compatible pair of observables has a l.u.b,,
¦ every pair of observables has a g.l.b.,
¦ there is a least observable.
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If z is a l.u.b. of x and y, then there is a Borel function

j x,y
z : Vx × Vy → Vz

such that

j x,y
z (dz

x(w), dz
y(w)) = w for every w ∈ Vz.

In particular, this means that the pair of functions (dz
z, d

z
y) is an

injective embedding Vz → Vx × Vy:

for all u, v ∈ Vz,

if dz
x(u) = dz

x(v) and dz
y(u) = dz

y(v), then u = v.
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If x ← y, then, for all s and A,

p(s, x)(A) = p(s, y)((dy
x)−1(A)).

I.e., x = dy
x(y).

It follows that

If z is a l.u.b. of x and y, then p(s, z) is a joint distribution for

x and y in the state s.
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4.3. Subsumption

Again, let E be the set of all events (x, A) of S.

We consider also the set K := {(x, a): a ∈ Vx, x ∈ O} of all out-

comes for S, and say that

outcomes (x, u) and (y, v) agree if dx
z(u) = dy

z(v)

whenever z is a g.l.b. of x and y,

and write (x, u) ∼ (y, v) if this is the case.

The relation ∼ is reflexive and symmetric, but need not be transi-

tive. Let Kx be the subset of outcomes related to an observable

x; two outcomes in Kx agree only if they are equal.
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Intuitively, if x has a value u, then y may have a value v if and

only if (y, v) agrees with (x, u).

This leads us to the following definition of subsumption:

(x, A) ¹ (y, B) :≡ every outcome in Vy that agrees with some

outcome in (x, A) is in (y, B).

The following conclusion rests only of Axioms 1 and 2.

Theorem (J.C. [2010]).

The relation ¹ is a preorder and possesses the properties ¹1–

¹4. Hence, the corresponding logic L := E/≈ is an orthoposet.
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Remark: relation to test spaces

Observe that all the sets Kx are mutually disjoint. If ∼ is transi-

tive, we may identify those outcomes that agree with each other,

and then the family (Kx: x ∈ X) may be considered as a family

of tests over the reduced outcome set. If this the case, then the

equivalence ≈ is the perspectivity relation in this space. Thus,

the test space space turns out to be algebraic.
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4.4. Taking states into account

The set of states of S is said to be full if

(x, A) ¹ (y, B) iff (∀s) p(s, x)(A) ≤ p(s, y)(B).

This is now a condition on S and p rather than on ¹ !

If S is full, then the logic L is an orthoposet.
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4.5. Additional structure on L.

The preorder structure of O provides ways to introduce on L

several non-common operations. For example, one can associate

a certain closure operator with every observable.

Recall that a closure operator on L is a unary operation C such that is

extending, isotonic and idempotent.

A closure operator is said to be symmetric if

C((Cp)⊥) = (Cp)⊥.

In algebraic logic, symmetric closure operators on a Boolean

algebra are called existential quantifiers or S5-modal operators.

We choose the first of these terms also for L.
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Theorem. (J.C. [2010–2011]) .

Let L be the logic of S.

(a) For every x, the condition

∀ (y, B), Qx(|(y, B)|) := |(z, d
y
z(B))|,

where z is a g.l.b. of x and y, correctly defines an operation

Qx on L.

(b) Each Qx is a quantifier, and

ranQx = {|(x, A)|: A ⊆ Vx}.
(c) if z is a g.l.b. of x and y, then Qz = QxQy.

(d) every element of L is in the range of some Qx.
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4.6. Some problems for further work

Problem 1.

Which properties of the poset (O,←) and the dependencies dy
x

are responsible for those or other properties of the logic of S?

In particular,
¦ can the dependency structure in S force the logic L to be

orthomodular?
¦ under what weakenings in the model of a PS with dependencies,

the logic L, remaining to be an involution poset, will no longer

be an orthoposet? (non-crisp dependencies dy
x?)

Problem 2.

Develop a theory of test spaces with dependencies.
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Problem 3.

Characterise the dependency structure of the set of all self-

adjoint operators on a separable Hilbert space.

(In the conventional quantum mechanics, observables of a physical system

are represented by such operators on the corresponding Hilbert space.)

Problem 4. The set of observables (i.e., σ-homomorphisms)

on an orthomodular poset is known to have a preorder structure

satisfying Axiom 1, and if x ← y here, then x is a Borel function of

y. Can this serve as a basis for a model of PS with dependencies

similar to that discussed above?
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