

On Implicitly Discovered OLAP Schema-Specific Preferences in Reporting Tool

Natalija Kozmina and Darja Solodovnikova Faculty of Computing, University of Latvia

10th International Conference on Perspectives in Business Informatics Research Riga, Latvia, 6-8 October 2011

Outline

- Motivation
- OLAP Reporting Tool
 - Reporting Metadata
 - Preferential Profile Metamodel
 - OLAP Preference Metadata
 - Logical Level Metadata
- Methods for Generation of Recommendations
 - Hot-Start Method
 - Cold-Start Method
- Conclusions

OLAP Personalization

- Typical problems in DW field:
 - Large volumes of data,
 - Burdening data exploration,
 - Empty query result set,
 - While exploring previously unknown data, the OLAP query result may highly differ from expectations.
- Solution introducing personalization in the field of data warehousing.

Motivation

- OLAP reporting tool
- Different groups of users (e.g., students, professors, workers of the University, etc.)
- Each group or particular user has different...
 - rights, interests and skills,
 - reports' layout preferences.
- In this paper
 - We focus on acquiring user preferences implicitly to suggest a user reports that might be helpful.
 - We propose a way to orient in a variety of data warehouse reports, saving time and effort.

OLAP Reporting Tool

- Experimental environment: reporting tool developed at the University of Latvia.
- Operation of the OLAP reporting tool is based on metadata:
 - Logical: data warehouse schemata
 - Physical: storage of a data warehouse in relational database
 - Semantic: data stored in a data warehouse and data warehouse elements in a way that is understandable to users
 - Reporting: definitions of reports
 - OLAP preferences: definitions of user preferences on reports' structure and data.

Preferential Profile Metamodel

- What is the user expecting to get as a result?
- User preference modeling scenarios have been divided into two groups:
 - preferences for the contents and structure of reports (OLAP preferences),
 - visual layout preferences.
- Two ways of collecting user preferences:
 - explicitly (i.e., manually entered by user)
 - implicitly (i.e., analyzing user's activity by means of web-logs, visited links, etc.).

OLAP Preference Metadata

- Data about user preferences
- Preference contains user's degree of interest
- OLAP preferences:
 - Report-Specific preferences refer to preferences for particular reports and data restrictions in reports.
 - Schema-specific preferences are set for preference elements.

Logical Level Metadata

- Metadata at the logical level describes the multidimensional data warehouse schema.
- Data warehouse schema elements are included into the hierarchical structure:
 - A data warehouse schema is composed of interconnected fact tables and dimensions, which are composed of measures and attributes respectively.
 - Dimensions include hierarchies composed of ordered levels defined by attributes.
 - A fact table belongs to exactly one schema, but a dimension can be shared among multiple schemata.

Reporting Metadata

- Reporting metadata describes the structure of reports generated by users.
- Reports consist of
 - data items defined by computation formulas from parameters and table columns,
 - user-defined conditions and joins between tables.

Methods for Generation of Recommendations

- Hot-start method is applied for the user who has had a rich activity history with the reporting system.
- Cold-start method is applied, when
 - a user of the reporting tool starts exploring the system for the first time,
 - b. a user has previously logged in the system, but he/she has been rather passive.
- A borderline between the cold-start and the hot-start methods is defined by a threshold, which is the number of records in web-log appurtenant to a certain user.

Hot-Start Method

- Step 1. User preferences with degrees of interest (DOI) for data warehouse schema elements are discovered from the history of user's interaction with the reporting tool.
- Step 2. Reports that are composed of data warehouse schema elements, which are potentially the most interesting to a user, are determined.
- Step 3. Top-N potentially interesting reports are recommended to the user.

Hot-Start Method - Weight

- Weight of a schema $W(S_i)=2$.
- Weight of a fact table $W(F_i) = \frac{1}{n}$ (*n* is the number of fact tables belonging to one schema).
- Weight of a dimension in a schema equals to $W(D_i, S_j) = \frac{1}{k \cdot m_i}$ (n is the

number of dimensions belonging to the schema S_j , $k = \sum_{l=1}^n \frac{1}{m_l}$, and m_i is the

number of schemata, to which the dimension is related).

- Weight of a measure $W(M_i) = \frac{1}{n}$ (*n* is the number of measures belonging to the fact table).
- Weight of an attribute $W(A_i,D_j)=\frac{1}{n}$ (*n* is the number of attributes belonging to the dimension).
- Weight of an attribute, which is a level of a hierarchy $W(A_i, H_j) = \frac{W(A_i, D_k)}{n}$

(n is the number of attributes that make up levels of the hierarchy, and D_k is the dimension, to which the attribute belongs).

 The weight of a schema element is equal to the sum of the weights of its subelements, except for hierarchies.

Hot-Start Method

Discovering User Preferences - Algorithm

Input: User OLAP preferences for schema elements with the degrees of interest for each element and the schema element E used in a report. DOI(SE) is the user's degree of interest for the schema element SE, according to the user profile.

Output: User OLAP preferences with updated degrees of interest.

```
// if element E is a measure
if E instanceOf(Measure) then
   DOI(E) = DOI(E) + 1;
   // getting a fact table, to which the measure E belongs
   F=qetFactTable(E);
  DOI(F) = DOI(F) + W(E);
   // getting a schema, to which the fact table F belongs
   S=getSchema(F);
  DOI(S)=DOI(S)+W(F)*W(E);
// if element E is an attribute
else if E instanceOf(Attribute) then
   DOI(E) = DOI(E) + 1;
   // getting a dimension, to which the attribute E belongs
  D=getDimension(E);
   // getting a schema, to which the dimension D belongs
   S=qetSchema(D);
  DOI(D,S)=DOI(D,S)+W(E);
  DOI(S)=DOI(S)+W(D,S)*W(E);
   // getting hierarchies, levels of which correspond to the attribute E
   hierarchies=getHierarchies(E);
   foreach H in hierarchies do
      DOI(H)=DOI(H)+W(E,D)/countLevels(H);
   end
end
```

Hot-Start Method Recommending Reports

- Content-based filtering approach is used.
- User's OLAP preferences are compared with schema elements used in each report to estimate the *hierarchical similarity* between a user profile and a report.

$$sim = \frac{\sum_{i=1}^{n} DOI(E_i)}{\sum_{j=1}^{m} DOI(G_j)}$$

where $E_1,...,E_n$ are schema elements used in the report, and $G_1,...,G_m$ are all schema elements in the user profile.

- Report recommendations:
 - In fact-based recommendations only those reports that contain measures from the fact tables with user's positive degree of interest are rated higher.
 - In *dimension-based* recommendations only those reports that contain attributes from the dimensions with user's positive degree of interest are rated higher.
- *Top-N* reports with the highest fact-based similarity and *Top-N* reports with the highest dimension-based similarity are recommended to the user.

Hot-Start Method Example - Students data warehouse

Hot-Start Method Example -Weights and Degree of Interest

	Schema	Fact	tables		M	easuı	res			Dime	nsions	S					Αı	ttribu	ıtes				
	S_1	F_1	F ₂	M_1	M_2	M ₃	M_4	M ₅	\mathbf{D}_1	D_2	\mathbf{D}_3	D_4	A_1	A_2	A ₃	A_4	A ₅	A ₆	A ₇	A ₈	A9	A ₁₀	A ₁₁
Weight	2	1 2	1 2	1 2	1 2	1 3	1 3	1 3	<u>1</u> 13	<u>4</u> 13	<u>4</u> 13	<u>4</u> 13	1 5	1 5	1 5	1 5	1 5	1 2	1 2	1	1 3	1 3	1 3
DOI	4723 780	7 2	3	0	7	5	0	4	<u>9</u> 5	2	5	5 3	0	1	4	4	0	0	4	5	4	1	0

					At	tribut	es/Hi	erarcl	hy Le	vels	
	Hie	rarch	nies	H	ierarc Hı	hy	H	ierarc H2	hy		archy I ₃
	Hı	H 2	Нз	A 5	A 4	Aı	A 3	A_2	Aı	A 7	A 6
Weight				1	1	1	1	1	1	1	1
Weight				15	15	15	15	15	15	4	4
DOI	<u>4</u> 15	1 3	1								

Hot-Start Method

Example - Weights and Degree of Interest

	Schema	Fact	tables		M	easu	res			Dime	nsion	s					A	ttribu	ıtes				
	S_1	\mathbf{F}_{1}	F ₂	M_1	M_2	M ₃	M_4	M_5	\mathbf{D}_1	\mathbf{D}_2	D_3	D_4	A_1	A_2	A_3	A ₄	A ₅	A ₆	A ₇	A ₈	A 9	A ₁₀	A ₁₁
Weight	2	1 2	1 2	1 2	1 2	1 3	1 3	1 3	<u>1</u> 13	<u>4</u> 13	<u>4</u> 13	<u>4</u> 13	1 5	1 5	1 5	1 5	1 5	1 2	1 2	1	1 3	1 3	1 3
DOI	4723 780	7 2	3	0	7	5	0	4	<u>9</u> 5	2	5	5 3	0	1	4	4	0	0	4	5	4	1	0

					At	tribut	es/Hi	erarc	hy Le	vels	
	Hie	rarcł	nies	H	ierarc Hı	hy	H	ierarc H2	hy		archy I3
	Hı	H 2	H 3	A 5	A 4	Αı	A 3	A 2	Aı	A 7	A 6
Weight				<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	1 4	1 4
DOI	<u>4</u> 15	1 3	1								

Report R1:

Average foreign student count for each study program per semester

$$simD_{R1} = \frac{DOI(S_1) + DOI(D_2) + DOI(A_6) + DOI(H_3) + DOI(D_1) + DOI(A_4) + DOI(H_1)}{DOI(S_1) + DOI(F_1) + DOI(F_2) + DOI(M_1) + \dots + DOI(H_3)} \approx 0.24$$

$$simF_{R1} = \frac{DOI(M_2) + DOI(F_1) + DOI(S_1)}{DOI(S_1) + DOI(F_1) + DOI(F_2) + DOI(M_1) + \dots + DOI(H_3)} \approx 0.26$$

Hot-Start Method

Example - Weights and Degree of Interest

	Schema	Fact	tables		M	easu	res			Dime	nsion	S					A	ttribu	ites				
	S_1	F_1	F ₂	M_1	M_2	M ₃	M ₄	M ₅	D_1	D_2	D_3	D_4	A_1	A_2	A ₃	A ₄	A ₅	A ₆	A ₇	A ₈	A 9	A ₁₀	A ₁₁
Weight	2	1 2	1 2	1 2	1 2	1 3	1 3	1 3	1 13	<u>4</u> 13	<u>4</u> 13	<u>4</u> 13	1 5	1 5	1 5	1 5	1 5	1 2	1 2	1	1 3	1 3	1 3
DOI	4723 780	7 2	3	0	7	5	0	4	<u>9</u> 5	2	5	5 3	0	1	4	4	0	0	4	5	4	1	0

					At	tribut	es/Hi	erarc	hy Le	vels	
	Hie	rarcł	nies	H	ierarc Hı	hy	H	ierarc H2	hy		archy I3
	Hı	H 2	H 3	A 5	A 4	Αı	A 3	A 2	Aı	A 7	A 6
Weight				<u>1</u>	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	1 4	1 4
DOI	<u>4</u> 15	1 3	1								

Report R2:

Total student count enrolled into courses for each faculty per year

$$simD_{R2} = \frac{DOI(S_1) + DOI(D_2) + DOI(A_7) + DOI(H_3) + DOI(D_1) + DOI(A_3) + DOI(H_2)}{DOI(S_1) + DOI(F_1) + DOI(F_2) + DOI(M_1) + \dots + DOI(H_3)} \approx 0.33$$

$$simF_{R2} = \frac{DOI(M_3) + DOI(F_2) + DOI(S_1)}{DOI(S_1) + DOI(F_1) + DOI(F_2) + DOI(M_1) + \dots + DOI(H_3)} \approx 0.22$$

Cold-Start Method

- Step 1. Structural analysis of existing reports is performed.
- Step 2. Likeliness between two selected reports is revealed.
- Step 3. Top-N reports with the highest similarity values are shown to the user.

Cold-Start Method Report Structure Vector

Each report is represented as a Report Structure Vector (RSV):

$$RSV = ((e_{11}, e_{12}, ..., e_{1k_1}), ..., (e_{n1}, e_{n2}, ..., e_{nk_n}))$$

where e_{ik_i} is a vector coordinate, i.e., a binary value that indicates

presence (equals 1) or absence (equals 0) of the instance of the report structure element, k_i is the number of elements in i-th structure, i is the index number of each structure (i = 1, 2, ..., n), n is the total number of distinct structure elements in reports.

→			Attributes			Dimensions	Eact Tables	ו מכו ו מטוכט		Measures	Oldotacoc A	Acceptable	Aggregation		Hierarchies	OLAP	Schemas
$\overrightarrow{r_1}$	1	1	1	0	 1	1	 1		1	0	 1	0		1	1	 1	
$\overrightarrow{r_2}$	1	0	1	1	 1	1	 1		0	1	 0	1	:	1	1	 1	
	year	semester	faculty	program	time	program	registrations		student	PhD student	AVG	COUNT		time	faculty	students	

 r_1 describes the structure of the report R1 – Average student count for each faculty per semester,

r₂ describes the structure of the report R2 - Total PhD student count for each study program per year.

Cold-Start Method Cosine/Vector Similarity

• Cosine/Vector similarity of the vectors \vec{r}_1 and \vec{r}_2

$$sim = \frac{\vec{r}_1 \cdot \vec{r}_2}{\left| \vec{r}_1 \right| * \left| \vec{r}_2 \right|}$$

where "." is the dot-product of two vectors and $|\vec{r}_i|$ is the length of each vector (i = 1, 2).

$$sim = \frac{\vec{r}_1 \cdot \vec{r}_2}{\left|\vec{r}_1\right| * \left|\vec{r}_2\right|} = \frac{8}{\sqrt{11} * \sqrt{11}} \approx 0,727$$

 r'_1 $\overrightarrow{r_2}$

		Attributes			Dimensions	Fact Tables	ו מכו ו מטובט		Measures	0140,4000	Acceptable	Aggregation		Hierarchies	OLAP	Schemas
1	1	1	0	 1	1	 1		1	0	 1	0		1	1	 1	
1	0	1	1	 1	1	 1		0	1	 0	1		1	1	 1	
year	semester	faculty	program	time	program	registrations		student	PhD student	AVG	COUNT		time	faculty	students	

Cold-Start Method

- Discovering Similarities
 - The similarity is calculated among the active report (currently browsed by the user) and all the rest of the data warehouse reports.
 - RSV and sim values have to be recalculated dynamically when:
 - a new report is created
 - existing reports' structure is changed
- Recommending Reports
 - Top-N recommendations, i.e., links to the reports with N highest sim values sorted in descending order are shown to the user.

Conclusions

- Content-based methods for construction of recommendations for reports in the OLAP reporting tool:
 - Hot-start method defines user OLAP preferences in a reporting tool by means of analyzing user's past activity and determines reports that are composed of data warehouse schema elements, which are potentially the most interesting to a user.
 - Cold-start method examines the structure of the report being browsed at the moment and calculates the similarity of it with the rest of the reports.

Future work

- Estimation of the quality of recommendations for the group of users of reporting tools with different rights.
- Extension of the approach by adding methods for
 - explicit definition and processing of OLAP and visual user preferences,
 - implicit handling of report-specific user preferences to state the most useful data in reports,
 - collecting and taking advantage of demographical information about users,
 - involving collaborative filtering.