On Implicitly Discovered OLAP Schema-Specific Preferences in Reporting Tool

Natalija Kozmina and Darja Solodovnikova

Faculty of Computing, University of Latvia

10th International Conference on Perspectives in Business Informatics Research
Riga, Latvia, 6-8 October 2011
Outline

• Motivation
• OLAP Reporting Tool
 • Reporting Metadata
 • Preferential Profile Metamodel
 • OLAP Preference Metadata
 • Logical Level Metadata
• Methods for Generation of Recommendations
 • Hot-Start Method
 • Cold-Start Method
• Conclusions
OLAP Personalization

- Typical problems in DW field:
 - Large volumes of data,
 - Burdening data exploration,
 - Empty query result set,
 - While exploring previously unknown data, the OLAP query result may highly differ from expectations.

- Solution – introducing personalization in the field of data warehousing.
Motivation

- OLAP reporting tool
- Different groups of users (e.g., students, professors, workers of the University, etc.)
- Each group or particular user has different...
 - rights, interests and skills,
 - reports’ layout preferences.
- In this paper
 - We focus on acquiring user preferences implicitly to suggest a user reports that might be helpful.
 - We propose a way to orient in a variety of data warehouse reports, saving time and effort.
OLAP Reporting Tool

• Experimental environment: reporting tool developed at the University of Latvia.

• Operation of the OLAP reporting tool is based on metadata:
 • Logical: data warehouse schemata
 • Physical: storage of a data warehouse in relational database
 • Semantic: data stored in a data warehouse and data warehouse elements in a way that is understandable to users
 • Reporting: definitions of reports
 • OLAP preferences: definitions of user preferences on reports’ structure and data.

![Diagram of OLAP Reporting Tool]

- Semantic Metadata
- Logical Metadata
- Physical Metadata
- Reporting Metadata
- OLAP Preferences Metadata
• **What** is the user expecting to get as a result?
• User preference modeling scenarios have been divided into two groups:
 • preferences for the contents and structure of reports (OLAP preferences),
 • visual layout preferences.
• Two ways of collecting user preferences:
 • explicitly (i.e., manually entered by user)
 • implicitly (i.e., analyzing user’s activity by means of web-logs, visited links, etc.).
OLAP Preference Metadata

- Data about user preferences
- Preference contains user’s degree of interest
- OLAP preferences:
 - Report-Specific preferences refer to preferences for particular reports and data restrictions in reports.
 - Schema-specific preferences are set for preference elements.
Metadata at the logical level describes the multidimensional data warehouse schema.

Data warehouse schema elements are included into the hierarchical structure:
- A data warehouse schema is composed of interconnected fact tables and dimensions, which are composed of measures and attributes respectively.
- Dimensions include hierarchies composed of ordered levels defined by attributes.
- A fact table belongs to exactly one schema, but a dimension can be shared among multiple schemata.
• Reporting metadata describes the structure of reports generated by users.

• Reports consist of
 • data items defined by computation formulas from parameters and table columns,
 • user-defined conditions and joins between tables.
Methods for Generation of Recommendations

• Hot-start method is applied for the user who has had a rich activity history with the reporting system.

• Cold-start method is applied, when
 a. a user of the reporting tool starts exploring the system for the first time,
 b. a user has previously logged in the system, but he/she has been rather passive.

• A borderline between the cold-start and the hot-start methods is defined by a *threshold*, which is the number of records in web-log appurtenant to a certain user.
Hot-Start Method

• **Step 1.** User preferences with degrees of interest (DOI) for data warehouse schema elements are discovered from the history of user’s interaction with the reporting tool.

• **Step 2.** Reports that are composed of data warehouse schema elements, which are potentially the most interesting to a user, are determined.

• **Step 3.** Top-N potentially interesting reports are recommended to the user.
Hot-Start Method - Weight

- Weight of a schema $W(S_j) = 2$.
- Weight of a fact table $W(F_i) = \frac{1}{n}$ (n is the number of fact tables belonging to one schema).
- Weight of a dimension in a schema equals to $W(D_i, S_j) = \frac{1}{k \cdot m_i}$ (n is the number of dimensions belonging to the schema S_j, $k = \sum_{l=1}^{n} \frac{1}{m_i}$, and m_i is the number of schemata, to which the dimension is related).
- Weight of a measure $W(M_i) = \frac{1}{n}$ (n is the number of measures belonging to the fact table).
- Weight of an attribute $W(A_i, D_j) = \frac{1}{n}$ (n is the number of attributes belonging to the dimension).
- Weight of an attribute, which is a level of a hierarchy $W(A_i, H_j) = \frac{W(A_i, D_k)}{n}$ (n is the number of attributes that make up levels of the hierarchy, and D_k is the dimension, to which the attribute belongs).

- The weight of a schema element is equal to the sum of the weights of its subelements, except for hierarchies.
Hot-Start Method
Discovering User Preferences - Algorithm

Input: User OLAP preferences for schema elements with the degrees of interest for each element and the schema element E used in a report. DOI(SE) is the user’s degree of interest for the schema element SE, according to the user profile.

Output: User OLAP preferences with updated degrees of interest.

// if element E is a measure
if E instanceof(Measure) then
 DOI(E)=DOI(E)+1;
 // getting a fact table, to which the measure E belongs
 F=getFactTable(E);
 DOI(F)=DOI(F)+W(E);
 // getting a schema, to which the fact table F belongs
 S=getSchema(F);
 DOI(S)=DOI(S)+W(F)*W(E);
// if element E is an attribute
else if E instanceof(Attribute) then
 DOI(E)=DOI(E)+1;
 // getting a dimension, to which the attribute E belongs
 D=getDimension(E);
 // getting a schema, to which the dimension D belongs
 S=getSchema(D);
 DOI(D,S)=DOI(D,S)+W(E);
 DOI(S)=DOI(S)+W(D,S)*W(E);
 // getting hierarchies, levels of which correspond to the attribute E
 hierarchies=getHierarchies(E);
 foreach H in hierarchies do
 DOI(H)=DOI(H)+W(E,D)/countLevels(H);
 end
end
Hot-Start Method
Recommending Reports

- Content-based filtering approach is used.
- User’s OLAP preferences are compared with schema elements used in each report to estimate the hierarchical similarity between a user profile and a report.

\[
sim = \frac{\sum_{i=1}^{n} DOI(E_i)}{\sum_{j=1}^{m} DOI(G_j)}
\]

where \(E_1, \ldots, E_n \) are schema elements used in the report, and \(G_1, \ldots, G_m \) are all schema elements in the user profile.

- Report recommendations:
 - In fact-based recommendations only those reports that contain measures from the fact tables with user’s positive degree of interest are rated higher.
 - In dimension-based recommendations only those reports that contain attributes from the dimensions with user’s positive degree of interest are rated higher.

- Top-N reports with the highest fact-based similarity and Top-N reports with the highest dimension-based similarity are recommended to the user.
Hot-Start Method

Example - Weights and Degree of Interest

<table>
<thead>
<tr>
<th>Schema</th>
<th>Fact tables</th>
<th>Measures</th>
<th>Dimensions</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>F1</td>
<td>F2</td>
<td>M1</td>
<td>M2</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOI</td>
<td>4723</td>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>DOI</td>
<td>780</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hierarchies</th>
<th>Attributes/Hierarchy Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>H2</td>
</tr>
<tr>
<td>A5</td>
<td>A4</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
</tbody>
</table>

DOI:

- 780
- 4723
Hot-Start Method

Example - Weights and Degree of Interest

Report R1:

Average foreign student count for each study program per semester

<table>
<thead>
<tr>
<th>Schema</th>
<th>Fact tables</th>
<th>Measures</th>
<th>Dimensions</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>F1</td>
<td>M1</td>
<td>D1</td>
<td>A1</td>
</tr>
<tr>
<td>F2</td>
<td>M2</td>
<td>M3</td>
<td>D2</td>
<td>A2</td>
</tr>
<tr>
<td>M1</td>
<td>M4</td>
<td>M5</td>
<td>D3</td>
<td>A3</td>
</tr>
<tr>
<td>M2</td>
<td>D1</td>
<td>A4</td>
<td>A5</td>
<td>A6</td>
</tr>
<tr>
<td>M3</td>
<td>D2</td>
<td>A7</td>
<td>A10</td>
<td>A11</td>
</tr>
<tr>
<td>M4</td>
<td>D3</td>
<td>A8</td>
<td>A10</td>
<td>A11</td>
</tr>
<tr>
<td>M5</td>
<td>D4</td>
<td>A9</td>
<td>A10</td>
<td>A11</td>
</tr>
</tbody>
</table>

| Weight | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|DOI | 4723 | 7 | 2 | 3 | 0 | 7 | 5 | 0 | 4 | 9 | 2 | 5 | 5 | 0 | 1 | 4 | 0 | 0 | 4 | 5 | 4 | 1 | 0 |

<table>
<thead>
<tr>
<th>Hierarchies</th>
<th>Attributes/Hierarchy Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>A5</td>
</tr>
<tr>
<td>H2</td>
<td>A3</td>
</tr>
<tr>
<td>H3</td>
<td>A7</td>
</tr>
</tbody>
</table>

\[
\text{sim}_{D_{R1}} = \frac{DOI(S_1) + DOI(D_2) + DOI(A_6) + DOI(H_3) + DOI(D_1) + DOI(A_4) + DOI(H_1)}{DOI(S_1) + DOI(F_1) + DOI(F_2) + DOI(M_1) + ... + DOI(H_3)} \approx 0.24
\]

\[
\text{sim}_{F_{R1}} = \frac{DOI(M_2) + DOI(F_1) + DOI(S_1)}{DOI(S_1) + DOI(F_1) + DOI(F_2) + DOI(M_1) + ... + DOI(H_3)} \approx 0.26
\]
Hot-Start Method

Example - Weights and Degree of Interest

Report R2:

Total student count enrolled into courses for each faculty per year

<table>
<thead>
<tr>
<th>Schema</th>
<th>Fact tables</th>
<th>Measures</th>
<th>Dimensions</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>F1</td>
<td>M1</td>
<td>D1</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>M2</td>
<td>D2</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M3</td>
<td>D3</td>
<td>A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M4</td>
<td>D4</td>
<td>A4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M5</td>
<td></td>
<td>A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D1</td>
<td></td>
<td>A6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td></td>
<td>A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3</td>
<td></td>
<td>A8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4</td>
<td></td>
<td>A9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A11</td>
</tr>
<tr>
<td>Weight</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DOI</td>
<td>780</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attributes/Hierarchy Levels

<table>
<thead>
<tr>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
<th>A7</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

SimD_{R2}

\[
simD_{R2} = \frac{DOI(S_1) + DOI(D_2) + DOI(A_7) + DOI(H_3) + DOI(D_1) + DOI(A_3) + DOI(H_2)}{DOI(S_1) + DOI(F_1) + DOI(F_2) + DOI(M_1) + \ldots + DOI(H_3)} \approx 0.33
\]

SimF_{R2}

\[
simF_{R2} = \frac{DOI(M_3) + DOI(F_2) + DOI(S_1)}{DOI(S_1) + DOI(F_1) + DOI(F_2) + DOI(M_1) + \ldots + DOI(H_3)} \approx 0.22
\]
Cold-Start Method

• *Step 1*. Structural analysis of existing reports is performed.

• *Step 2*. Likeliness between two selected reports is revealed.

• *Step 3*. Top-N reports with the highest similarity values are shown to the user.
Cold-Start Method

Report Structure Vector

- Each report is represented as a *Report Structure Vector (RSV)*:

\[RSV = ((e_{11}, e_{12}, \ldots, e_{1k_1}), \ldots, (e_{n1}, e_{n2}, \ldots, e_{nk_n})) \]

where \(e_{ik_i} \) is a vector coordinate, i.e., a binary value that indicates presence (equals 1) or absence (equals 0) of the instance of the report structure element, \(k_i \) is the number of elements in \(i \)-th structure, \(i \) is the index number of each structure \((i = 1, 2, \ldots, n) \), \(n \) is the total number of distinct structure elements in reports.

<table>
<thead>
<tr>
<th>(\vec{r}_1)</th>
<th>Attributes</th>
<th>Dimensions</th>
<th>Fact Tables</th>
<th>Measures</th>
<th>Acceptable Aggregation</th>
<th>Hierarchies</th>
<th>OLAP Schemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>1 1</td>
<td>1 1 0</td>
<td>1 0</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\(\vec{r}_1 \) describes the structure of the report \(R1 \) – Average student count for each faculty per semester,

<table>
<thead>
<tr>
<th>(\vec{r}_2)</th>
<th>year</th>
<th>semester</th>
<th>faculty</th>
<th>program</th>
<th>time</th>
<th>program</th>
<th>registrations</th>
<th>student</th>
<th>PhD student</th>
<th>AVG</th>
<th>COUNT</th>
<th>time</th>
<th>faculty</th>
<th>students</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\vec{r}_2 \) describes the structure of the report \(R2 \) – Total PhD student count for each study program per year.
Cold-Start Method
Cosine/ Vector Similarity

- Cosine/Vector similarity of the vectors \(\vec{r}_1 \) and \(\vec{r}_2 \)

\[
sim = \frac{\vec{r}_1 \cdot \vec{r}_2}{|\vec{r}_1| \cdot |\vec{r}_2|}
\]

where \(\cdot \) is the dot-product of two vectors and \(|\vec{r}_i| \) is the length of each vector \((i = 1, 2)\).

\[
sim = \frac{\vec{r}_1 \cdot \vec{r}_2}{|\vec{r}_1| \cdot |\vec{r}_2|} = \frac{8}{\sqrt{11} \cdot \sqrt{11}} \approx 0.727
\]
Cold-Start Method

• Discovering Similarities
 • The similarity is calculated among the active report (currently browsed by the user) and all the rest of the data warehouse reports.
 • \(RSV \) and \(sim \) values have to be recalculated dynamically when:
 • a new report is created
 • existing reports’ structure is changed

• Recommending Reports
 • Top-\(N \) recommendations, i.e., links to the reports with \(N \) highest \(sim \) values sorted in descending order are shown to the user.
Conclusions

• Content-based methods for construction of recommendations for reports in the OLAP reporting tool:
 • Hot-start method defines user OLAP preferences in a reporting tool by means of analyzing user’s past activity and determines reports that are composed of data warehouse schema elements, which are potentially the most interesting to a user.
 • Cold-start method examines the structure of the report being browsed at the moment and calculates the similarity of it with the rest of the reports.

• Future work
 • Estimation of the quality of recommendations for the group of users of reporting tools with different rights.
 • Extension of the approach by adding methods for
 • explicit definition and processing of OLAP and visual user preferences,
 • implicit handling of report-specific user preferences to state the most useful data in reports,
 • collecting and taking advantage of demographical information about users,
 • involving collaborative filtering.