
Semi-automatic Generation of a
Software Testing Lightweight

Ontology from a Glossary Based on
the ONTO6 Methodology

Guntis Arnicans, Dainis Romans, Uldis Straujums
University of Latvia

Tenth International Baltic Conference on Databases and Information Systems
(Baltic DB&IS 2012)

The work is partly supported by a European Social Fund Project
No. 2009/0216/1DP/1.1.1.2.0/09 /APIA/VIAA/044 1

Blind men and an elephant

2

Glossary of a domain

3

Lightweight ontology of a domain

4

Domain
ontology

developed by
experts

• H. Zhu and Q. Huo,
2005

• Ontology for an
agent-based
software
environment to test
web-based
applications

• About 100 concepts

5

Related works (1/2)

Proposal of parallel construction of domain
ontology and construction of complete domain
terminology.

L. Bozzato, M. Ferrari, and A. Trombetta.
Building a domain ontology from glossaries: a
general methodology. In A. Gangemi, J. Keizer,
V. Presutti, and H. Stoermer, editors, Semantic
Web Applications and Perspectives, SWAP 2008,
volume 426 of CEUR Proceedings, 2008.

6

Related works (2/2)

Obtaining of the ontology OntoGLOSE from the
“IEEE Standard Glossary of Software Engineering
Terminology”.
Creating in some phases uses semi-automatic steps
and uses semi-automatic linguistic analysis.
 (No details of the automatization and results available)

Hilera José R., Pages Carmen, Martinez J. Javier,
Gutierrez J. Antonio, De-Marcos Luis, An Evolutive
Process to Convert Glossaries into Ontologies,
Information technology and libraries, vol. 29,
no4(2010), 195-204.

7

Principles stated by Noy and McGuinness (2001)

Principle 1: “There is no one correct way to model a
domain — there are always viable alternatives. The best
solution almost always depends on the application that
you have in mind and the extensions that you anticipate”;

Principle 2: “Ontology development is necessarily an
iterative process”;

Principle 3: “Concepts in the ontology should be close to
objects (physical or logical) and relationships in your
domain of interest. These are most likely to be nouns
(objects) or verbs (relationships) in sentences that
describe your domain”.

8

Classic steps to obtain an initial ontology

Noy and McGuinness (2001):

1. Determine the domain and scope of the
ontology;

2. Consider reusing existing ontologies;

3. Enumerate important terms in the ontology;

4. Define the classes and the class hierarchy;

5. Define the properties of classes-slots;

6. Define the facets of the slots;

7. Create instances. 9

ONTO6 Meta-Ontology top level simplified visualization

10

Source glossary

11

Standard glossary of terms used in Software Testing

• The glossary contains 724 entries
• For comparison, “IEEE Standard Glossary of

Software Engineering Terminology” (1990)
contains approximately 1300 entries

12

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure
of the component or system.

specification-based testing: See black box testing.
functional testing: Testing based on an analysis of the

specification of the functionality of a component or
system. See also black box testing.

configuration control board (CCB): A group of people
responsible for evaluating and approving or
disapproving proposed changes to configuration items,
and for ensuring implementation of approved changes.
[IEEE 610]

13

Structure of the glossary

14 Entries

black box testing: Testing, either functional or non-
functional, without reference to the internal structure
of the component or system.

specification-based testing: See black box testing.
functional testing: Testing based on an analysis of the

specification of the functionality of a component or
system. See also black box testing.

configuration control board (CCB): A group of people
responsible for evaluating and approving or
disapproving proposed changes to configuration items,
and for ensuring implementation of approved changes.
[IEEE 610]

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure
of the component or system.

specification-based testing: See black box testing.
functional testing: Testing based on an analysis of the

specification of the functionality of a component or
system. See also black box testing.

configuration control board (CCB): A group of people
responsible for evaluating and approving or
disapproving proposed changes to configuration items,
and for ensuring implementation of approved changes.
[IEEE 610]

15
Definition Term

black box testing: Testing, either functional or non-
functional, without reference to the internal structure
of the component or system.

specification-based testing: See black box testing.
functional testing: Testing based on an analysis of the

specification of the functionality of a component or
system. See also black box testing.

configuration control board (CCB): A group of people
responsible for evaluating and approving or
disapproving proposed changes to configuration items,
and for ensuring implementation of approved changes.
[IEEE 610]

Structure of the glossary

16
Source Acronym Cross-reference Synonym

Finding of significant aspects (words)

We can observe that:

1. The most semantically significant word of a
term is at right hand side, usually it is the last
word of term;

2. The most semantically significant word or
words of definition are located at the
beginning part of definition.

17

configuration control board (CCB): A group of people responsible for
evaluating and approving or disapproving proposed changes to
configuration items, and for ensuring implementation of approved
changes. [IEEE 610]

entry normalization

functional testing: Testing based on an analysis
of the specification of the functionality of a
component or system. See also black box
testing.

18

functional testing : testing based analysis
specification functionality component system
see black box testing

Indexing of words

• Assign an index to each instance of word

– from right to left in term

– from left to right in definition

19

functional(1) testing(0) : testing(0) based(1)
analysis(2) specification(3) functionality(4)
component(5) system(6) see(7) black(8) box(9)
testing(10)

Weighting of words

• Assign a weight to each instance of word

• Formula: 𝟐−𝒘𝒐𝒓𝒅_𝒊𝒏𝒅𝒆𝒙

20

functional(2−1) testing(20) : testing(20)
based(2−1) analysis(2−2) specification(2−3)
functionality(2−4) component(2−5) system(2−6)
see(2−7) black(2−8) box(2−9) testing(2−10)

Total weight for word «testing» in the entry is
𝟐𝟏 + 𝟐𝟏 + 𝟐−𝟏𝟎 = 𝟐. 𝟎𝟎𝟎𝟗𝟕𝟔𝟓𝟔𝟐𝟓

Word weighting process result (1/2)

21

Rank Count Word (counting) Word (weighting) Weight

1 494 test testing 189.85

2 318 testing test 112.54

3 165 software tool 52.91

4 130 see software 46.30

5 129 system process 40.23

6 116 component analysis 32.40

7 112 process capability 26.47

8 81 product coverage 25.72

9 80 IEEE technique 25.50

10 80 quality set 17.64

11 73 after component 17.14

12 70 tool quality 16.54

13 69 design condition 15.91

14 61 technique model 15.84

15 59 execution management 15.35

16 58 analysis percentage 15.25

17 56 coverage system 14.11

18 53 610 report 14.01

19 49 management box 13.75

20 48 data document 13.64

21 47 condition black 12.57

22 46 requirements design 12.38

23 46 model review 12.30

24 43 e.g product 12.02

25 42 control case 11.33

26 41 development result 11.27

27 41 level white 10.56

28 40 ISO risk 10.47

29 39 activities approach 10.42

30 38 capability degree 10.08

31 38 based specification 10.00

32 38 set level 9.88

33 37 specified input 9.76

34 36 phase criteria 9.76

35 35 determine statement 9.53

36 35 defect path 9.53

37 34 result type 9.53

38 34 input procedure 9.20

39 34 performance representation 9.06

40 34 decision execution 9.04

Word weighting process result (2/2)

22

Word weight distribution

23

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

W
o

rd
 w

e
ig

h
t

Rank

Creation of the aspect ontology

createAspectOntology(set glossary, string aspect)

 aspectEntrySet = createEntrySet(glossary, aspect)

 aspectGraph = createAspectGraph(aspect, aspectEntrySet)

 mergeSynonyms(graph aspectGraph)

 reduceRelations(graph aspectGraph)

 aspectOwlDesription = generateOwlDescription(graph aspectGraph)

 // a generation to any other output format may be placed here

 // for instance, DOT language scripts for Graphviz

end createAspectOntology

24

Conditions used in ontology creation
cond_term_1(string term, string pattern): bool – checks whether the word

pattern is among words in the term;

cond_term_2(string term, string pattern): bool – checks whether the
sequence of words pattern is at the very beginning of the sequence of
words term;

cond_term_3(string term, string pattern): bool – checks whether the
sequence of words pattern is at the very end of the sequence of words
term;

cond_def_1(string definition, string pattern, int n): bool – checks whether the
sequence of words pattern is at the beginning of the sequence of words
definition, skipping not more than n words;

cond_def_2(string definition, string ref_pattern, string pattern): bool – checks
whether the sequence of words pattern is at the beginning of the
sequence of words definition, and corresponds to pattern ref_pattern (for
instance ref_pattern = “see <word_list>”);

cond_def_3(string definition, string ref_pattern, string pattern): bool – checks
whether the sequence of words pattern is at the end part of the sequence
of words definition, and corresponds to pattern ref_pattern (for instance
ref_pattern = “see also <word_list>”).

25

Creation of the entry set (1/2)

createEntrySet(set glossary, string aspect)

 aspectEntrySet = EMPTY_SET

 for each entry of glosary

 if cond_term_1(entry.term, aspect) or

 cond_def_1(entry.definition, aspect, N) or

 cond_def_2(entry.definition, SYNONYM_REF_PATTERN, aspect) or

 cond_def_3(entry.definition, SEE_ALSO_REF_PATTERN, aspect)

 put entry into aspectEntrySet

 return aspectEntrySet

end createEntrySet

26

Creation of the entry set (2/2)

createEntrySet(set glossary, string aspect)

 aspectEntrySet = EMPTY_SET

 for each entry of glosary

 if cond_term_1(entry.term, aspect) or

 cond_def_1(entry.definition, aspect, N) or

 cond_def_2(entry.definition, SYNONYM_REF_PATTERN, aspect) or

 cond_def_3(entry.definition, SEE_ALSO_REF_PATTERN, aspect)

 put entry into aspectEntrySet

 return aspectEntrySet

end createEntrySet

27

Modify this expression for your
own more sofisticate algorithm!

Creation of an aspect graph
createAspectGraph(string aspect, set entrySet): graph
 aspectGraph = EMPTY_GRAPH
 add aspect as aspectNode of type Node into aspectGraph
 for each entry of entrySet
 add entry as entryNode of type Node into aspectGraph
 put entryNode into aspectNode.children

 for each node_1 of aspectGraph
 for each node_2 of aspectGraph
 if node_1 <> node_2 and
 node_1 <> aspectNode and
 node_1 <> aspectNode
 if cond_term_2(node_2.term, node_1.term) or
 cond_term_3(node_2.term, node_1.term) or
 cond_def_1(node_2.definition, node_1.term, N) or
 cond_def_3((node_2.definition, SEE_ALSO_REF_PATTERN, node_1.term)
 put node_2 into node_1.children
 return aspectGraph
end createAspectGraph

28

A

t1 t2 tn.....

A

t2 t3 tn.....t1

Creation of an aspect graph
createAspectGraph(string aspect, set entrySet): graph
 aspectGraph = EMPTY_GRAPH
 add aspect as aspectNode of type Node into aspectGraph
 for each entry of entrySet
 add entry as entryNode of type Node into aspectGraph
 put entryNode into aspectNode.children

 for each node_1 of aspectGraph
 for each node_2 of aspectGraph
 if node_1 <> node_2 and
 node_1 <> aspectNode and
 node_1 <> aspectNode
 if cond_term_2(node_2.term, node_1.term) or
 cond_term_3(node_2.term, node_1.term) or
 cond_def_1(node_2.definition, node_1.term, N) or
 cond_def_3((node_2.definition, SEE_ALSO_REF_PATTERN, node_1.term)
 put node_2 into node_1.children
 return aspectGraph
end createAspectGraph

29

A

t1 t2 tn.....

A

t2 t3 tn.....t1

Modify this expression for your own
more sophisticated algorithm!

Merging of synonyms

mergeSynonyms(graph aspectGraph)

 for each node_1 of aspectGraph

 for each node_2 of aspectGraph

 if node_1 <> node_2 and

 node_1 <> aspectNode and

 node_1 <> aspectNode

 if cond_def_2(node_2.definition, SEE_REF_PATTERN, node_1.term)

 put node_2.term into node_1.synonyms

 put all node_2.children into node_1.children

 for each node_3 of aspectGraph

 replace node_2 with node_1 in node_3.children

 delete node_2 from aspectGraph

end mergeSynonyms
30

A

t2 t3 tn.....t1

t1 = t3

Reducing of relations

reduceRelations(graph aspectGraph)

 for each node_1 of aspectGraph

 for each node_2 of aspectGraph

 if node_1 <> node_2

 if node_2 is in node_1.children and

 existIndirectPathBetween(node_1, node_2)

 delete node_2 from node_1.children

end reduceRelations

31

A

ti tj

This algorithm assumes that all relations have the same type!
The algorithm has to be improved for the next iterations taking
into account the types of relations.

Results

• Obtained lightweight ontology

– is exported in OWL RDF/XML notation;

– is imported into the ontology creation
environment Protégé;

– is visualized by the graphical tool OWLGrEd.

• We plan to use the OWLGrEd to refine the
ontology and store the refinements for the
next iterations

32

Evaluation of the results

33

Following ONTO6
methodology only 9
aspects are taken (WHAT):
testing, test, tool,
software, process,
analysis, capability,
technique.

These 9 aspects serve as
roots for the 629 unique
entries from the 724
entries included in the
glossary (87%).

Ontology aspect Technique (1/3)

34

Ontology aspect Technique (2/3)

35

Ontology aspect Technique (3/3)

36

Demo

• Top 9 aspects (integrated)

• Top 40 aspects with definitions (not integrated)

37

graph_top09.svg
Aspect.svg

Conclusion and future works

• It is possible to semi-automatically generate a
lightweight ontology from glossary

• We offer the principles and algorithms how to
discover the significant concepts and to find
simple relations between concepts

• We are going to develop the methodology for
the next iterations to improve the initially
created ontology and create useful Software
Testing ontology for the teaching purpose.

38

39

