IEGULDIJUMS TAVA NAKOTNE

FFFFF

Semi-automatic Generation of a
Software Testing Lightweight
Ontology from a Glossary Based on
the ONTO6 Methodology

Guntis Arnicans, Dainis Romans, Uldis Straujums
University of Latvia

Tenth International Baltic Conference on Databases and Information Systems
(Baltic DB&IS 2012)

The work is partly supported by a European Social Fund Project
No. 2009/0216/1DP/1.1.1.2.0/09 /APIA/VIAA/044

a Snake!

Glossary of a domain

Software Testing Glossary

Last updated: Thursday, 24-May-2012 05:03:00 PDT

ABCDEFGHIJKLMMNOPQRSTUVWXYZ
A (return to top of page)

Acceptance Testing: Testing conducted to enable a user/customer to determine whether to accept a software product. Mormally
performed to validate the software meets a set of agreed acceptance criteria.

Accessibility Testing: Verifying a product is accessible o the people having disabilties (deaf, blind, mentally disabled etc.).

Ad Hoc Testing: A testing phase where the tester tries to 'break’ the system by randomly trying the system's functionality. Can
include negative testing as well. See also Monkey Testing.

Agile Testing: Testing practice for projects using agile methodologies, treating development as the customer of testing and
emphasizing a test-first design paradigm. See also Test Driven Development.

Application Binary Interface (ABI): A specification defining requirements for portability of applications in binary forms across
defferent system platforms and environments.

Application Programming Interface (API): A formalized set of software calls and routines that can be referenced by an application
prograrm in order to access supporting system or network senvices.

Automated Software Quality (ASQ): The use of software tools, such as automated testing tools, to improve software quality.
Automated Testing:
* Testing gmplwing software tools which execute tests without manual intervention. Can be applied in GUI, performance, API,
. EaI'1;1':tﬂ: EEEZUSE éuﬂ:ware to control the execution of tests, the comparison of actual outcomes to predicted outcomes, the setting
up of test preconditions, and other test control and test reporting functions.
B (return to top of page)

Backus-Naur Form: A metalanguage used to formaly describe the syntax of 2 Bnguage.

Lightweight ontology of a domain

=S

zranch cord ffon oaThnsl on me g

lfl

= =
s |
= 1 T g
rrodia o Sed mon e ng =g
Frez e rrud i et g

\
'\.

== @@4 ;

=7

i bating

¥ Speretc e Asmonoomm (e

— e ==
uﬁ/‘ 2k ' jlljﬁ;_f“fm _—

N “"'L BTECEnce ! | oo g

=] — el ~,

*,

L E |

_n..uu-nm f— _}T|
m-m przadural pragrax

Domain
ontology
developed by
experts

e H.Zhu and Q. Huo,
2005

* Ontology for an
agent-based
software
environment to test
web-based
applications

 About 100 concepts

Entity

—Human

Product
‘:.ofmare Type
Version

—Tester —Software Agent
—Team
—Unit Test
- Context —Integration Test .
| Svstem Test —Test Planning
L Resression Test ——Test Case Generation
——Activity Test Case Execution
Error-based p=—Test Result Verification
Testing ——Coverage Measurement
Fault-base . .
Technique ‘Tes-tin; L Report Generation
Structural Control-flow
. :)
i — Testing
— Method Testing Program-based =
Program-based Structure Testing Data-flow
= - T .
i esting
testing g
Approach 3 T Program
::penﬁcangn— HTML File
based Testing
——XML File
——Image
I/qu:'rmar
—Objects under Test [—Sound
——Testing Result Video
——Test Plan Java Applet
— JavaScript
——Test Suite
Arrefact< Type
——Test Script
—CFError Report
—Test Coverage
History f
— Specification Tvpe
H‘ll’d“ are {R’Iodel
Environment Maﬂufacturer_epermmg System
—Compiler
—Database

—Web Server5

—eb Browser

Related works (1/2)

Proposal of parallel construction of domain
ontology and construction of complete domain
terminology.

L. Bozzato, M. Ferrari, and A. Trombetta.
Building a domain ontology from glossaries: a
general methodology. In A. Gangemi, J. Keizer,
V. Presutti, and H. Stoermer, editors, Semantic
Web Applications and Perspectives, SWAP 2008,
volume 426 of CEUR Proceedings, 2008.

Related works (2/2)

Obtaining of the ontology OntoGLOSE from the
“IEEE Standard Glossary of Software Engineering
Terminology”.

Creating in some phases uses semi-automatic steps
and uses semi-automatic linguistic analysis.

(No details of the automatization and results available)

Hilera José R., Pages Carmen, Martinez J. Javier,
Gutierrez J. Antonio, De-Marcos Luis, An Evolutive
Process to Convert Glossaries into Ontologies,
Information technology and libraries, vol. 29,
no4(2010), 195-204.

Principles stated by Noy and McGuinness (2001)

Principle 1: “There is no one correct way to model a
domain — there are always viable alternatives. The best
solution almost always depends on the application that
you have in mind and the extensions that you anticipate”;

Principle 2: “Ontology development is necessarily an
iterative process”;

Principle 3: “Concepts in the ontology should be close to
objects (physical or logical) and relationships in your
domain of interest. These are most likely to be nouns
(objects) or verbs (relationships) in sentences that
describe your domain”.

Classic steps to obtain an initial ontology

Noy and McGuinness (2001):

1. Determine the domain and scope of the
ontology;

Consider reusing existing ontologies;
Enumerate important terms in the ontology;
Define the classes and the class hierarchy;
Define the properties of classes-slots;

Define the facets of the slots;

Create instances. .

N O s LN

ONTO6 Meta-Ontology top level simplified visualization

O Framewtiik - B Transtion
@ Subjective_peality L] . . &y D.Event
° @ Humafr) U bstraction
Propefty
O Actar N d <

.Se
.Th <3 Wi

') = .

@ Relatiefship 2
. Z)
.Physi) reali
@ Problem 4
.Qﬁex
‘ e \J =
v .W
¢ shrem 4 o
-
rspective X Wﬁ@on
@ Goal [pioducingcont @t 4 L% Paradigs
[Threa YV q 4 K oV Resolfcs
(" Wealkness i 8 Plan[")
njvarse_gf discopirse ohc Sirool (7]
Tint o n.“\”! Ret 9 o.

Source

/

ISTQB

International Software
Testing Qualifications Board

Standard glossary of terms used in Software Testing
Version 2.1 (dd. April 1%, 2010)

Produced by the ‘Glossary Working Party’
International Software Testing Qualifications Board

1

Standard glossary of terms used in Software Testing

bottom-up testing: An incremental approach to integration testing where the lowest level
components are tested first, and then used to facilitate the testing of higher level
components. This process is repeated until the component at the top of the hierarchy is
tested. See also infegration testing.

boundary value: An input value or output value which is on the edge of an equivalence
partition or at the smallest incremental distance on either side of an edge. for example the
minimum or maximum value of a range.

boundary value analysis: A black box test design technique in which test cases are designed
based on boundary values. See also boundary value.

boundary value coverage: The percentage of boundary values that have been exercised by a
test suite.

boundary value testing: See boundary value analysis.

branch: A basic block that can be selected for execution based on a program construct in
which one of two or more alternative program paths is available. e.g. case. jump. go fto. if-
then-else.

* The glossary contains 724 entries

* For comparison, “IEEE Standard Glossary of
Software Engineering Terminology” (1990)
contains approximately 1300 entries

12

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure

of the component or system.
specification-based testing: See black box testing.

functional testing: Testing based on an analysis of the
specification of the functionality of a component or
system. See also black box testing.

configuration control board (CCB): A group of people
responsible for evaluating and approving or

disapproving proposed changes to configuration items,

and for ensuring implementation of approved changes
[IEEE 610]

13

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure
of the component or system.

specification-based testing: See flack box testing.

functional testing: Testing based/gh an analysis of the
specification of the functionalltyy of a component or

system. See also black box tegt/ng.

configuration control board (CCB)/
responsible for evaluating a
disapproving proposed changsg
and for ensuring implementg
[IEEE 610]

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure

of the component or system.
specification-based testing: See black box testing.

functional testing: Testing based on an analysis of the
specification of the functionality of a component or
system. See also black box testing.

configuration control board (CCB):[Kgroup of people

responsible tof evaluating and approving or
disapproving groposed changes to configuration items,
and for ensuring implementation of approved changes.

[IEEE 610] A

! I
Term Definition

15

Structure of the glossary

black box testing: Testing, either functional or non-
functional, without reference to the internal structure

of the component or system.
specification-based testing: See black box testing.

functional testing: Testing based on an anjlysis of the
specification of the functionality of a corjponent or
system. See also black box testing.

configuration control bodrd (CCB): A group of people
responsible for evaluating and, approving or
disapproving proposgd changeyk to configuratjon items,
and for ensuring imglementatiol of approvec\changes.

[IEEE 610]

Source Cross-reference Acronym Synonym I

Finding of significant aspects (words)

control board (CCB): A group of people for}
evaluatlng and approving or dlsapprovmg proposed changes to

We can observe that:

1. The most semantically significant word of a
term is at right hand side, usually it is the last
word of term;

2. The most semantically significant word or
words of definition are located at the
beginning part of definition.

17

entry normalization

functional testing: Testing based on an analysis
of the specification of the functionality of a
component or system. See also black box
testing.

\ 4

functional testing : testing based analysis
specification functionality component system
see black box testing

18

Indexing of words

* Assign an index to each instance of word
— from right to left in term

— from left to right in definition

functional(1) testing(0) : testing(0) based(1)
analysis(2) specification(3) functionality(4)
component(5) system(6) see(7) black(8) box(9)
testing(10)

19

Weighting of words

* Assign a weight to each instance of word

= Tr y
+ Formula: 2~ Werd. index

functional(271) testing(2") : testing(2°)
based(2~1) analysis(2~%) specification(2~°)
functionality(2~%) component(2~>) system(2
see(277) black(278) box(277) testing(2719)

Total weight for word «testing» in the entry is
21 + 21+ 2710 =2.0009765625

20

Word weighting process result (1/2)

Rank Count Word (counting)

1

coO~NO O WwN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

494
318
165
130
129
116
112
81
80
80
73
70
69
61
59
58
56
53
49
48
47
46
46
43
42
41
41
40
39
38
38
38
37
36
35
35
34
34
34
34

test

testing
software
see

system
component
process
product
IEEE
quality
after

tool

design
technique
execution
analysis
coverage
610
management
data
condition
requirements
model

€.9

control
development
level

1SO
activities
capability
based

set

specified
phase
determine
defect
result

input
performance
decision

Word (weighting) Weight

testing
test

tool
software
process
analysis
capability
coverage
technique

set
component
quality
condition
model
management
percentage
system
report

box
document
black
design
review
product
case

result
white

risk
approach
degree
specification
level

input
criteria
statement
path

type
procedure
representation
execution

189.85
112.54
52.91
46.30
40.23
32.40
26.47
25.72
25.50
17.64
17.14
16.54
15.91
15.84
15.35
15.25
14.11
14.01
13.75
13.64
12.57
12.38
12.30
12.02
11.33
11.27
10.56
10.47
10.42
10.08
10.00
9.88
9.76
9.76
9.53
9.53
9.53
9.20
9.06
9.04

21

Word weighting process result (2/2)

Rank Count Word (counting) Word (weighting) “-"eight'

1 494 test < = |testing 189.85
2 318 testing < — > test 112.54
3 165 software < fool 52.91
1 130 see g software 46.30
5 129 system : process 40.23
6 116 component . ' .| analystis 32.40
7 112 process : (capability 26.47
8 81 product . \ coverage 25.72
9 80 IEEE

b

| technigue 25.50
10 80 quality ‘*A '-4 set 17.64
11 73 afier 4‘ & 17.14

2= component

J

12 70 tool > quality 16.54
13 69 design , condition 15.91
14 61 technique model 15.84
15 59 execution management 15.35
16 58 analysis - y - percentage 15.25
17 56 coverage v O system 14.11
18 53 610 _ report 14.01
19 49 management ' ' box 13.75
20 48 data document 13.64 -
21 47 condition ‘ black 12.57

22

Word weight distribution

200.00

< 1 testing
2 test

160.00 / 3 tool
140.00 / / 4 software
/ / 5 process
120.00 y .
/ 6 analysis
100.00 / 7 capabilitv
8 coverage
. _ 9 technique
10 set
oo ///
20.00 /

000 JLLLLLLLLL ‘ .‘.|.|.|.|.|.|.|.|.|.|.|.|.|.I.|.l.“.I.l.l.l.l.l.|.|.|.|.|.|.|.|.|.|.|.|.|.|.|.|.'.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Rank

180.00

Word weight

0
o
o
S

Creation of the aspect ontology

createAspectOntology(set glossary, string aspect)
aspectEntrySet = createEntrySet(glossary, aspect)
aspectGraph = createAspectGraph(aspect, aspectEntrySet)
mergeSynonyms(graph aspectGraph)
reduceRelations(graph aspectGraph)
aspectOwlDesription = generateOwlDescription(graph aspectGraph)
// a generation to any other output format may be placed here
// for instance, DOT language scripts for Graphviz
end createAspectOntology

24

Conditions used in ontology creation

cond_term_1(string term, string pattern): bool — checks whether the word
pattern is among words in the term;

cond_term_2(string term, string pattern): bool — checks whether the
sequence of words pattern is at the very beginning of the sequence of
words term;

cond_term_3(string term, string pattern): bool — checks whether the
sequence of words pattern is at the very end of the sequence of words
term;

cond_def_1(string definition, string pattern, int n): bool — checks whether the
sequence of words pattern is at the beginning of the sequence of words
definition, skipping not more than n words;

cond_def_2(string definition, string ref pattern, string pattern): bool — checks
whether the sequence of words pattern is at the beginning of the
sequence of words definition, and corresponds to pattern ref pattern (for
instance ref_pattern = “see <word_list>");

cond_def_3(string definition, string ref pattern, string pattern): bool — checks
whether the sequence of words pattern is at the end part of the sequence
of words definition, and corresponds to pattern ref pattern (for instance
ref pattern = “see also <word_list>").

25

Creation of the entry set (1/2)

createEntrySet(set glossary, string aspect)
aspecteEntrySet = EMPTY_SET
for each entry of glosary
if cond_term_1(entry.term, aspect) or
cond_def 1(entry.definition, aspect, N) or
cond_def 2(entry.definition, SYNONYM_REF _PATTERN, aspect) or
cond_def 3(entry.definition, SEE_ALSO_REF PATTERN, aspect)
put entry into aspectEntrySet
return aspectEntrySet
end createEntrySet

26

Creation of the entry set (2/2)

createEntrySet(set glossary, string aspect)
aspectentrySet = EMPTY_SET
for each entry of glosary

if cond_term_1(entry.term, aspect) or
cond_def 1(entry.definition, aspect, N) or
cond_def 2(entry.definition, SYNONYM_REF _PATTERN, aspect) or
cond_def 3(entry.definition, SEE_ALSO_REF PATTERN, aspect)

put entry into aspectEntrySet
return aspectEntrySet

end createEntrySet
Modify this expression for your

own more sofisticate algorithm! | 5

Creation of an aspect graph

createAspectGraph(string aspect, set entrySet): graph
aspectGraph = EMPTY_GRAPH
add aspect as aspectNode of type Node into aspectGraph
for each entry of entrySet
add entry as entryNode of type Node into aspectGraph
put entryNode into aspectNode.children

for each node_1 of aspectGraph
for each node_2 of aspectGraph

if node_1 <> node_2 and
node_1 <> aspectNode and
node_1 <> aspectNode @ @

if cond_term_2(node_2.term, node_1.term) or
cond_term_3(node_2.term, node_1.term) or
cond_def_1(node_2.definition, node_1.term, N) or
cond_def_3((node_2.definition, SEE_ALSO_REF_PATTERN, node_1.term)
put node_2 into node_1.children
return aspectGraph
end createAspectGraph

28

Creation of an aspect graph

createAspectGraph(string aspect, set entrySet): graph
aspectGraph = EMPTY_GRAPH
add aspect as aspectNode of type Node into aspectGraph
for each entry of entrySet
add entry as entryNode of type Node into aspectGraph
put entryNode into aspectNode.children

for each node_1 of aspectGraph
for each node_2 of aspectGraph
if node_1 <> node_2 and
node_1 <> aspectNode and
node 1 <> aspectNode t1 t2 t3)]
if cond_term_2(node_2.term, node_1.term) or t)/_
cond_term_3(node_2.term, node_1.term) or
cond_def_1(node_2.definition, node_1.term, N) or
cond_def _3((node_2.definition, SEE_ALSO_REF_PATTERN, node_1.term)
put node_2 into node_1.children
return aspectGraph .
end createAspectGraph

Modify this expression for your own
more sophisticated algorithm! 29

Merging of synonyms

mergeSynonyms(graph aspectGraph)
for each node_1 of aspectGraph
for each node_2 of aspectGraph
if node_1 <> node_2 and

node_1 <> aspectNode and

tl =t3

node_1 <> aspectNode
if cond_def _2(node_2.definition, SEE_ REF_PATTERN, node_1.term)
put node_2.term into node_1.synonyms
put all node_2.children into node_1.children
for each node_3 of aspectGraph
replace node_2 with node_1 in node_3.children
delete node_2 from aspectGraph

end mergeSynonyms
30

Reducing of relations

reduceRelations(graph aspectGraph) °
for each node_1 of aspectGraph
for each node_2 of aspectGraph
if node_1 <> node_2 a @
if node_2 is in node_1.children and
existindirectPathBetween(node_1, node_2)
delete node_2 from node_1.children
end reduceRelations

This algorithm assumes that all relations have the same type!
The algorithm has to be improved for the next iterations taking
into account the types of relations.

31

Results

* Obtained lightweight ontology
— is exported in OWL RDF/XML notation;

— is imported into the ontology creation
environment Protégé;

— is visualized by the graphical tool OWLGrEd.
* We plan to use the OWLGrEd to refine the

ontology and store the refinements for the
next iterations

32

Evaluation of the results

:
Following ONTOG6 s

methodology only 9 | [
aspects are taken (WHAT): i
testing, test, tool,

software, process,
analysis, capability, i o T
technique.

|
defect_based_test_design_techniq;
defect_hased_technique
experience-based_test design techniq
expeience-hased_technique
Fao)

specification-based_test_design_technique

1 e_case_testi
R Sfion_testing
[_value i
c]assiﬁcaﬂon_uue_mahodl

:
roots for the 629 unique = T | 4—|'a’>mllg
statement_testing - non-functional_test_design_technique
entries from the 724 bt eing
entries included in the
| decim'on_condiﬁon_msling|

glossary (87%). —

il

syntax_testing

|fmu:tioml_uzst_design_mc}miqued
invise_testing
white_box_test_design_technique= = s
structral_test design techni
cess_cycle
= =

These 9 aspects serve as ey oy gl

white box technique

33

Ontology aspect Technique (1/3)

technique

&
FiN

=<Label= >]
"ATHAT"

osing
test design technique= test case :%J
design_technique= test_
specification_technique= test_ = ko
tec hnique e

defect based test design technique= statistical testing
defect based technique

experience-based_test design technique=
experience-based_technique exploratory testing

eror guessing

T

checklist-hased testing

34

Ontology aspect Technique (2/3)

black hox test design technique= black bhox
_technique= specification-based technique=
specification-hased test design technique

syntax_testing

functional test design technique

pairwise testing

elementary comparison_testing|

process cycle test

]
—

equivalence_partitioning

nation testing|

random_testing

use_case_testing

state_transition_testing

—{houndary value analysis

i classification tree method

. cause-effect graphing

- decision_table testing

non-functional test design technique

ign_technique= black bhox
ication-hased_technique=
d_test_design technique

il

c]assiﬁcaﬁon_uue_maimd|

decision_table_testing|

)ml_m_design_techniquel

35

Ontology aspect Technique (3/3)

==Lahel==
WHAT"

white box test design technique=
structural test design technique=

elementary =i ecmique= st
==ification_technique= test_

sign_technique= test _case

structure-hased test design technique=

LCSAJ testing

path_testing
statement_testing decision_testing

tec hnigue

|
white box technique e b::"#ﬁ“

T i

ack hox_test design technique= black bhox
technique= specification-based_technique=
specification-hased_test design technique

branch_testing condition determination testing

il

ntax_testing }

e ||
en_technique

—data flow testing

condition testing

—_

decision condition testing

multiple condition testing

use_case_teslingj
c]assiﬁcaﬁon_uue_maimd|

@— decision_table_testing|

|mn—functioml_t&st_design_techniquel

36

Demo

* Top 9 aspects (integrated)

* Top 40 aspects with definitions (not integrated)

37

graph_top09.svg
Aspect.svg

Conclusion and future works

* |tis possible to semi-automatically generate a
lightweight ontology from glossary

* We offer the principles and algorithms how to
discover the significant concepts and to find
simple relations between concepts

 We are going to develop the methodology for
the next iterations to improve the initially
created ontology and create useful Software
Testing ontology for the teaching purpose.

38

Thank you very much for your
attention

