
An Implementation of Self-Testing 

Edgars Diebelis 

Prof. Dr. Janis Bicevskis  

07.07.2010 



2 

Self-testing 

• Ability to execute stored test examples to ensure that 

software. 

• Test approach: 

– Manual testing. 

– Automated testing with testing tools. 

– Self-testing. 

 



3 

Content 

• Smart Technologies. 

• Method of Self-Testing. 

• Phases of system testing. 

• Modes of system actions. 

• Test Point. 

• Implementation of Self-Testing. 

• Self-testing example. 

• Conclusions. 



4 

Smart technology 

The idea behind this software is that it „manages itself”, i.e., controls 
external and internal factors and reacts on them adequately 

 

•The software complying with smart technology 
principles has the following features: 

– Ability to check the target environment (testing of the environment). 

– Ability to ensure sound functioning of software (self-tests of basic 
functionality). 

– Ability to automatically retrieve the newest version of software from 
server and convert the accumulated data in compliance with 
requirements of the newest version (versioning). 

– Ability to monitor the security and data quality of software (monitoring). 



5 

Method of Self-Testing 

• Self-testing contains two components: 
– Test cases of system’s critical functionality to check 

functions, which are substantial for system using. 

– Built-in mechanism (software component) for automated 
software testing (regression testing) that provides automated 
running of test cases and comparing test results with 
standard values. 

• Characteristics of self-testing: 
– Software is delivered together with the test cases used in 

automated self-testing of the system. 

– Testing can be repeated in production, without impact on 
production database. 



6 

Phases of system testing 

Developer

Development 

enviroment
Storing tests, 

Regression testing

Test 

enviroment

Production 

enviromentSystem user

Storing tests, 

Regression testing

System user

Tester

Storing tests, 

Regression testing



7 

Self-testing in Development environment 

• Preparing test cases to cover the critical functionality 
of system. 

• Import/export of test cases from/into test or production 
environments. 

• The independent testing might detect 
misinterpretation of specification or nonfunctional 
requirements of system. 

• Self-testing don’t absolve developers of system from 
system testing. 



8 

Self-testing in Test environment 
• Test environment should differ from production only 

by delivered system changes. 

• Test environment is meant for accept-testing. 

• Accepts or declines tests from development 
environment. 

• Add new test examples. 

• Import/export of test cases from/into development or 
production environments. 

• Execute self-testing of delivered system to ensure 
– that previous software functionality will remain unchanged. 

– that all changes are delivered and installed in the test 
environment. 



9 

Self-testing in Production 
• During production mode there is access to real data. 

• Import/export of test cases from/into development or 
test environments. 

• Add new test examples. 

• Execute self-testing of delivered system to insure 
– that previous software functionality will remain unchanged. 

– that all changes are delivered and installed in the test 
environment. 

• During production self-testing mode data are used in 
read-only mode. 

• Saving of data is realized in test execution and test 
storing databases. 



10 

Modes of system actions 

• Test storage mode. 

• Self-testing mode. 

• Use mode. 

• Demonstration mode. 



11 

Test storage mode 

Application to be testedApplication to be tested

Test 

storage file

1.
2.

Database

3.



12 

Self-testing mode 

Test 

storage fileTest 

storage file

(XML)

Test 

storage file 

(XML)

1.

3.

Test control blockTest control block

2.

Application to be testedApplication to be tested

Application to be testedApplication to be tested

Application to be testedApplication to be tested

Database

4.

5.

Test 

storage fileTest 

storage file
Test 

storage file

(XML)

Comparison of 

test files

6.



13 

Use mode 

• During usage mode there are no testing activities. 
Users use this mode for main functionality of system. 

 



14 

Demonstration mode 

Test 

storage fileTest 

storage file

(XML)

Test 

storage file 

(XML)

1.

3.

Test control blockTest control block

2.

Application to be testedApplication to be tested

Application to be testedApplication to be tested

Application to be testedApplication to be tested

Database

4.

5.

Test 

storage fileTest 

storage file
Test 

storage file

(XML)

Comparison of 

test files

6.



15 

Test point 

• Test point is a command upon which system testing 
actions are executed. 

• Test point is a programming language command in 
the software text. 

• Test point ensures that: 
– particular actions and field values are saved when storing 

tests. 

– the software execution outcome is registered when tests are 
executed repeatedly. 

• By using test points, it is possible to repeat the 
execution of system events. 



16 

Types of Test Point 

• Field with value. 

• Comparable value. 

• MessageBox. 

• Modal window. 

• SQL query result. 

• Application event. 

• Test execution criterion. 



17 

Example 

Stock Purchase Transaction

Selecting the client 

from modal window Selecting the stock

Specifying the 

number of stocks

Saving the 

transaction

1.

4., 5.3.

2.



18 

Implementation of Self-Testing 

• Key components of self-testing software are: 
– Test control block. 

– Library of test actions. 

– Test file (XML file).  



19 

Self-Testing example 

1.

2.

3.

4.

5.



20 

Conclusions 
 Self-testing does not replace traditional testing of software; it 

modifies testing process by increasing significantly the role of 
developer in software testing. 

 Self-testing requires additional efforts to integrate functionality of 
self-testing into software, to develop critical functionality tests 
and testing procedures. 

 Self-testing significantly saves time required for repeated testing 
(regression) of the existing functionality. This is critical for large 
systems, where minor modifications can cause fatal errors and 
impact system’s usability. 

 Self-testing ensures that functionality of unmodified software will 
remain unchanged, while new software modules will perform 
according to the new tests confirmed by system user. As a result, 
system user can be sure that modifications in software will not 
cause incidents, while developer can be sure about quality of 
delivered software. 



21 

Conclusions (continued) 

 
 
 

 

• Using the self-testing features the complete functionality of system 
is tested, thus leaving no room for errors during independent 
testing. The independent testing can indicate only differences in 
interpretation of specification, but not in technical implementation. 

• Introduction of self-testing functionality is more useful in 
incremental development model, especially gradually developed 
systems and systems with long-term maintenance; and less useful 
in linear development model. 

• Test points make test recording and automatic execution much 
easier. Test points ensure that tests can be recorded in a 
convenient and easy-to-read manner. 

• Test execution criteria test point determines the possibility to 
execute the test using the available data set  

• If test execution criteria test points are used, it is not necessary to 
maintain the data set which was used to register the test. 

• Test execution criteria test point provides a possibility to execute 
tests in random order. 



22 

Thank you! 


