

Quantum walks on 2D grid

Each step of quantum walk consists of two transformations.

1 st transformation									
Apply Grover's <i>diffusion</i> for all unmarked locations	Apply <i>-Identity</i> transformation for marked location								
$D = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}$	$-I = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$								

The results of simulation

Quantum walk state: at the begining and close to the end

Previously known results

We study a search by quantum walks on a finite two-dimensional grid according to [AKR05]. For grid of size $\sqrt{N} \times \sqrt{N}$ the original [AKR05] algorithm takes O($\sqrt{N \log N}$) steps and finds a marked location with probability O(1 / log *N*). This probability is small, thus the algorithm needs amplitude amplification to get $\Theta(1)$ probability. The amplitude amplification adds an additional

5	1						- 51	51 -					<u></u>
	1	L	10	20	30	40	51	1	10	20	30	40	51 ^{VS}

Simulation shows that probability concentrates close to the marked location

We have measured the probability inside $R = \sqrt{N}$ neighbourhood of the marked location

Probability to be within \N neibourghood from the marked location.

Numerical experiments showed, that the following formula holds: $\mathbf{Dr}[\mathbf{P} - \mathbf{O}]$

 $O(\sqrt{\log N})$ factor to the number of steps, making it $O(\sqrt{N} \log N)$.

Main results

We show that the probability of being in $O(\sqrt{N})$ neighbourhood of marked location, i.e. at $O(\sqrt[4]{N})$ distance from the marked location, is $\Theta(1)$. This allows us to replace amplitude amplification with classical post processing which does not increase time complexity of the algorithm and leads to $O(\sqrt{\log N})$ speed-up.

A O($\sqrt{\log N}$) speed-up was achieved by other research groups. However, their approaches to this problem are based on modification of the original algorithm [Tul08] or both the algorithm and the structure of the graph [KM+10].

Note that our approach doesn't require any modification of graph structure or original algorithm.

-State of quantum walk (almost) stays in 2-dimensional subspace;

- After O($\langle N \log N \rangle$) steps, it reaches a state in this subspace that is perpendicular to the starting state

Let $|\psi\rangle = \sum_{j=0}^{\sqrt{N}-1} \sum_{j'=0}^{\sqrt{N}-1} \sum_{d} \alpha_{j,j',d}^t |j,j',d\rangle$ be the state of the quantum walk after t steps

We can choose $t = O(\sqrt{N \log N})$ so that for any set $S \subseteq \{0, ..., \sqrt{N} - 1\}^2$, $\sum_{i=1}^{n} t_{i} = t_{i}^{2} \sum_{i=1}^{n} C_{i}^{2} \sum_{i=1}^{n} C_{i}^{2$

we have
$$\sum_{(j,j')\in S} |\alpha_{j,j',\uparrow\uparrow}^t|^2 \ge C^2 \sum_{(j,j')\in S} (f(j,j') - f(j-1,j'))^2 + o(1)$$

where $f(j,j') = \sum_{(k,l)\neq(0,0)} \frac{1}{2 - \cos\frac{2k\pi}{N} - \cos\frac{2l\pi}{N}} w^{kj+lj'}$ and $C = \Theta(\frac{1}{N\sqrt{\log N}}).$

- Via sequence of approximations, we obtain that the amplitude of being in location (*x*, *y*) scales as O(1/k), k = max(x, y).

```
- Hence, the probability of being in N^{\mathcal{E}} * N^{\mathcal{E}} neighbourhood scales as \Theta(\varepsilon).
```

Probability by distance, one marked location, grid size 1024x1024, logarithmic scale.

<u>References</u>

- [AKR05] A. Ambainis, J. Kempe, A. Rivosh.
 Coins make quantum walks faster.
 Proceedings of SODA'05, 1099-1108, 2005.
- [Tul08] A. Tulsi. Faster quantum-walk algorithm for the two dimensional spatial search.
 Phys. Rev. A 78.012310, 2008
- [KM+10] H. Krovi, F. Magniez, M. Ozols, J. Roland.
 Finding is as easy as detecting for quantum walks.
 Proceedings of ICALP'10