



# New developments in quantum algorithms

Andris Ambainis University of Latvia

## What is quantum computation?

- New model of computing based on quantum mechanics.
- Quantum circuits, quantum Turing machines.
- More powerful than conventional models.
- Small-scale implementations exist (up to 12 quantum bits).

## Shor's algorithm

- Factoring: given N=pq, find p and q.
- Best algorithm  $2^{O(n^{1/3})}$ , n number of digits.
- Quantum algorithm O(n³) [Shor, 94].
- Cryptosystems based on hardness of factoring/discrete log become insecure.

#### Grover's search

$$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ x_1 & x_2 & x_3 & & x_N \end{bmatrix}$$

- Find i such that  $x_i=1$ .
- Queries: ask i, get x<sub>i</sub>.
- Classically, N queries required.
- Quantum:  $O(\sqrt{N})$  queries [Grover, 96].
- Speeds up any search problem.

## NP-complete problems



Does this graph have a Hamiltonian cycle?

- Hamiltonian cycles are:
  - Easy to verify;
  - Hard to find (too many possibilities).

## Quantum algorithm

- Let N number of possible Hamiltonian cycles.
- Black box = algorithm that verifies if the i<sup>th</sup> candidate - Hamiltonian cycle.
- Quantum algorithm with  $O(\sqrt{N})$  steps.

Applicable to any search problem

## Pell's equation

- Given d, find the smallest solution (x, y) to  $x^2$ -d $y^2$ =1.
- Probably harder than factoring and discrete logarithm.
- Best classical algorithms:
  - for factoring;
  - $2^{O(\sqrt{N})}$  for discrete logarithm.

$$2^{O(N^{1/3})}$$

Hallgren, 2001: Quantum algorithm for Pell's equation.

# Number theory and algebraic problems

- Polynomial time quantum algorithms:
  - Factoring [Shor, 94]
  - Discrete logarithm [Shor, 94];
  - Pell's equation [Hallgren, 02].
  - Principal ideal problem [Hallgren, 02].
  - Computing the unit group [Hallgren, 05].

## Element distinctness [A, 2004]

$$\begin{bmatrix} 7 & 9 & 2 & \cdots & 1 \\ x_1 & x_2 & x_3 & & x_N \end{bmatrix}$$

- Numbers  $x_1, x_2, ..., x_{N.}$
- Determine if two of them are equal.
- Classically: N queries.
- Quantum:  $O(N^{2/3})$ .

# Triangle finding [Magniez, Santha, Szegedy, 03]



- Graph G with n vertices.
- $n^2$  variables  $x_{ij}$ ;  $x_{ij}$ =1 if there is an edge (i, j).
- Does G contain a triangle?
- Classically: O(n²).
- Quantum:  $O(n^{1.3})$ .

#### Talk outline

- 1. The model.
- 2. Recent developments in quantum algorithms.
  - a) Formula evaluation;
  - b) Systems of linear equations;

# Part 1

The model

- **1** 0.6
- 0.1

30.2

4 0.1

- Probabilistic system with finite state space.
- Current state: probabilities p<sub>i</sub> to be in state i.

$$\sum_{i} p_{i} = 1$$

### Quantum computation

- 1 0.4+0.3i
- Current state: amplitudes  $\alpha_i$  to be in state i.

$$\sum_{i} \left| \alpha_{i} \right|^{2} = 1$$

4 0.3

For most purposes, real (but negative) amplitudes suffice.

#### Notation



• Basis states  $|1\rangle$ ,  $|2\rangle$ ,  $|3\rangle$ .



$$|\Psi\rangle = 0.7 |1\rangle - 0.7 |2\rangle + (0.1+0.1i)|3\rangle$$

$$|\Psi\rangle = \begin{pmatrix} 0.7 \\ -0.7 \\ 0.1 + 0.1i \end{pmatrix}$$



 Pick the next state, depending on the current one.



Transitions: r<sub>ij</sub> probabilities to move
 from i to j.

$$p'_{j} = \sum_{i} p_{i} r_{ij}$$

- Probability vector  $(p_1, ..., p_M)$ .
- Transitions:



### Allowed transitions

$$\begin{pmatrix} p'_1 \\ \dots \\ p'_M \end{pmatrix} = \begin{pmatrix} r_{11} & \dots & r_{1M} \\ \dots & \dots \\ r_{M1} & \dots & r_{MM} \end{pmatrix} \begin{pmatrix} p_1 \\ \dots \\ p_M \end{pmatrix}$$

- R –stochastic:
  - If  $\Sigma_i p_i = 1$ , then  $\Sigma_i p'_i = 1$ .

## Quantum computation

- Amplitude vector  $(\alpha_1, ..., \alpha_M)$ ,
- Transitions:

$$\begin{pmatrix} \alpha'_1 \\ \dots \\ \alpha'_M \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & u_{1M} \\ \dots & \dots \\ u_{M1} & \dots & u_{MM} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_M \end{pmatrix}$$
transition matrix

after the transition

#### Allowed transitions

$$\begin{pmatrix} \alpha'_1 \\ \dots \\ \alpha'_M \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & u_{1M} \\ \dots & \dots & \dots \\ u_{M1} & \dots & u_{MM} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_M \end{pmatrix}$$

• U – unitary:  
• If 
$$\sum_{i} |\alpha_{i}|^{2} = 1$$
, then  $\sum_{i} |\alpha'_{i}|^{2} = 1$ .

Equivalent to UU+=I.

## Quantum computing vs. nature

#### **Quantum computing**

- Unitary transformations U.
- Transformation U performed in one step.
- No intermediate states.

#### **Quantum physics**

- Physical evolution continuous time.
- Forces acting on a physical system – Hamiltonian H.

Evolution for time t:

$$U=e^{-iHt}$$

## Summary so far

- Quantum ≈ probabilistic with complex probabilities.
- Instead of  $\Sigma_i p_i = 1$  we have  $\sum_i |\alpha_i|^2 = 1$  ( $l_2$  norm instead of  $l_1$ ).

How do we go from quantum world to conventional world?

#### Measurement

Quantum state:

$$\alpha_1 \ |1\rangle + \alpha_2 \ |2\rangle + ... + \alpha_M \ |M\rangle$$
 Measurement 
$$1 \qquad 2 \qquad \cdots \qquad M$$
 prob. 
$$|\alpha_1|^2 \quad |\alpha_2|^2 \qquad |\alpha_M|^2$$

## Part 2a

Formula evaluation

### **AND-OR tree**



## **Evaluating AND-OR trees**



- Variables x<sub>i</sub> accessed by queries to a black box:
  - Input i;
  - Black box outputs x<sub>i</sub>.
- Quantum case:

$$\sum_{i} a_{i} |i\rangle \rightarrow \sum_{i} a_{i} (-1)^{x_{i}} |i\rangle$$

 Evaluate T with the smallest number of queries.

#### Motivation



- Vertices = chess positions;
- Leaves = final positions;
- x<sub>i</sub>=1 if the 1st player wins;
- At internal vertices, AND/OR evaluates whether the player who makes the move can win.

How well can we play chess if we only know the position tree?

## Results (up to 2007)



- Full binary tree of depth d.
- N=2<sup>d</sup> leaves.
- Deterministic:  $\Omega(N)$ .
- Randomized [SW,S]:  $\Theta(N^{0.753...})$ .
- Quantum?
- Easy q. lower bound:  $\Omega(\sqrt{N})$ .

#### New results

- [Farhi, Gutman, Goldstone, 2007]:O(√N) time algorithm for evaluating full binary trees in Hamiltonian query model.
- [A, Childs, Reichardt, Spalek, Zhang, 2007]: O(N<sup>1/2+0(1)</sup>) time algorithm for evaluating any formulas in the usual query model.

## Augmented tree



Finite "tail" in one direction

## Finite tail algorithm

Starting state:



## What happens?

- If T=0, the state stays almost unchanged.
- If T=1, the state "scatters" into the tree.

Run for  $O(\sqrt{N})$  time, check if the state  $|\Psi\rangle$  is close to the starting state  $|\Psi_{\text{start}}\rangle$ .

## When is the state unchanged?

- H forces acting on the system.
- (State  $|\Psi\rangle$  unchanged)  $\leftrightarrow$  H $|\Psi\rangle$ =0.

$$e^{-iHt} |\Psi\rangle = |\Psi\rangle \Leftrightarrow H |\Psi\rangle = 0.$$

## What does H $|\Psi\rangle$ = 0 mean?

H – adjacency matrix



$$H|\Psi\rangle = (b_i),$$

$$b_i = \sum_{(i,j)-edge} a_j$$

$$H|\Psi\rangle = o \leftrightarrow \text{for each } i: \sum_{(i,j)-edge} a_j = 0$$

## Example





Formula

Augmented tree

## $H|\Psi\rangle = 0$ state



## General property



Leaves with non-zero  $a_i$  form a certificate of T=0.

#### T=1 case



Cannot place non-zero value here

No  $|\Psi\rangle$  with  $H|\Psi\rangle=0$ .

## Summary

- [Farhi, Gutman, Goldstone, 2007] Hamiltonian algorithm;
- [A, Childs, et al., 2007] Discrete time algorithm.
- $O(\sqrt{N})$  time for full binary tree;
- $O(\sqrt{Nd})$  for any formula of depth d;
- $O(N^{1/2+o(1)})$  for any formula.
- Improved to  $O(\sqrt{N \log N})$  by [Reichardt, 2010].

## Span programs [Karchmer, Wigderson, 1993]

- Target vector v.
- Input  $x_1, ..., x_N \rightarrow \text{vectors } v_1, ..., v_M$ .
- Output  $F(x_1, ..., x_N) = 1$  if there exist  $v_{i_1}, v_{i_2}, ..., v_{i_k}$ :

$$V = V_{i1} + V_{i2} + ... + V_{ik}$$
.

 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 

Target

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 1 \\ \alpha \end{pmatrix} \quad \begin{pmatrix} 1 \\ \beta \end{pmatrix}$$

$$X_1=1$$

$$X_2 = 1$$

$$X_3=1$$

 $\begin{array}{c} \textbf{X1=1, X2=1, X3=0} \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ \alpha \end{pmatrix} & \begin{pmatrix} 1 \\ \beta \end{pmatrix} \\ \text{Target} & \textbf{X}_1=1 & \textbf{X}_2=1 & \textbf{X}_3=1 \end{array}$ 

Output = 1.

X1=1, X2=0, X3=0

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Target

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ \alpha \end{pmatrix} \begin{pmatrix} 1 \\ \beta \end{pmatrix}$$

$$X_1=1 \qquad X_2=1 \qquad X_3=1$$

Output = 0.

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ \alpha \end{pmatrix} \qquad \begin{pmatrix} 1 \\ \beta \end{pmatrix}$$
Target
$$x_{-1} \qquad x_{-1} \qquad x_{-1} \qquad x_{-1}$$

 $X_1=1$ 

 $X_{2} = 1$ 

Output = "yes" if  $\geq 2$  of  $x_i=1$ .

## Composing span programs

- Span program S<sub>1</sub> with target t<sub>1</sub>.
- Span program S<sub>2</sub> with target t<sub>2</sub>.

Span program  $S_1 \cup S_2$  with target  $t_1 + t_2$ .

Answers 1 if both  $S_1$  and  $S_2$  answer 1.

$$F_1, F_2 \rightarrow F_1 AND F_2$$

#### Span programs [Reichardt, Špalek, 2008]

Logic formula of size T

Span program with witness size T  $O(\sqrt{T})$  query quantum algorithm

Far-reaching generalization of formula evaluation

## Example

- MAJ $(x_1, x_2, x_3, x_4)$ =1 if at least 2  $x_i$  are equal to 1.
- Formula size: 8.
- Span program: 6.

#### Iterated thresholds



d levels – formula of size 8<sup>d</sup>, span program 6<sup>d</sup>.

 $O(\sqrt{6^d})$  quantum algorithm

#### Span programs [Reichardt, 2009]

Span program with witness size T

Ш

 $O(\sqrt{T})$  query quantum algorithm

# Adversary bound [A, 2001, Hoyer, Lee, Špalek, 2007]

- Boolean function  $f(x_1, ..., x_N)$ ;
- Inputs  $x = (x_1, ..., x_N);$
- Matrix A:  $A[x, y] \neq 0$  only if  $f(x) \neq f(y)$
- Theorem Computing f requires

$$\frac{\lambda(A)}{\max_i \ \lambda(A \bullet D_i)}$$
 quantum queries

#### Span programs [Reichardt, 2009]



#### Span programs [Reichardt, 2009]

Span program with witness size T

Ш

 $O(\sqrt{T})$  query quantum algorithm

#### Summary

- Span programs = optimal quantum algorithms.
- Open problem: how to design good span programs?
- Quantum algorithm for perfect matchings?

## Part 2b

Solving systems of linear equations

## The problem

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

- Given  $a_{ij}$  and  $b_i$ , find  $x_i$ .
- Best classical algorithm: O(N<sup>2.37...</sup>).

#### Obstacles to quantum algorithm

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

$$\dots$$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

- Obstacle 1: takes time O(N<sup>2</sup>) to read all a<sub>ij</sub>.
- Solution: query access to a<sub>ii</sub>.
- Grover: search N items with  $O(\sqrt{N})$  quantum queries.
- Obstacle 2: takes time O(N) to output all  $x_i$ .

#### Harrow, Hassidim, Lloyd, 2008

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$
  
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

• • •

$$a_{N1}x_1 + a_{N2}x_2 + ... + a_{NN}x_N = b_N$$
  
Output =  $\sum_{i=1}^{N} x_i |i\rangle$ 

- Measurement  $\rightarrow$  i with probability  $x_i^2$ .
- Estimating  $c_1x_1+c_2x_2+...+c_Nx_N$ . Seems to be difficult classically.

## Harrow, Hassidim, Lloyd, 2008

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$
...

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

- Running time for producing  $\sum_{i=1}^{N} x_i |i\rangle$ : O(log<sup>c</sup> N), but with dependence on two other parameters.
- Exponential speedup, if the other parameters are good.

#### The main ideas

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

$$a_{N1}x_1 + a_{N2}x_2 + ... + a_{NN}x_N = b_N$$

$$\sum_{i=1}^{N} b_i |i\rangle \longrightarrow \sum_{i=1}^{N} x_i |i\rangle$$

Easy-to-prepare

Solution

#### The main ideas

$$Ax = b$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \dots & \dots & \dots & \dots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_N \end{pmatrix}$$

$$\sum_{i=1}^{N} b_i |i\rangle \xrightarrow{x = A^{-1}b} \sum_{i=1}^{N} x_i |i\rangle$$

How do we apply A<sup>-1</sup>?

## Eigenvectors

- $|\Psi\rangle$  eigenvector if  $A|\Psi\rangle = \lambda |\Psi\rangle$ .
- $\lambda$  eigenvalue.
- Assume: A Hermitian (A=A\*).

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{pmatrix} \qquad x = \sum_i c_i v_i$$

$$v_i - \text{eigenvector of A}$$

#### The main ideas

$$Ax = b$$

$$x = \sum_{i} c_{i} v_{i} \qquad Av_{i} = \lambda_{i} v_{i}$$

$$Ax = \sum_{i} c_{i} \lambda_{i} v_{i}$$

#### The main ideas

$$x = \sum_{i} c_{i} v_{i} \longrightarrow b = \sum_{i} c_{i} \lambda_{i} v_{i}$$

$$b = \sum_{i} a_{i} v_{i} \longrightarrow x = \sum_{i} a_{i} \lambda_{i}^{-1} v_{i}$$

Implement a quantum transformation

$$|v_i\rangle \to \lambda_i^{-1} |v_i\rangle$$

$$|b\rangle \to |x\rangle$$

## Eigenvalue estimation

- Subroutine in Shor's quantum algorithm for factoring.
- Explicitly defined in Kitaev, 1995.
- Input: A and  $|v_i\rangle$ :  $A|v_i\rangle = \lambda_i|v_i\rangle$ .
- Output:  $|v_i\rangle |\lambda'_i\rangle$ ,  $\lambda'_i \approx \lambda_i$ .

$$|\nu_{i}\rangle \xrightarrow{\text{EE}} |\nu_{i}\rangle |\lambda'_{i}\rangle \to \frac{1}{\lambda'_{i}} |\nu_{i}\rangle |\lambda'_{i}\rangle \xrightarrow{\text{EE}^{-1}} \frac{1}{\lambda'_{i}} |\nu_{i}\rangle$$

#### Caveat

$$|v_i\rangle|\lambda'_i\rangle \rightarrow \frac{1}{\lambda'_i}|v_i\rangle|\lambda'_i\rangle$$

is not unitary!

#### Solution: perform

$$|v_{i}\rangle|\lambda'_{i}\rangle \rightarrow |v_{i}\rangle|\lambda'_{i}\rangle\left(\frac{C}{\lambda'_{i}}|succ\rangle + \sqrt{1-\left(\frac{C}{\lambda'_{i}}\right)^{2}}|fail\rangle\right)$$

## Running time

- 1. Size of system  $N \to O(\log^c N)$ .
- Time to implement A O(1) for sparse matrices A, O(N) generally.
- 3. Condition number of A.

$$k = \frac{\mu_{\text{max}}}{\mu_{\text{min}}}$$
  $\mu_{\text{max}}$  and  $\mu_{\text{min}}$  – biggest and smallest eigenvalues of A

$$Time - O(\kappa^2 \log^c N)$$

#### Dependence on condition number

- Classical algorithms for sparse A:  $O(N\sqrt{k})$ .
- [Harrow, Hassidim, Llyod, 2008]: O(k² log<sup>c</sup> N).
- [A, 2010]:  $O(k^{1+o(1)} \log^c N)$ , via improved version of eigenvalue estimation.
- [HHL, 2008]:  $\Omega(k^{1-O(1)})$ , unless BQP=PSPACE.

## Open problem

- What problems can we reduce to systems of linear equations (with  $\sum_{i} x_{i} | i \rangle$  as the answer)?
- Examples:
  - Search;
  - Perfect matchings in a graph;
  - Graph bipartiteness.

Biggest issue: condition number.