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Part 1 

Playing games with liars and 
procrastinators 



Soviet Olympiad, 1991 

• Witness and questioneer; 

• Plan to discover the truth with 91 yes/no 
questions, if all answers correct. 

• Prove: questioneer can discover the truth with 
105 yes/no questions, if witness may lie on at 
most 1 question. 

 
14 extra questions 



Solution 

• 13 questions, control question.  

• 12 questions, control question.  

• 11 questions, control question. 

• .... 

• 1 question, control question. 

 

12...121391 

With no lies, 13 extra questions. 



Solution (with 1 lie) 

• 13 questions, control question.  

• ... 

• k questions, control question. 

• k questions (repeat). 

• k-1 questions (no control).  

• ... 

• 1 question (no control). 

14-k extra 
questions 

k extra 
questions 

14 extra 
questions 

+ 

= 



Ulam’s question 

• Unknown x{1, 2, ..., 1,000,000}. 

• Yes/no questions. 

• How many questions to find x, if one answer 
may be incorrect? 

S. Ulam, Adventures of a Mathematician, 1976. 
A. Renyi, On a problem in information theory,  
MTA Mat.Kut. Int. Kozl., 6B (1961), 505-516. 



Variants 

1. What questions? 

a. Questions “xS?” for any S. 

b. Questions “x<a?” for any a. 

2. 2 or 3 incorrect answers, 10% incorrect. 

3. ... 

 
1 incorrect answer, arbitrary questions 



History of problem 

• Question: Ulam, 1976. 

• Partial solutions: 

– Rivest, et al., 1980; 

– Spencer, 1984. 

– Ulam’s question still open: 25 or 26 questions for 
N=1,000,000. 

• Complete solution: Pelc, 1987. 

• Later: exact solutions for 2 and 3 lies, etc. 

 

 



Solution 1 



Search with no errors 

1 N 

1 N/2 N/2+1 
N 

... ... 

k

NNN
N

2
...

42


Can search [1, 2k] with k questions. 



Search with errors 

• Interval [1, N], k questions. 

• Possibilities (i, j): 
 i – number in [1, N] 

 j – question that is answered incorrectly (0 if all 
answers are correct). 

• N(k+1) possibilities. 

• At each step, choose a question for which half 
of possibilities are consistent with “yes” 
answer and half – with “no”. 



Search with errors 

• N(k+1) possibilities. 

• Each question splits the possibility space into 
(roughly) two halves. 

• Conjecture If N(k+1)  2k, then k questions are 
sufficient. 



Search with errors 

• [Pelc, 1987] For even N, if N(k+1)  2k, then k 
questions are sufficient. 

• [Pelc, 1987] For odd N, if N(k+1)+(k-1)  2k , 
then k questions are sufficient. 

• Explanation: for odd N, the first question will 
split possibility space into slightly uneven 
parts. 

Both of those results are optimal. 

Optimality proof: opponent which always gives an answer  
corresponding to the larger part of possibility space. 



Solution 2 



Error correcting codes 

• Result: M’ that differs from M in d places. 

M M’ 
Noisy channel 



Error correcting codes 

• Add extra information to M, so that we can 
recover M, even if there are d errors. 

 

M C 
Noisy channel 

C’ M 

Encoding Decoding 



Hamming code 

• 2N-N-1 bits  2N-1 bits, corrects 1 error; 

• 4 bits  7 bits. 

• 11 bits  15 bits. 

• 26 bits  31 bits. 

20 bits  25 bits 



Using Hamming code 

• 20 bits  25 bits. 

• 220 = 1,048,576 messages m{0, 1}25. 

• Encode x {1, 2, ..., 1,000,000} by messages 
mx. 

• Questions: “Is ith bit of mx equal to 1?” 

• We recover m’ that differs from mx in 1 
place. 

• Hamming code: m’  mx. 

 

 



20 questions against a procrastinator 

• Unknown number x[1, N]. 

• Questions: is x>a? 

• Answer: after asking the next question. 

1. X > 100? 
2. X > 150? 
No, X  100... 
3.  X>50? 
 

“Motivation”: deciding the right difficulty of the homework. 



Strategy 

1 N 

1 N cN cN+1 

1 c2N c2N+1 cN 



Case 1 

1 N 

1 N cN cN+1 

1 c2N c2N+1 cN 

Size of interval decreased by factor of c. 



Case 2 

1 N 

1 N cN cN+1 

1 c2N c2N+1 cN 

Size of interval decreased by factor of 1-c. 



Two cases 

• 1 question wasted, 
decrease of c. 

• Twice: 2 questions, 
decrease of c2. 

• 2 questions wasted, 
decrease of 1-c. 
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Fibonacci numbers 

• Fn+2=Fn+Fn+1. 

• F0=1, F1=1, F2=2, F3=3, F4=5, ... 

• Theorem With n questions, we can search an 
interval of size Fn+1. 

• Proof By induction. 

• F2=2 – searchable with 1 question. 



Inductive case 

Size Fn 

1 Fn 

Size Fn-1 
Size Fn-2 

Size Fn-2 Size Fn-3 



Inductive case 

Size Fn 

1 Fn 

Size Fn-1 

Size Fn-2 Size Fn-3 

1 question, 
Fn  Fn-1. 



Inductive case 

Size Fn 

1 Fn 

Size Fn-2 2 questions, 
Fn  Fn-2. 



Fibonacci strategy is optimal 

Size >Fn 

1 Fn 

size > Fn-1 size > Fn-2. 



Searching with longer delays 

• Answer to a question – after k more questions 
have been asked. 

• Theorem The maximum interval that can be 
searched is Fn where Fn = Fn-1+ Fn-k-1. 



Strategy 

Size Fn 

Size Fn-1 Size Fn-(k+1) 

Size Fn-2 Size Fn-(k+2) 

... 

1 question, Fn Fn-1 

k+1 questions, Fn Fn-(k+1) 



Part 2 

Extremal graph theory 



Soviet Olympiad, 1977 

• Tickets numbered 000, ..., 999. 

• Boxes numbered 00, ..., 99. 

• Ticket abc can go into boxes ab, ac, bc. 

• Put all tickets into a minimum number of 
boxes. 

Boxes ab, a and b even; 
Boxes ab, a and b odd. 

50 boxes 



50 boxes are necessary 

• a – digit with the least number of boxes. 

• Can assume a=0. 

• Must have box 00 (for ticket 000). 

• Other boxes – 01, ... 0(k-1). 

 • Must have every box ab, a, b  {k, k+1, ..., 9} 
(for ticket 0ab). 

22 )10( kk #boxes 50



Cities and roads 

• 1000 cities; 

• Connect some pairs of cities by roads so that, 
among every 3 cities a, b, c, there is at least 
one of roads ab, ac, bc. 

• Minimum number of roads?  



Solution 

500 cities 

500 cities 
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Optimality 

• City v with the 
smallest number 
of roads k from it. 

 

v1 

v 
v2 

vk 

... 
k+1 cities 

999-k cities 

2
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Rewording the problem 

• Among every 3 
cities a, b, c, there 
is at least one of 
roads ab, ac, bc. 

• Minimum 
number of roads?  

• Among every 3 
cities a, b, c, at least 
one of ab, ac, bc is 
not present. 

• Maximum number 
of roads?  

Roads Not roads 



Extremal graph theory 

• What is the maximum 
number of edges in an 
n vertex graph with no 
triangles? 

• Theorem [Mantel, 1907] 
The maximum number 
of edges is  
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Turan’s theorem 

• What is the maximum number of edges in an n 
vertex graph with no k-clique? 

1k

n

1k

n

1k

n

• [Turan, 1941] This is maximum. 



More questions 

• What is the maximum number of edges in an-
vertex graph G that does not contain this? 



Turan’s graph 

• Since G does not contain 
triangles, G does not 
contain H. 

2

n

2

n

G 

H 



Turan’s graph 

2

n

2

n

G 

Left Right 

Left Left 

Right 

We can’t have this subgraph! 



General statement 

• G is k-colourable if its vertices can be coloured 
with k colours so that, for each edge uv, u and 
v have different colours. 

1k

n

1k

n

1k

n

k-1 colourable 



General statement 

• G is k-colourable if its vertices can be coloured 
with k colours so that, for each edge uv, u and 
v have different colours. 

1k

n

1k

n

1k

n

Does not contain  
any H that is not  
k-colourable. 



Erdós-Stone-Simonovits, 1966 

• H - a graph that is k-colourable but not (k-1)-
colourable (k>2) 

• Let e(n) be the maximum number of edges in 
an n-vertex graph that does not contain H.  

• Let f(n) be the number of edges in Turan’s 
graph. Then, as n, 
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Part 3 

Combinatorial structures 



Soviet Olympiad, 1988 

• 21 cities; 

• Several airlines, each of which connects 5 
cities. 

• At least one airline flying between every 2 
cities. 

• Smallest number of airlines? 



Solution: 1st airline 

1 

3 
8 

9 

12 



Solution: kth airline 

k 

k+2 
k+7 

k+8 

k+11 



Distances on a circle 
k, k+1 

k 
k+1 

k+2 

k+10 

k, k+2 

k, k+10 

... 

(k, k+11) is the same 
pair as (k’, k’+10), 
k’=k+11. 



Distances on a circle 
(k, k+1) = (8, 9) 

1 

3 8 

9 

12 

(k, k+2) = (1, 3) 

(k, k+3) = (9, 12) 

(k, k+4) = (8, 12) 

(k, k+5) = (3, 8) 

(k, k+6) = (3, 9) 

(k, k+7) = (1, 8) 

(k, k+8) = (1, 9) 

(k, k+9) = (3, 12) 

(k, k+10) = (12, 1) 



Difference sets mod k 

• Definition (k, m, l) difference set is a set       
{a1, a2, ..., am} such that  

 

 

   exactly l times for each r = 1, 2, ..., p-1. 

• (k, m, 1) difference set – each remainder          
r = 1, 2, ..., p-1 occurs exactly once. 

 

)(mod praa ji 



Distances on a circle 

1 

3 
8 

9 

12 

{1, 3, 8, 9, 12} is a (21, 5, 1)-difference set. 



Another example 

• {1, 2, 4} is a difference set mod 7. 

)7(mod542)7(mod224

)7(mod441)7(mod314

)7(mod621)7(mod112









Set system 

• {1, 2, 4} 

• {2, 3, 5} 

• {3, 4, 6} 

• {4, 5, 7} 

• {5, 6, 1} 

• {6, 7, 2} 

• {7, 1, 3} 

1 
2 

3 

4 

5 6 

7 

Every 2 elements are together in  
exactly one of those sets. 



Another example 

• {1, 3, 4, 8} is a difference set mod 13. 

)13(mod984)13(mod448

)13(mod883)13(mod538

)13(mod1243)13(mod134

)13(mod681)13(mod718

)13(mod1041)13(mod314

)13(mod1131)13(mod213















Other combinatorial constructions 

• Colour the edges and 
the diagonals into 2 
colours so that there 
is no: 

– 3 vertices with all 
connections red; 

– 4 vertices with all 
connections blue. 

1 2 

3 

4 

5 6 

7 

8 

R(4, 3) > 8 



Solution 

|i-j| 1 (mod 8) – blue; 

|i-j| 2 (mod 8) – blue; 

|i-j| 3 (mod 8) – red; 

|i-j| 4 (mod 8) – red. 

1 2 

3 

4 

5 6 

7 

8 



Solution 
1 2 

3 

4 

5 6 

7 

8 

1 2 

3 

4 

5 6 

7 

8 

There is no 3 vertices which are  
all at distance 3 one from another. 



Soviet olympiad, 1973  

• Direct the edges and 
the diagonals of a 
regular n-gon (n>6) 
so that one can go 
from i to v in one or 
two steps, respecting 
the directions. 

1 
2 

3 

4 

5 6 

7 



Solution for odd n 

• n=2k+1; 

• Direct edge (i, j) from 
i to j if and only if 

 j = i+1, i+2, ... i+k. 

1 3 

4 

5 6 

7 

2 

i 

i+1 i+2 i+k ... 

i+k+1 i+k+2 i+2k ... 


