

Some olympiad problems in combinatorics and their generalizations

Andris Ambainis
University of Latvia

Part 1

Playing games with liars and procrastinators

Soviet Olympiad, 1991

- Witness and questioneer;
- Plan to discover the truth with 91 yes/no questions, if all answers correct.
- Prove: questioneer can discover the truth with 105 yes/no questions, if witness may lie on at most 1 question.

14 extra questions

Solution

$$91 = 13 + 12 + ... + 2 + 1$$

- 13 questions, control question.
- 12 questions, control question.
- 11 questions, control question.
- •
- 1 question, control question.

With no lies, 13 extra questions.

Solution (with 1 lie)

- 13 questions, control question.
- •
- k questions, control question.
- k questions (repeat).
- k-1 questions (no control).
- •
- 1 question (no control).

14-k extra questions

k extra questions

14 extra questions

Ulam's question

- Unknown $x \in \{1, 2, ..., 1,000,000\}$.
- Yes/no questions.
- How many questions to find x, if one answer may be incorrect?
 - ☐S. Ulam, Adventures of a Mathematician, 1976.
 - □A. Renyi, On a problem in information theory, MTA Mat.Kut. Int. Kozl., 6B (1961), 505-516.

Variants

- 1. What questions?
 - a. Questions " $x \in S$?" for any S.
 - b. Questions "x<a?" for any a.
- 2. 2 or 3 incorrect answers, 10% incorrect.
- 3. ...

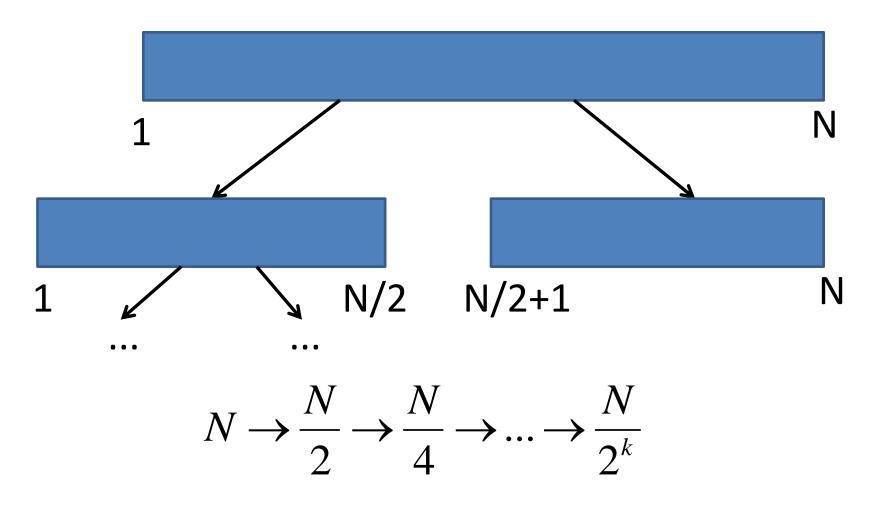
1 incorrect answer, arbitrary questions

History of problem

- Question: Ulam, 1976.
- Partial solutions:
 - Rivest, et al., 1980;
 - Spencer, 1984.
 - Ulam's question still open: 25 or 26 questions for N=1,000,000.
- Complete solution: Pelc, 1987.
- Later: exact solutions for 2 and 3 lies, etc.

Solution 1

Search with no errors



Can search [1, 2^k] with k questions.

Search with errors

- Interval [1, N], k questions.
- Possibilities (i, j):
 - i number in [1, N]
 - j question that is answered incorrectly (0 if all answers are correct).
- N(k+1) possibilities.
- At each step, choose a question for which half of possibilities are consistent with "yes" answer and half – with "no".

Search with errors

- N(k+1) possibilities.
- Each question splits the possibility space into (roughly) two halves.
- Conjecture If $N(k+1) \le 2^k$, then k questions are sufficient.

Search with errors

- [Pelc, 1987] For even N, if N(k+1) ≤ 2^k, then k questions are sufficient.
- [Pelc, 1987] For odd N, if N(k+1)+(k-1) $\leq 2^k$, then k questions are sufficient.
- Explanation: for odd N, the first question will split possibility space into slightly uneven parts.

Both of those results are optimal.

Optimality proof: opponent which always gives an answer corresponding to the larger part of possibility space.

Solution 2

Error correcting codes

Result: M' that differs from M in ≤d places.

Error correcting codes

 Add extra information to M, so that we can recover M, even if there are ≤d errors.

Hamming code

- $2^{N}-N-1$ bits $\rightarrow 2^{N}-1$ bits, corrects 1 error;
- 4 bits \rightarrow 7 bits.
- 11 bits \rightarrow 15 bits.
- 26 bits \rightarrow 31 bits.

20 bits \rightarrow 25 bits

Using Hamming code

- 20 bits \rightarrow 25 bits.
- $2^{20} = 1,048,576$ messages $m \in \{0, 1\}^{25}$.
- Encode x ∈{1, 2, ..., 1,000,000} by messages m_x.
- Questions: "Is ith bit of m_x equal to 1?"
- We recover m' that differs from m_x in ≤1 place.
- Hamming code: $m' \Rightarrow m_x$.

20 questions against a procrastinator

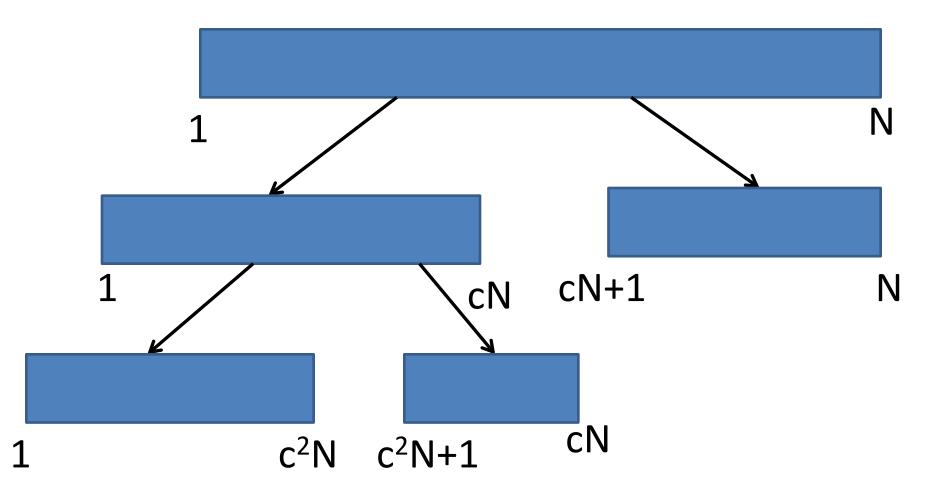
- Unknown number $x \in [1, N]$.
- Questions: is x>a?
- Answer: after asking the next question.
 - 1. X > 100?
 - 2. X > 150?

No, $X \le 100...$

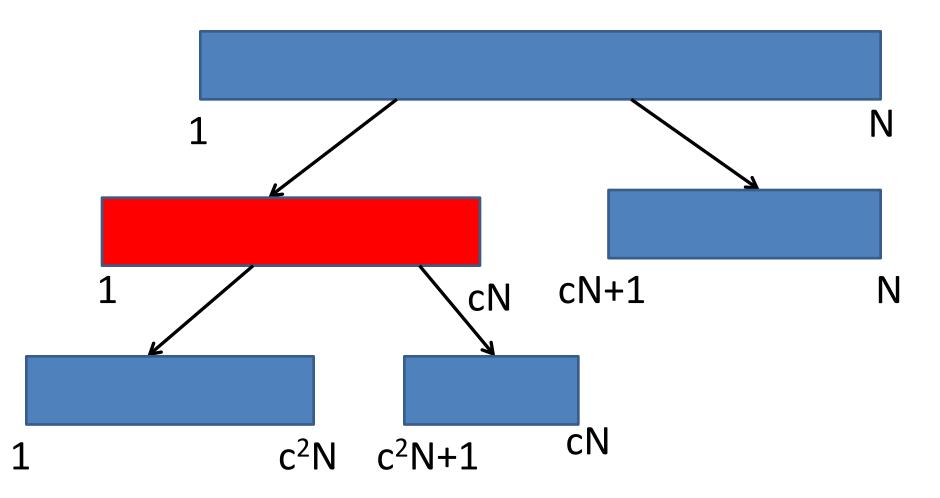
3. X>50?

"Motivation": deciding the right difficulty of the homework.

Strategy

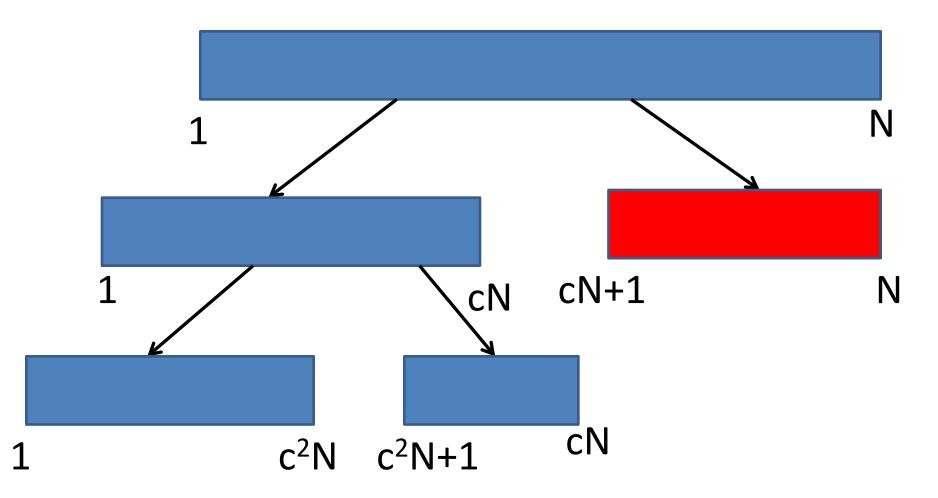


Case 1



Size of interval decreased by factor of c.

Case 2



Size of interval decreased by factor of 1-c.

Two cases

- 1 question wasted, decrease of c.
- Twice: 2 questions, decrease of c².

$$c^2 = 1 - c$$
$$c^2 + c - 1 = 0$$

 2 questions wasted, decrease of 1-c.

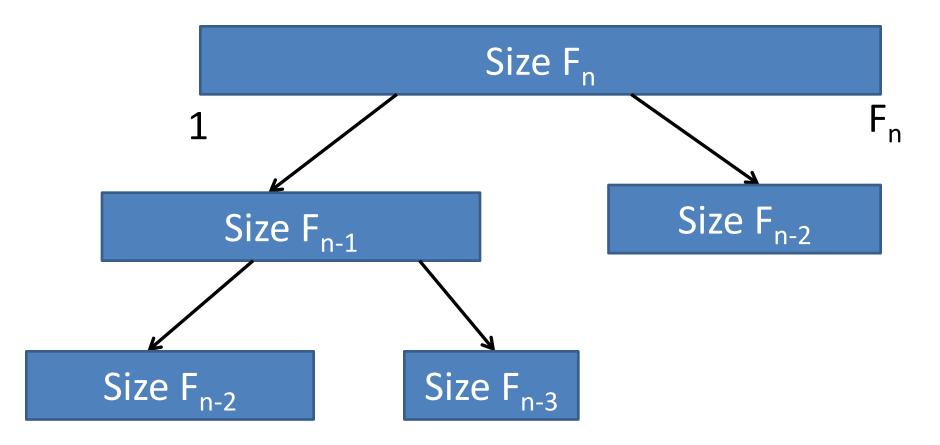
$$c = \frac{1 + \sqrt{5}}{2}$$

$$\approx \left(\frac{1+\sqrt{5}}{2}\right)^n$$
 numbers with n questions

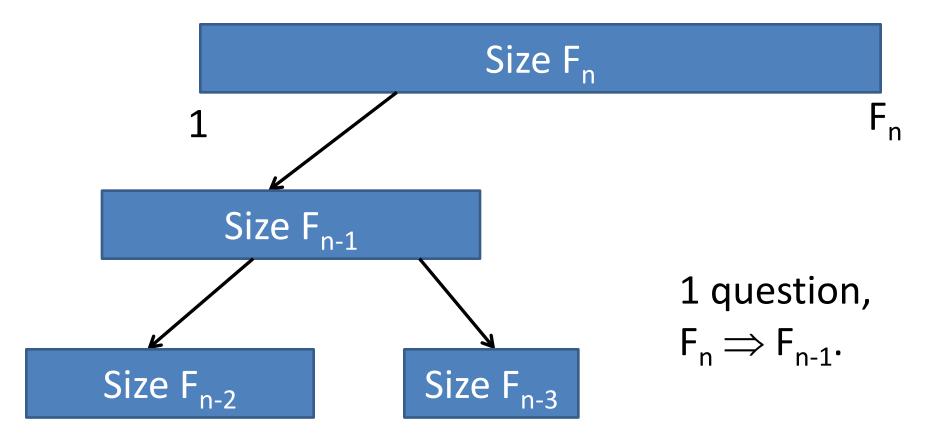
Fibonacci numbers

- $F_{n+2} = F_n + F_{n+1}$.
- $F_0=1$, $F_1=1$, $F_2=2$, $F_3=3$, $F_4=5$, ...
- Theorem With n questions, we can search an interval of size F_{n+1} .
- Proof By induction.
- $F_2=2$ searchable with 1 question.

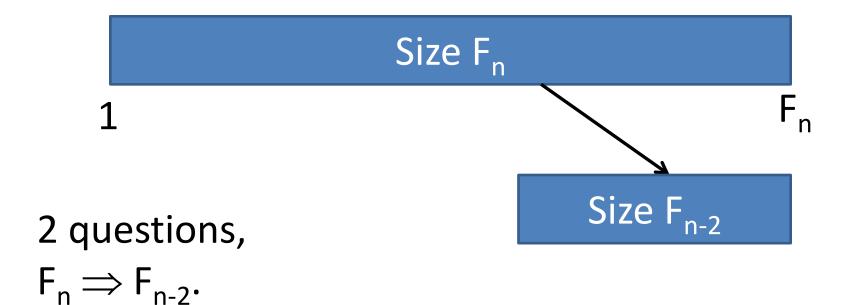
Inductive case



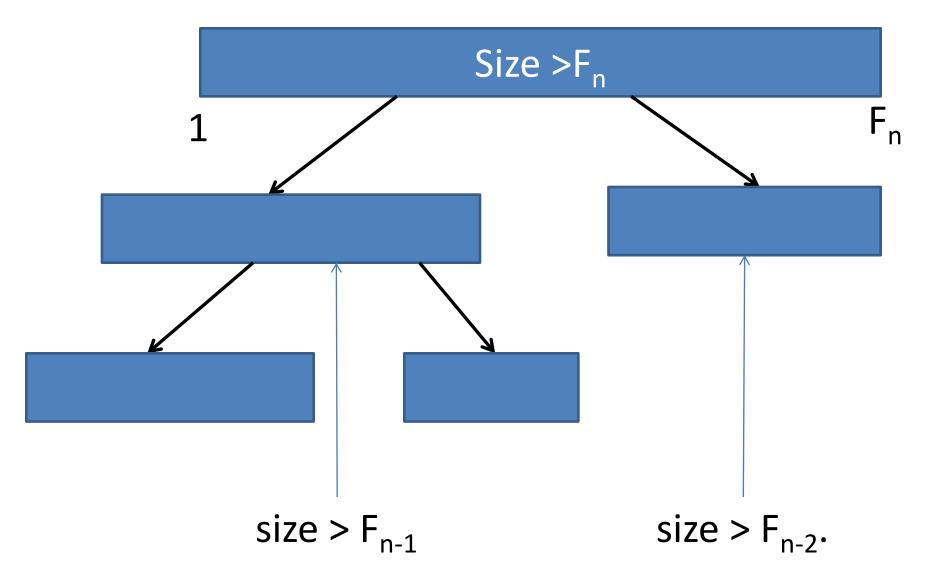
Inductive case



Inductive case



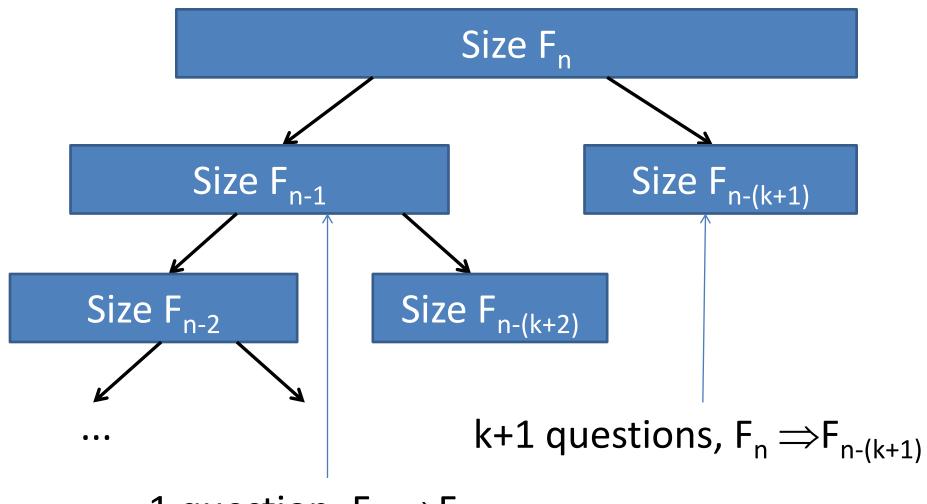
Fibonacci strategy is optimal



Searching with longer delays

- Answer to a question after k more questions have been asked.
- <u>Theorem</u> The maximum interval that can be searched is F_n where $F_n = F_{n-1} + F_{n-k-1}$.

Strategy



1 question, $F_n \Rightarrow F_{n-1}$

Part 2

Extremal graph theory

Soviet Olympiad, 1977

- Tickets numbered 000, ..., 999.
- Boxes numbered 00, ..., 99.
- Ticket abc can go into boxes ab, ac, bc.
- Put all tickets into a minimum number of boxes.

Boxes ab, a and b even; Boxes ab, a and b odd.

50 boxes

50 boxes are necessary

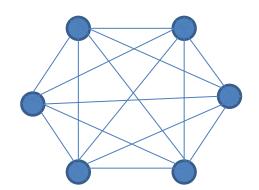
- a digit with the least number of boxes.
- Can assume a=0.
- Must have box 00 (for ticket 000).
- Other boxes -01, ... 0(k-1).
- Must have every box ab, a, b ∈ {k, k+1, ..., 9} (for ticket 0ab).

#boxes
$$\geq k^2 + (10 - k)^2 \geq 50$$

Cities and roads

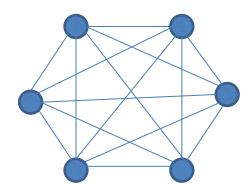
- 1000 cities;
- Connect some pairs of cities by roads so that, among every 3 cities a, b, c, there is at least one of roads ab, ac, bc.
- Minimum number of roads?

Solution



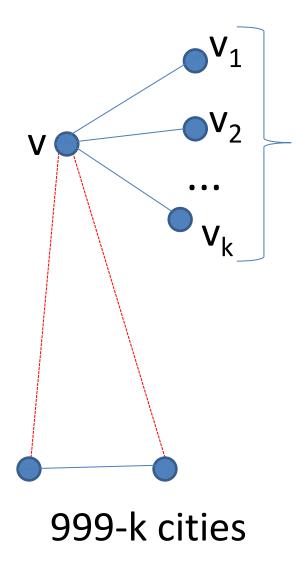
500 cities

$$2 \binom{500}{2} = 500 \cdot 499$$
roads



500 cities

Optimality



k+1 cities

 City v with the smallest number of roads k from it.

$$\geq \frac{(k+1)k}{2} + \frac{(999-k)(998-k)}{2}$$
roads

Rewording the problem

Roads

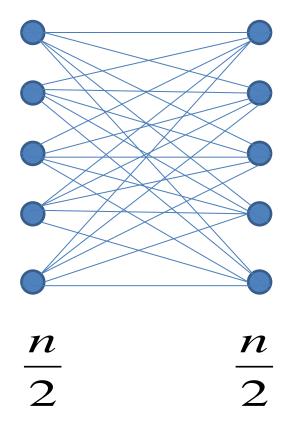
Not roads

Among every 3
 cities a, b, c, there
 is at least one of
 roads ab, ac, bc.

Minimum number of roads?

- Among every 3
 cities a, b, c, at least
 one of ab, ac, bc is
 not present.
- Maximum number of roads?

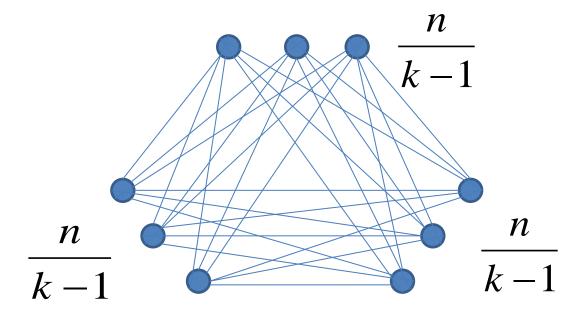
Extremal graph theory



- What is the maximum number of edges in an n vertex graph with no triangles?
- Theorem [Mantel, 1907]
 The maximum number of edges is $\left| \frac{n^2}{4} \right|$

Turan's theorem

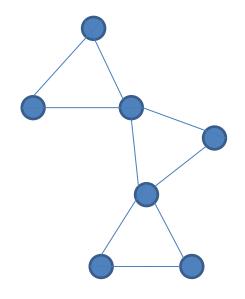
 What is the maximum number of edges in an n vertex graph with no k-clique?

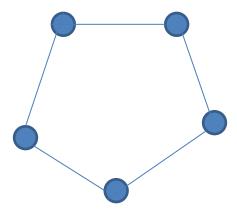


• [Turan, 1941] This is maximum.

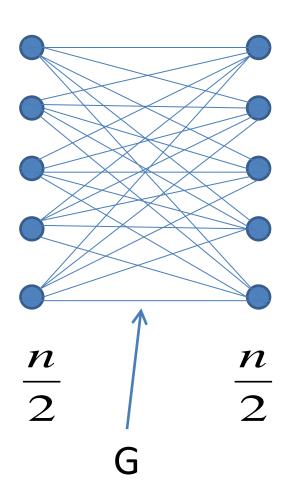
More questions

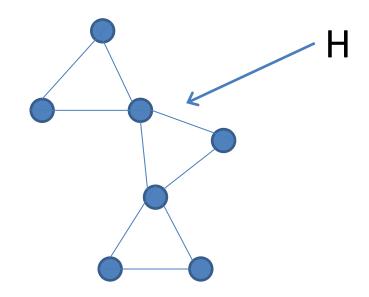
What is the maximum number of edges in anvertex graph G that does not contain this?





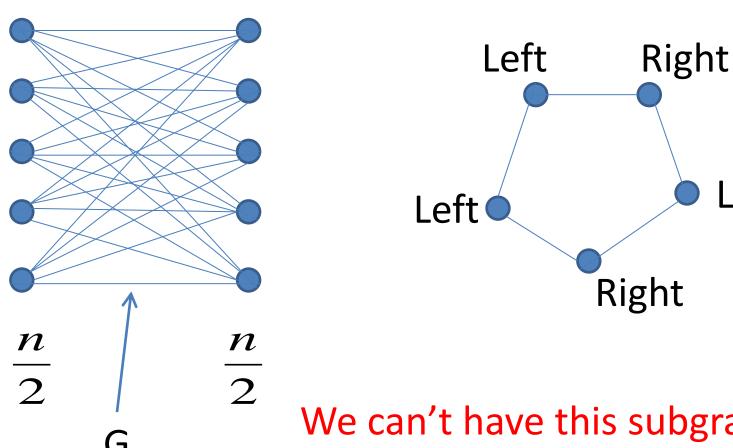
Turan's graph





 Since G does not contain triangles, G does not contain H.

Turan's graph

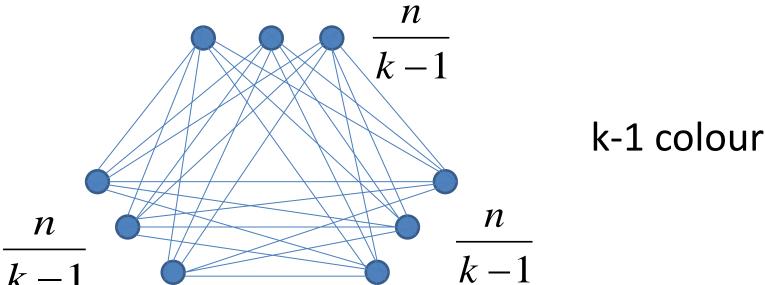


We can't have this subgraph!

Left

General statement

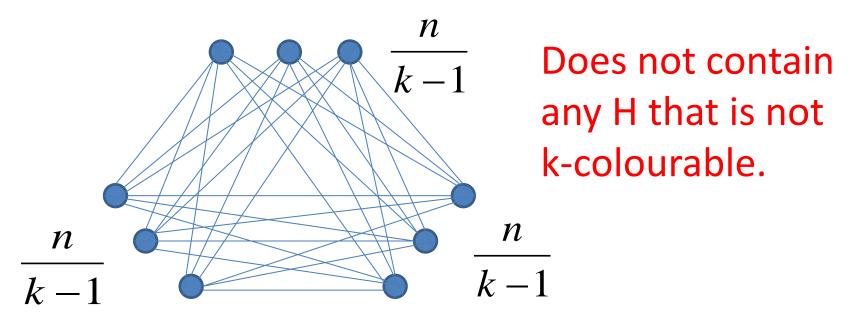
 G is k-colourable if its vertices can be coloured with k colours so that, for each edge uv, u and v have different colours.



k-1 colourable

General statement

 G is k-colourable if its vertices can be coloured with k colours so that, for each edge uv, u and v have different colours.



Erdós-Stone-Simonovits, 1966

- H a graph that is k-colourable but not (k-1)colourable (k>2)
- Let e(n) be the maximum number of edges in an n-vertex graph that does not contain H.
- Let f(n) be the number of edges in Turan's graph. Then, as $n \rightarrow \infty$,

$$\frac{e(n)}{f(n)} \to 1$$

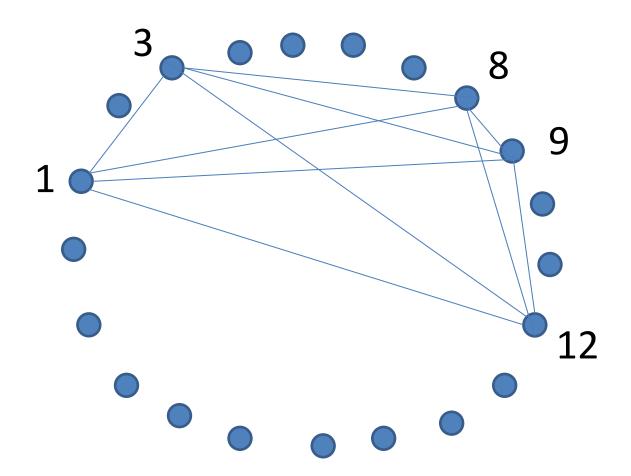
Part 3

Combinatorial structures

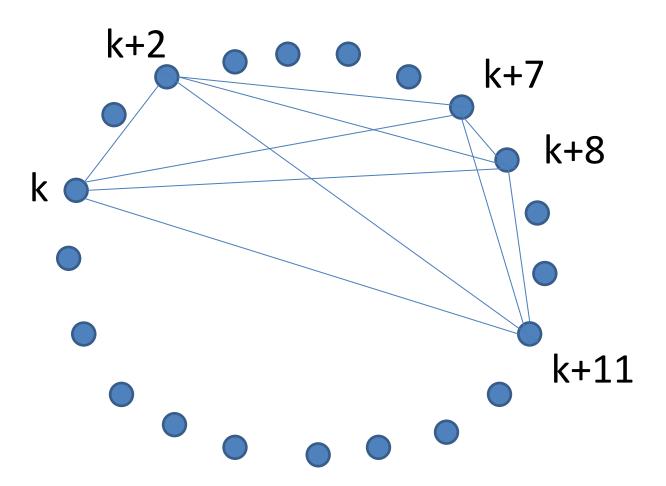
Soviet Olympiad, 1988

- 21 cities;
- Several airlines, each of which connects 5 cities.
- At least one airline flying between every 2 cities.
- Smallest number of airlines?

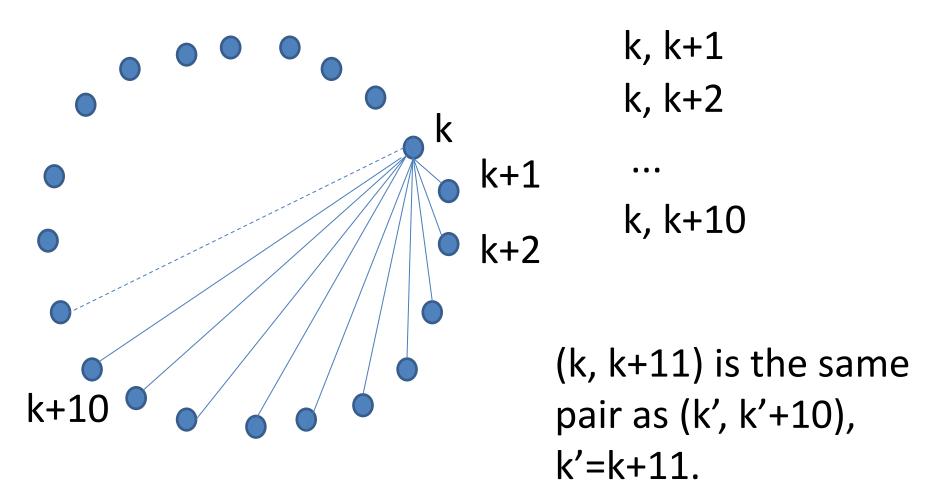
Solution: 1st airline



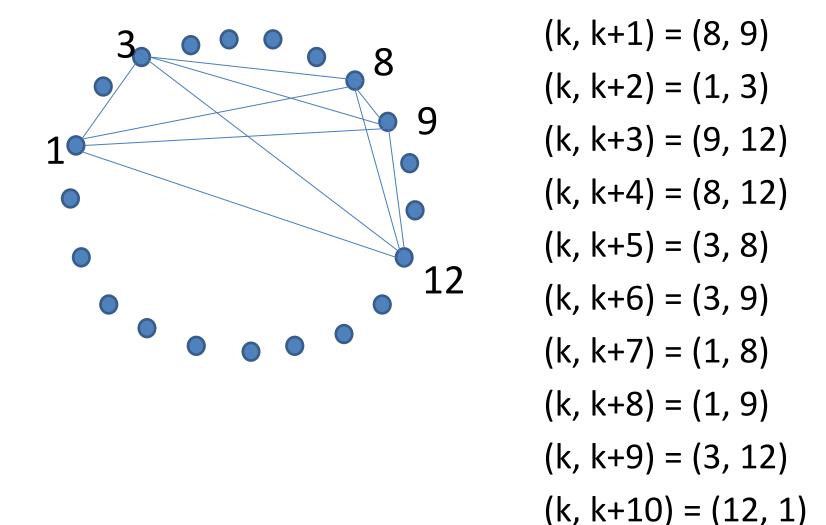
Solution: kth airline



Distances on a circle



Distances on a circle



Difference sets mod k

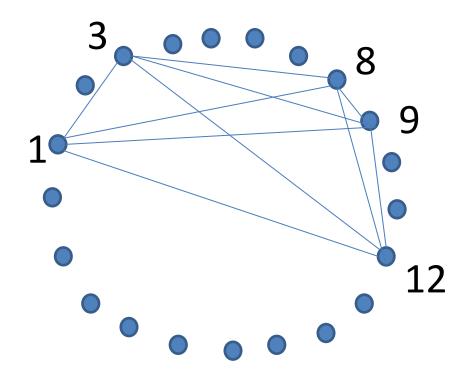
<u>Definition</u> (k, m, l) difference set is a set {a₁, a₂, ..., a_m} such that

$$a_i - a_j \equiv r \pmod{p}$$

exactly I times for each r = 1, 2, ..., p-1.

(k, m, 1) difference set – each remainder
 r = 1, 2, ..., p-1 occurs exactly once.

Distances on a circle



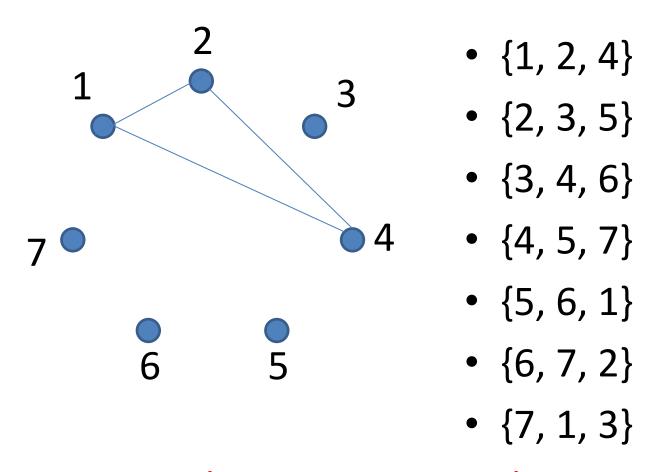
{1, 3, 8, 9, 12} is a (21, 5, 1)-difference set.

Another example

• {1, 2, 4} is a difference set mod 7.

$$2-1 \equiv 1 \pmod{7}$$
 $1-2 \equiv 6 \pmod{7}$
 $4-1 \equiv 3 \pmod{7}$ $1-4 \equiv 4 \pmod{7}$
 $4-2 \equiv 2 \pmod{7}$ $2-4 \equiv 5 \pmod{7}$

Set system



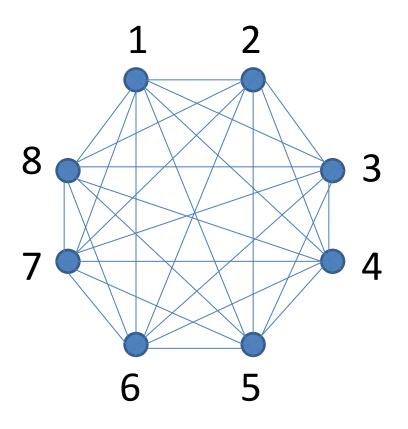
Every 2 elements are together in exactly one of those sets.

Another example

• {1, 3, 4, 8} is a difference set mod 13.

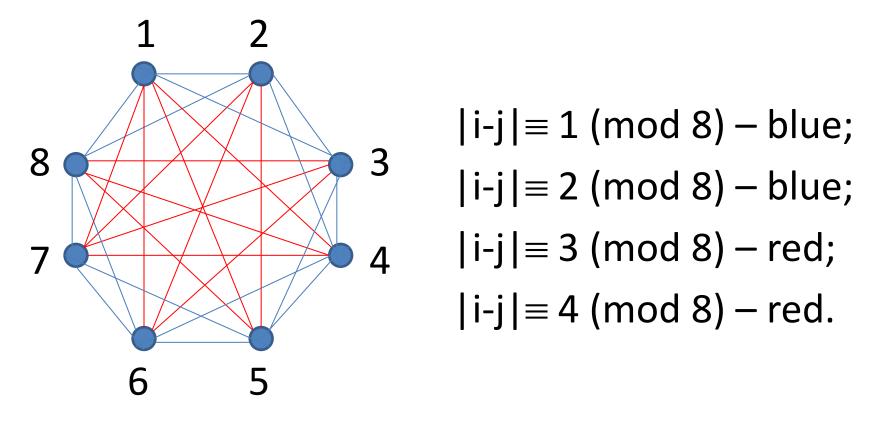
$$3-1 \equiv 2 \pmod{13}$$
 $1-3 \equiv 11 \pmod{13}$
 $4-1 \equiv 3 \pmod{13}$ $1-4 \equiv 10 \pmod{13}$
 $8-1 \equiv 7 \pmod{13}$ $1-8 \equiv 6 \pmod{13}$
 $4-3 \equiv 1 \pmod{13}$ $3-4 \equiv 12 \pmod{13}$
 $8-3 \equiv 5 \pmod{13}$ $3-8 \equiv 8 \pmod{13}$
 $8-4 \equiv 4 \pmod{13}$ $4-8 \equiv 9 \pmod{13}$

Other combinatorial constructions

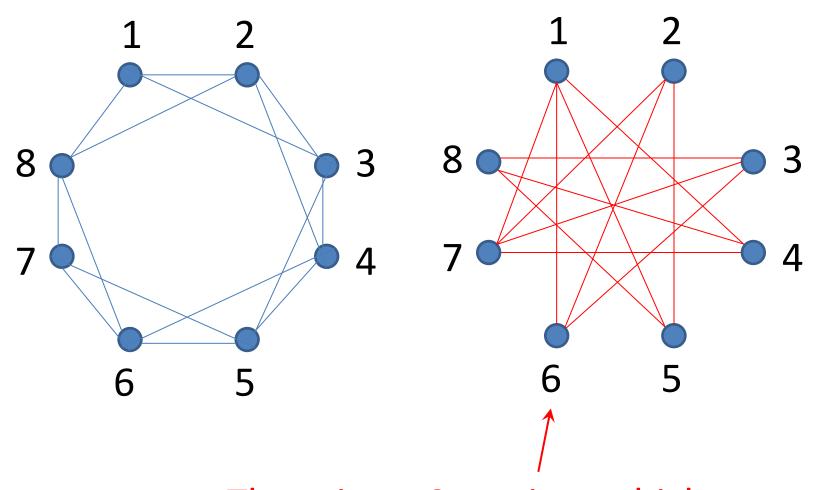


- Colour the edges and the diagonals into 2 colours so that there is no:
 - 3 vertices with all connections red;
 - 4 vertices with all connections blue.

Solution

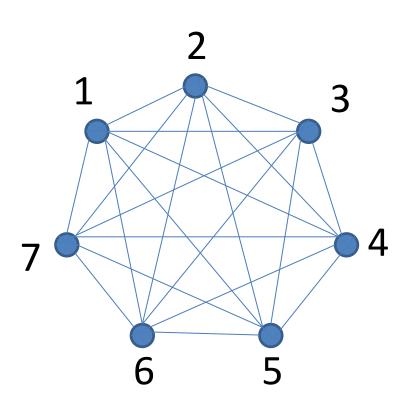


Solution



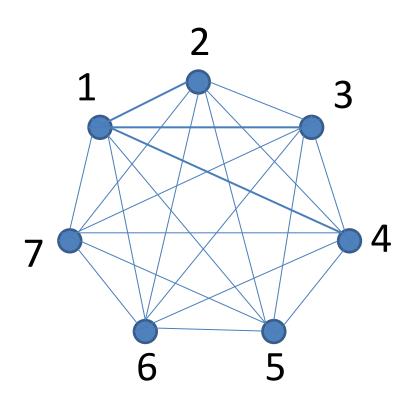
There is no 3 vertices which are all at distance \geq 3 one from another.

Soviet olympiad, 1973



 Direct the edges and the diagonals of a regular n-gon (n>6) so that one can go from i to v in one or two steps, respecting the directions.

Solution for odd n



- n=2k+1;
- Direct edge (i, j) from
 i to j if and only if
 j = i+1, i+2, ... i+k.

