



# Some olympiad problems in combinatorics and their generalizations

Andris Ambainis
University of Latvia

#### Part 1

Playing games with liars and procrastinators

# Soviet Olympiad, 1991

- Witness and questioneer;
- Plan to discover the truth with 91 yes/no questions, if all answers correct.
- Prove: questioneer can discover the truth with 105 yes/no questions, if witness may lie on at most 1 question.

14 extra questions

## Solution

$$91 = 13 + 12 + ... + 2 + 1$$

- 13 questions, control question.
- 12 questions, control question.
- 11 questions, control question.
- •
- 1 question, control question.

With no lies, 13 extra questions.

# Solution (with 1 lie)

- 13 questions, control question.
- •
- k questions, control question.
- k questions (repeat).
- k-1 questions (no control).
- •
- 1 question (no control).

14-k extra questions

k extra questions

14 extra questions

# Ulam's question

- Unknown  $x \in \{1, 2, ..., 1,000,000\}$ .
- Yes/no questions.
- How many questions to find x, if one answer may be incorrect?
  - ☐S. Ulam, Adventures of a Mathematician, 1976.
  - □A. Renyi, On a problem in information theory, MTA Mat.Kut. Int. Kozl., 6B (1961), 505-516.

#### **Variants**

- 1. What questions?
  - a. Questions " $x \in S$ ?" for any S.
  - b. Questions "x<a?" for any a.
- 2. 2 or 3 incorrect answers, 10% incorrect.
- 3. ...

1 incorrect answer, arbitrary questions

# History of problem

- Question: Ulam, 1976.
- Partial solutions:
  - Rivest, et al., 1980;
  - Spencer, 1984.
  - Ulam's question still open: 25 or 26 questions for N=1,000,000.
- Complete solution: Pelc, 1987.
- Later: exact solutions for 2 and 3 lies, etc.

# Solution 1

## Search with no errors



Can search [1, 2<sup>k</sup>] with k questions.

## Search with errors

- Interval [1, N], k questions.
- Possibilities (i, j):
  - i number in [1, N]
  - j question that is answered incorrectly (0 if all answers are correct).
- N(k+1) possibilities.
- At each step, choose a question for which half of possibilities are consistent with "yes" answer and half – with "no".

## Search with errors

- N(k+1) possibilities.
- Each question splits the possibility space into (roughly) two halves.
- Conjecture If  $N(k+1) \le 2^k$ , then k questions are sufficient.

#### Search with errors

- [Pelc, 1987] For even N, if N(k+1) ≤ 2<sup>k</sup>, then k questions are sufficient.
- [Pelc, 1987] For odd N, if N(k+1)+(k-1)  $\leq 2^k$ , then k questions are sufficient.
- Explanation: for odd N, the first question will split possibility space into slightly uneven parts.

#### Both of those results are optimal.

Optimality proof: opponent which always gives an answer corresponding to the larger part of possibility space.

# Solution 2

## Error correcting codes



Result: M' that differs from M in ≤d places.

## Error correcting codes



 Add extra information to M, so that we can recover M, even if there are ≤d errors.

# Hamming code

- $2^{N}-N-1$  bits  $\rightarrow 2^{N}-1$  bits, corrects 1 error;
- 4 bits  $\rightarrow$  7 bits.
- 11 bits  $\rightarrow$  15 bits.
- 26 bits  $\rightarrow$  31 bits.

20 bits  $\rightarrow$  25 bits

# Using Hamming code

- 20 bits  $\rightarrow$  25 bits.
- $2^{20} = 1,048,576$  messages  $m \in \{0, 1\}^{25}$ .
- Encode x ∈{1, 2, ..., 1,000,000} by messages m<sub>x</sub>.
- Questions: "Is i<sup>th</sup> bit of m<sub>x</sub> equal to 1?"
- We recover m' that differs from m<sub>x</sub> in ≤1 place.
- Hamming code:  $m' \Rightarrow m_x$ .

## 20 questions against a procrastinator

- Unknown number  $x \in [1, N]$ .
- Questions: is x>a?
- Answer: after asking the next question.
  - 1. X > 100?
  - 2. X > 150?

No,  $X \le 100...$ 

3. X>50?

"Motivation": deciding the right difficulty of the homework.

# Strategy



## Case 1



Size of interval decreased by factor of c.

## Case 2



Size of interval decreased by factor of 1-c.

## Two cases

- 1 question wasted, decrease of c.
- Twice: 2 questions, decrease of c<sup>2</sup>.

$$c^2 = 1 - c$$
$$c^2 + c - 1 = 0$$

 2 questions wasted, decrease of 1-c.

$$c = \frac{1 + \sqrt{5}}{2}$$

$$\approx \left(\frac{1+\sqrt{5}}{2}\right)^n$$
 numbers with n questions

## Fibonacci numbers

- $F_{n+2} = F_n + F_{n+1}$ .
- $F_0=1$ ,  $F_1=1$ ,  $F_2=2$ ,  $F_3=3$ ,  $F_4=5$ , ...
- Theorem With n questions, we can search an interval of size  $F_{n+1}$ .
- Proof By induction.
- $F_2=2$  searchable with 1 question.

## Inductive case



## Inductive case



## Inductive case



# Fibonacci strategy is optimal



# Searching with longer delays

- Answer to a question after k more questions have been asked.
- <u>Theorem</u> The maximum interval that can be searched is  $F_n$  where  $F_n = F_{n-1} + F_{n-k-1}$ .

# Strategy



1 question,  $F_n \Rightarrow F_{n-1}$ 

## Part 2

Extremal graph theory

# Soviet Olympiad, 1977

- Tickets numbered 000, ..., 999.
- Boxes numbered 00, ..., 99.
- Ticket abc can go into boxes ab, ac, bc.
- Put all tickets into a minimum number of boxes.

Boxes ab, a and b even; Boxes ab, a and b odd.

50 boxes

## 50 boxes are necessary

- a digit with the least number of boxes.
- Can assume a=0.
- Must have box 00 (for ticket 000).
- Other boxes -01, ... 0(k-1).
- Must have every box ab, a, b ∈ {k, k+1, ..., 9} (for ticket 0ab).

#boxes 
$$\geq k^2 + (10 - k)^2 \geq 50$$

## Cities and roads

- 1000 cities;
- Connect some pairs of cities by roads so that, among every 3 cities a, b, c, there is at least one of roads ab, ac, bc.
- Minimum number of roads?

## Solution



500 cities

$$2 \binom{500}{2} = 500 \cdot 499$$
roads



500 cities

# **Optimality**



k+1 cities

 City v with the smallest number of roads k from it.

$$\geq \frac{(k+1)k}{2} + \frac{(999-k)(998-k)}{2}$$
roads

# Rewording the problem

Roads



Not roads

Among every 3
 cities a, b, c, there
 is at least one of
 roads ab, ac, bc.



Minimum number of roads?

- Among every 3
   cities a, b, c, at least
   one of ab, ac, bc is
   not present.
- Maximum number of roads?

# Extremal graph theory



- What is the maximum number of edges in an n vertex graph with no triangles?
- Theorem [Mantel, 1907]
  The maximum number of edges is  $\left| \frac{n^2}{4} \right|$

#### Turan's theorem

 What is the maximum number of edges in an n vertex graph with no k-clique?



• [Turan, 1941] This is maximum.

## More questions

What is the maximum number of edges in anvertex graph G that does not contain this?





# Turan's graph





 Since G does not contain triangles, G does not contain H.

# Turan's graph



We can't have this subgraph!

Left

### General statement

 G is k-colourable if its vertices can be coloured with k colours so that, for each edge uv, u and v have different colours.



k-1 colourable

### General statement

 G is k-colourable if its vertices can be coloured with k colours so that, for each edge uv, u and v have different colours.



# Erdós-Stone-Simonovits, 1966

- H a graph that is k-colourable but not (k-1)colourable (k>2)
- Let e(n) be the maximum number of edges in an n-vertex graph that does not contain H.
- Let f(n) be the number of edges in Turan's graph. Then, as  $n \rightarrow \infty$ ,

$$\frac{e(n)}{f(n)} \to 1$$

### Part 3

Combinatorial structures

# Soviet Olympiad, 1988

- 21 cities;
- Several airlines, each of which connects 5 cities.
- At least one airline flying between every 2 cities.
- Smallest number of airlines?

### Solution: 1st airline



## Solution: kth airline



### Distances on a circle



### Distances on a circle



### Difference sets mod k

<u>Definition</u> (k, m, l) difference set is a set {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>m</sub>} such that

$$a_i - a_j \equiv r \pmod{p}$$

exactly I times for each r = 1, 2, ..., p-1.

(k, m, 1) difference set – each remainder
 r = 1, 2, ..., p-1 occurs exactly once.

### Distances on a circle



{1, 3, 8, 9, 12} is a (21, 5, 1)-difference set.

# Another example

• {1, 2, 4} is a difference set mod 7.

$$2-1 \equiv 1 \pmod{7}$$
  $1-2 \equiv 6 \pmod{7}$   
 $4-1 \equiv 3 \pmod{7}$   $1-4 \equiv 4 \pmod{7}$   
 $4-2 \equiv 2 \pmod{7}$   $2-4 \equiv 5 \pmod{7}$ 

# Set system



Every 2 elements are together in exactly one of those sets.

# Another example

• {1, 3, 4, 8} is a difference set mod 13.

$$3-1 \equiv 2 \pmod{13}$$
  $1-3 \equiv 11 \pmod{13}$   
 $4-1 \equiv 3 \pmod{13}$   $1-4 \equiv 10 \pmod{13}$   
 $8-1 \equiv 7 \pmod{13}$   $1-8 \equiv 6 \pmod{13}$   
 $4-3 \equiv 1 \pmod{13}$   $3-4 \equiv 12 \pmod{13}$   
 $8-3 \equiv 5 \pmod{13}$   $3-8 \equiv 8 \pmod{13}$   
 $8-4 \equiv 4 \pmod{13}$   $4-8 \equiv 9 \pmod{13}$ 

### Other combinatorial constructions



- Colour the edges and the diagonals into 2 colours so that there is no:
  - 3 vertices with all connections red;
  - 4 vertices with all connections blue.

### Solution



### Solution



There is no 3 vertices which are all at distance  $\geq$ 3 one from another.

## Soviet olympiad, 1973



 Direct the edges and the diagonals of a regular n-gon (n>6) so that one can go from i to v in one or two steps, respecting the directions.

### Solution for odd n



- n=2k+1;
- Direct edge (i, j) from
   i to j if and only if
   j = i+1, i+2, ... i+k.

