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Part 1

Playing games with liars and
procrastinators



Soviet Olympiad, 1991

* Witness and questioneer;

* Plan to discover the truth with 91 yes/no
qguestions, if all answers correct.

* Prove: questioneer can discover the truth with

105 yes/no questions, if witness may lie on at
most 1 question.

14 extra questions



Solution
01=13+12+...+2+1

13 questions, contro
12 questions, contro
11 questions, contro

guestion.
guestion.
guestion.

1 question, control question.

With no lies, 13 extra questions.



Solution (with 1|

13 questions, control questionf

ie)

14-k extra
guestions

k questions, control question.

+

k questions (repeat). <~———— k extra

k-1 questions (no control).

1 question (no control).

guestions

14 extra
guestions



Ulam’s question

 Unknown x&{1, 2, ..., 1,000,000}.
* Yes/no questions.

* How many questions to find x, if one answer
may be incorrect?

1S. Ulam, Adventures of a Mathematician, 1976.

JA. Renyi, On a problem in information theory,
MTA Mat.Kut. Int. Kozl., 6B (1961), 505-516.



Variants

1. What questions?
a. Questions “xeS?” for any S.
b. Questions “x<a?” for any a.

2. 2 or 3 incorrect answers, 10% incorrect.
3. ...

1 incorrect answer, arbitrary questions



History of problem

Question: Ulam, 1976.

Partial solutions:
— Rivest, et al., 1980;
— Spencer, 1984.

— Ulam’s question still open: 25 or 26 questions for
N=1,000,000.

Complete solution: Pelc, 1987.
Later: exact solutions for 2 and 3 lies, etc.



Solution 1



Search with no errors

N/2

N N N
N — > > >
2 4 2

Can search [1, 2] with k questions.




Search with errors

Interval [1, N], k questions.
Possibilities (i, j):
i —number in [1, N]

j —question that is answered incorrectly (O if all
answers are correct).

N(k+1) possibilities.

At each step, choose a question for which half
of possibilities are consistent with “yes”
answer and half — with “no”.



Search with errors

* N(k+1) possibilities.

* Each question splits the possibility space into
(roughly) two halves.

e Conjecture If N(k+1) < 2k, then k questions are
sufficient.




Search with errors

* [Pelc, 1987] For even N, if N(k+1) < 2k, then k
guestions are sufficient.

* [Pelc, 1987] For odd N, if N(k+1)+(k-1) < 2k,
then k questions are sufficient.

* Explanation: for odd N, the first question will
split possibility space into slightly uneven
parts.

Both of those results are optimal.

Optimality proof: opponent which always gives an answer
corresponding to the larger part of possibility space.



Solution 2



Error correcting codes

Noisy channel
\Y M’

e Result: M’ that differs from M in <d places.




Error correcting codes

Encoding Decoding

 Add extra information to M, so that we can
recover M, even if there are <d errors.



Hamming code

2N-N-1 bits — 2N-1 bits, corrects 1 error;
4 bits — 7 bits.

11 bits — 15 bits.

26 bits — 31 bits.

20 bits — 25 bits



Using Hamming code

20 bits — 25 bits.
220=1,048,576 messages me{0, 1}*°.

Encode x €{1, 2, ..., 1,000,000} by messages
m

-
Questions: “Is i*" bit of m equal to 1?”

We recover m’ that differs from m, in <1
place.

Hamming code: m” = m,.



20 gquestions against a procrastinator

 Unknown number xe[1, N].
* Questions: is x>a?
* Answer: after asking the next question.

1. X>1007?
2. X>1507
No, X <100...
3. X>507?

“Motivation”: deciding the right difficulty of the homework.



Strategy

1 2N c2N+1  ©N



Case 1

1 2N c2N+1  ©N

Size of interval decreased by factor of c.



Case 2

1 2N c2N+1  ©N

Size of interval decreased by factor of 1-c.



Two cases

e 2 questions wasted,

* 1 question wasted,
decrease of 1-c.

decrease of c.

* Twice: 2 questions,
decrease of c2.

c’=1-cC 1++/5
c‘+c—-1=0

N 1+x@
2

) numbers with n questions



Fibonacci numbers

I:n+2=Fn+Fn+1'
F=1, F;=1, F,=2, F;=3, F,=5, ...

Theorem With n questions, we can search an
interval of size F_,,.

Proof By induction.

F,=2 — searchable with 1 question.



Inductive case

Size F_




Inductive case

1 question,
F,. = F 1.




Inductive case

2 questions,
F,.= F ..



Fibonacci strategy is optimal

Size >F

size>F, size>F_,.



Searching with longer delays

* Answer to a question — after k more questions
have been asked.

e Theorem The maximum interval that can be
searched is F, whereF_ =F_,+F_, ;.




Strategy

Size F_

Size F 42

k+1 questions, F, =F .1

1 question, F, =F,



Part 2

Extremal graph theory



Soviet Olympiad, 1977

Tickets numbered 000, ..., 999.

Boxes numbered 00, ..., 99.

Ticket abc can go into boxes ab, ac, bc.

Put all tickets into @ minimum number of

boxes.

Boxes ab, a and b even;
Boxes ab, a and b odd.

50 boxes



50 boxes are necessary

e a—digit with the least number of boxes.
* Can assume a=0.

 Must have box 00 (for ticket 000).

e Other boxes —01, ... 0(k-1).

 Must have every box ab, a, b € {k, k+1, ..., 9}
(for ticket Oab).

#boxes > k2 —+ (10— k)2 > 50




Cities and roads

* 1000 cities;

* Connect some pairs of cities by roads so that,
among every 3 cities a, b, ¢, there is at least
one of roads ab, ac, bc.

e Minimum number of roads?



Solution

500 cities

500
2 5 |~ 500499

roads
500 cities



Optimality

e City v with the
— k+1 cities  smallest number
of roads k from it.

_ (k+Dk _ (999—k)(998—K)

@ @ roads

999-k cities




Rewording the problem

Roads h Not roads

* Among every 3 * Among every 3
cities a, b, c, there cities a, b, c, at least
is at least one of ” one of ab, ac, bcis
roads ab, ac, bc. not present.

* Minimum * Maximum number

number of roads? of roads?



Extremal graph theory

* What is the maximum
number of edges in an

n vertex graph with no
triangles?

* Theorem [Mantel, 1907]
The maximum number
of edges is | n?




Turan’s theorem

 What is the maximum number of edges in an n
vertex graph with no k-clique?

e [Turan, 1941] This is maximum.



More questions

 What is the maximum number of edges in an-
vertex graph G that does not contain this?



Turan’s graph

e Since G does not contain
triangles, G does not
contain H.




Turan’s graph
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General statement

e Gis k-colourable if its vertices can be coloured
with k colours so that, for each edge uv, u and
v have different colours.

k-1 colourable




General statement

e Gis k-colourable if its vertices can be coloured
with k colours so that, for each edge uv, u and

v have different colours.
n

Does not contain
any H that is not
k-colourable.




Erdds-Stone-Simonovits, 1966

* H-agraph that is k-colourable but not (k-1)-
colourable (k>2)

* Let e(n) be the maximum number of edges in
an n-vertex graph that does not contain H.

e Let f(n) be the number of edges in Turan’s
graph. Then, as n—o,

e(n) 1
f(n)




Part 3

Combinatorial structures



Soviet Olympiad, 1988

21 cities;

Several airlines, each of which connects 5
cities.

At least one airline flying between every 2
cities.

Smallest number of airlines?



Solution: 1st airline

3.“08




Solution: k" airline

k+2
e ® & ® k+7




Distances on a circle

k

k, k+1
k, k+2

+1
k, k+10

K+2

(k, k+11) is the same
pair as (k’, k’+10),
k’=k+11.



Distances on a circle

<+1) = (8, 9)
+2) = (1, 3)
k+3) = (9, 12)
k+4) = (8, 12)
k+5) = (3, 8)
k+6) = (3, 9)
<+7) = (1, 8)
<+8) = (1, 9)
<+9) = (3, 12)

N e e e ) N\ ) N\ N\ e
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

+10) = (12, 1)



Difference sets mod k

e Definition (k, m, |) difference set is a set
{a,, a,, ..., .} such that

a, —a; =r(mod p)

exactly | times foreachr=1, 2, ..., p-1.

* (k, m, 1) difference set — each remainder
r=1, 2, ..., p-1 occurs exactly once.



Distances on a circle

3 o © O

{1, 3,8,9,12}isa (21, 5, 1)-difference set.



Another example

e {1, 2,4} is a difference set mod 7.

2-1=1(mod7) 1-2=6(mod?7)
4-1=3(mod7) 1-4=4(mod?7)
4—2=2(mod7) 2-4=5(mod7)




Set system

2 . {1,2,4)

O * {2,3,5]}

. {3, 4, 6}

. ® 4 + {45, 7)
. {5, 6,1}

5 . {6, 7,2}
. {7,1, 3}

Every 2 elements are together in
exactly one of those sets.



Another example

e {1, 3, 4, 8} is a difference set mod 13.
3—1=2(modl13) 1-3=11(mod13)

4-1=3(mod13) 1-4=10(mod13)
8—1=7(mod13) 1-8=6(mod13)

4—-3=1(mod13) 3-4=12(mod13)
8—3=5(mMmod13) 3-8=8(mod13)

8—4=4(mod13) 4-8=9(mod13)




Other combinatorial constructions

* Colour the edges and
the diagonals into 2
colours so that there
IS NO:

— 3 vertices with all
connections red;

— 4 vertices with all
connections blue.



Solution

-j|=1 (moc
-j|=2 (moc
-j|=3 (moc

-j|=4 (moc

8) — blue;
8) — blue;
8) — red;
8) — red.



Solution

There is no 3 vertices which are
all at distance >3 one from another.



Soviet olympiad, 1973

3 * Direct the edges and

the diagonals of a
regular n-gon (n>6)
4 so that one can go

fromitovin one or

two steps, respecting
the directions.



Solution for odd n

3 * n=2k+1;

* Direct edge (i, j) from
i toj if and only if

4 =i+, i+2, ... i+k.

5 Z//TZL\\\\\\
i+1 42 - i+k

\

i+k+1 i+k+2 .- i+2k



