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Part 1 

(classical) Lovasz local lemma 



The setting 

 “Bad” events A1, ..., Am.  

 Pr [Ai]  . 

 When can we say that  

Pr [none of Ai] > 0? 



Obvious results 

 Ai independent:  

• Pr [not Ai]  1- . 

• Pr [none of Ai]  (1- )m>0. 

 No assumptions about Ai: 

• Pr [Ai]  . 

• Pr [some Ai occurs]  m. 

• If m < 1, then Pr [none of Ai] >0. 



Limited independence 

 Each Ai is independent of all but at 
most d other events Aj.  

 [Erdös, Lovász, 1975] If Pr[Ai]   
and e(d+1)  < 1, then   

Pr [none of Ai] > 0. 

 Full independence: m  < 1 enough; 
 Limited independence: e (d+1)  < 1.  



Application 1: k-SAT 

 k-SAT formula F, 

• F = F1  F2  ...  Fm; 

• Fi = yi,1  yi,2  ...  yi,k; 

• yi,l = xj or xj. 

 Theorem If each Fi has common variables 
with at most d=2k/e-1 other clauses Fj, 
then x1, ..., xn: F(x1, ..., xn)=TRUE. 

 



Proof 

 Pick xi at random: 

 

 

Fi = x1  x2  ...  xk 

 

 



Proof 

 “Bad events” - 

 

 Fi and Fj independent = Fi and Fj have no 
common variables.   

 Each Fi has common variables with at most 
d=2k/e-1 other Fj. 

 

Lovasz local lemma applies 



Application 2: Ramsey graphs 

 Complete graph 
Kn. 

 Colour edges in 
two colours so 
that no Kk has all 
edges in one 
colour. 



Solution 

 Colour edges randomly. 

 Events Ai – a fixed        
k-vertex subgraph has  
all edges in the same 
colour. 

 Independent for 
subgraphs with no 
common edges. 



Result 

 Theorem If    , then edges of 

 

  Km can be coloured with two colours so that  

 there is no k vertices with all edges among 
them in one colour. 



Other applications 

 Coverings of R3 by unit balls; 

 Linear arboricity (partitioning edges 
of a graph into linear forests). 



Quantum Lovasz lemma 



Events  subspaces 

 Finite-dimensional Hilbert space H. 

 Events Ai  “bad subspaces” Si. 

 Event does not occur  a state | is 
orthogonal to Si.  

 Goal: a state |, | Si for all i. 



Hamiltonian version 

 Hamiltonian H = i Pi. 

 Terms Hi  subspaces Si. 

 Hi|=0  |  Si.  

 Is there a state | with H | = 0?  



Probability  dimension 

 Relative dimension 

 

 

 Pr [Ai]    d(Hi)  . 

When are two subspaces independent? 



Independence: definition #1 

 Bipartite system HAHB. 

 Subspaces H1HB and HAH2 are 
independent. 



Definition #2 

 Classically, A1, A2 independent if  

Pr[A1  A2] = Pr[A1] Pr[A2].  

 

 

 

  Quantumly, H1, H2 – independent if  
d(H1  H2) = d(H1) d(H2); 

d(H1  H2
) = d(H1) d(H2

);  
d(H1

  H2) = d(H1
) d(H2); 

d(H1
  H2

) = d(H1
) d(H2

). 



More than 2 subspaces 

 H is independent of H1, ..., Hm if H is 
independent of any combination 
(union, intersection, complement) of 
H1, ..., Hm. 



Quantum LLL 

 Theorem Let H1, ..., Hm be subspaces 
with: 

•  d(Hi)  ; 

• Each Hi independent of all but at most d 
other Hj.  

• e(d+1)  <1. 

Then, there is |, |  Hi for all i. 

 



Proof of quantum LLL 



Our goal 

 Need to show: there exists           
|, |  Hi for all i. 

 Equivalently, |  Hi
 for all i. 



Main lemma 

Corollary: 

Then 

for any other Hi. 



Application:  

quantum k-SAT 



Quantum SAT 

 k-SAT: 

• variables x1, ..., xN. 

• F = F1  ...  Fm; 

• Fi = yi,1  ...  yi,k; 

• yi,l = xj or xj. 

 Goal: F = true. 

 

 k-QSAT 

• N qubits; 

• H = H1 + ... + Hm; 

• Each Hi involves k 
qubits; 

• Each Hi – projector to 1 
of 2k dimensions. 

 Goal: H = 0. 

 



Theorem 

 Assume that  

• H = H1 + ... + Hm, etc.   

• each Hi has common qubits with at most 
d = 2k/e-1 other Hj.   

 Then there exists  :H = 0. 



Proof 

 Each Hi is a projector on Si:  

 

 

 QLLL:   



Random k-SAT and k-

QSAT 



Random k-SAT 

 F = F1  ...  Fm; 

 Each Fi – random k-clause. 

 What should m be so that F is 
satisfiable w.h.p.? 

Ratio m/n. 



Random k-SAT 

 Threshold ck, for large n: 

• If m<(ck-) n, then FSAT w.h.p. 

• If m>(ck+) n, then FSAT w.h.p. 

 3.52 < c3 < 4.49. 

 Large k:  

2k ln 2 – O(k)  ck  2
k ln 2.  



Random k-QSAT [Bravyi, 06] 

 H = H1+...+Hm. 

 Each Hi – random projector to 1 of 2k 
dimensions for random k qubits.  

 Do we have :H = 0? 

Ratio qk=m/n. 



Results on quantum k-SAT 

[Laumann et al., 09] 

 q2=1/2. 

 For large k, 1- < qk < 0.5742k. 

 

Classically, ck < ln 2 2k = 0.69 2k.  

Huge gap between upper and lower bounds. 



Our result 

 Theorem 

 

 

 Since each Hi involves k qubits, this 
corresponds to each Hi having 
common qubits with  other Hj,    
on average.  

QLLL:  , worst case.  



Solution 

 Divide qubits into two sets: 
• “high-degree”: includes all qubits that 

are contained in many Hj and those that 
are in Hi with such qubits. 

• “low-degree”. 

 Use QLLL on “low-degree” set, 
another approach on “high-degree” 
set. 

 Combine the two solutions. 



[Laumann, et al., 09] 

 H = H1+...+Hm. 

 Theorem If f:{1, ..., m}  qubits: 

• f(i) – qubit that is involved in Hi; 

• f(i)  f(j), 

  there exists :H = 0. 

 


