

Datorzinātnes lietojumi un tās saiknes ar kvantu fiziku r.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Quantum Lovasz local lemma

Andris Ambainis (Latvia), Julia Kempe (Tel Aviv), Or Sattath (Hebrew U.)

Heilbronn Quantum Algorithms Day, May 18, 2010

(classical) Lovasz local lemma

The setting

 "Bad" events A₁, ..., A_m.
 Pr [A_i] ≤ ε.
 When can we say that Pr [none of A_i] > 0?

Obvious results

A_i independent: • Pr [not A_i] \geq 1- ε . • Pr [none of A_i] $\geq (1 - \varepsilon)^m > 0$. No assumptions about A_i: • Pr $[A_i] \leq \varepsilon$. • Pr [some A_i occurs] $\leq m \cdot \epsilon$. • If $m \cdot \epsilon < 1$, then Pr [none of A_i] >0.

Limited independence

 Each A_i is independent of all but at most d other events A_j.
 [Erdös, Lovász, 1975] If Pr[A_i] ≤ ε and e(d+1) ε < 1, then Pr [none of A_i] > 0.

Full independence: m ε < 1 enough;
 Limited independence: e (d+1) ε < 1.

Application 1: k-SAT

k-SAT formula F, F = F₁ ∧ F₂ ∧ ... ∧ F_m; F_i = y_{i,1} ∨ y_{i,2} ∨ ... ∨ y_{i,k}; y_{i,i} = x_j or ¬x_j. <u>Theorem</u> If each F_i has common variables with at most d=2^k/e-1 other clauses F_j, then ∃x₁, ..., x_n: F(x₁, ..., x_n)=TRUE.

Proof

Pick x_i at random: $\Pr[x_i = TRUE] = \Pr[x_i = FALSE] = \frac{1}{2}$ $F_i = X_1 \vee X_2 \vee \ldots \vee \neg X_k$ $\Pr[F_i - false] = \frac{1}{2^k}$

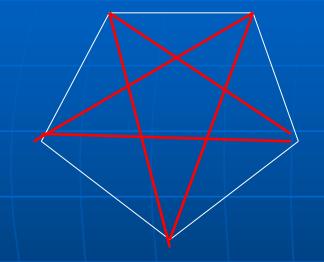
Proof

- Bad events" $\Pr[F_i false] = \frac{1}{2^k}$
- F_i and F_j independent = F_i and F_j have no common variables.
- Each F_i has common variables with at most d=2^k/e-1 other F_i.

$$e(d+1)\frac{1}{2^k} < 1$$

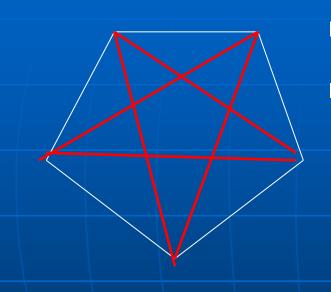
Lovasz local lemma applies

Application 2: Ramsey graphs



Complete graph K_n . Colour edges in two colours so that no K_k has all edges in one colour.

Solution



 Colour edges randomly.
 Events A_i – a fixed k-vertex subgraph has all edges in the same colour.

 Independent for subgraphs with no common edges.

Result

• <u>Theorem</u> If $m \leq \frac{\sqrt{2}}{e} k 2^{k/2}$, then edges of

 K_m can be coloured with two colours so that there is no k vertices with all edges among them in one colour.

Other applications

Coverings of R³ by unit balls;
 Linear arboricity (partitioning edges of a graph into linear forests).

Quantum Lovasz lemma

Events \Leftrightarrow subspaces

Finite-dimensional Hilbert space H.
Events A_i ⇔ "bad subspaces" S_i.
Event does not occur ⇔ a state |Ψ⟩ is orthogonal to S_i.
Goal: a state |Ψ⟩, |Ψ⟩⊥ S_i for all i.

Hamiltonian version

Hamiltonian H = Σ_i P_i.
Terms H_i ⇔ subspaces S_i.
H_i|Ψ⟩=0 ⇔ |Ψ⟩ ⊥ S_i.
Is there a state |Ψ⟩ with H |Ψ⟩ = 0?

Probability ⇔ dimension

• Relative dimension $d(H_i) = \frac{\dim H_i}{\dim H}$

• $\Pr[A_i] \leq \epsilon \Leftrightarrow \overline{d(H_i)} \leq \epsilon$.

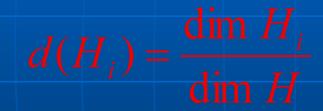
When are two subspaces independent?

Independence: definition #1

■ Bipartite system H_A⊗H_B.
 ■ Subspaces H₁⊗H_B and H_A⊗H₂ are independent.

Definition #2

Classically, A_1 , A_2 independent if $Pr[A_1 \land A_2] = Pr[A_1] Pr[A_2].$



• Quantumly, H_1 , H_2 – independent if $d(H_1 \land H_2) = d(H_1) d(H_2);$ $d(H_1 \land H_2^{\perp}) = d(H_1) d(H_2^{\perp});$ $d(H_1^{\perp} \land H_2) = d(H_1^{\perp}) d(H_2);$ $d(H_1^{\perp} \land H_2^{\perp}) = d(H_1^{\perp}) d(H_2).$

More than 2 subspaces

H is independent of H₁, ..., H_m if H is independent of any combination (union, intersection, complement) of H₁, ..., H_m.

Quantum LLL

- Theorem Let H₁, ..., H_m be subspaces with:
 - $d(H_i) \leq \varepsilon;$
 - Each H_i independent of all but at most d other H_j.
 - e(d+1) ε <1.
- Then, there is $|\Psi\rangle$, $|\Psi\rangle \perp H_i$ for all i.

Proof of quantum LLL

Need to show: there exists |Ψ⟩, |Ψ⟩ ⊥ H_i for all i. Equivalently, |Ψ⟩ ∈ H_i[⊥] for all i.

Main lemma

 $H' = H_{i_1}^{\perp} \cap H_{i_2}^{\perp} \cap \ldots \cap H_{i_k}^{\perp}$

Then $\frac{\dim H_i^{\perp} \cap H'}{\dim H'} \ge 1 - \frac{1}{k+1}$

for any other H_i.

Corollary:

Application: quantum k-SAT

Quantum SAT

k-SAT: variables x₁, ..., x_N. F = F₁ ∧ ... ∧ F_m; F_i = y_{i,1} ∨ ... ∨ y_{i,k}; y_{i,i} = x_j or ¬x_j. Goal: F = true.

- k-QSAT
 - N qubits;
 - $H = H_1 + ... + H_m;$
 - Each H_i involves k qubits;
 - Each H_i projector to 1 of 2^k dimensions.

• Goal: $H | \Psi \rangle = 0$.

Theorem

Assume that H = H₁ + ... + H_m, etc. each H_i has common qubits with at most d = 2^k/e-1 other H_j. Then there exists |Ψ⟩ :H |Ψ⟩ = 0.

Proof

• Each H_i is a projector on S_i : $d(S_i) = \frac{1}{2^k}$ QLLL: $e(d+1)\frac{1}{2^k} < 1 \implies |\Psi\rangle : |\Psi\rangle \perp S_i$ $H|\Psi\rangle = 0$

Random k-SAT and k-QSAT

Random k-SAT

F = F₁ ^ ... ^ F_m;
Each F_i - random k-clause.
What should m be so that F is satisfiable w.h.p.?

Ratio m/n.

Random k-SAT

Threshold c_k, for large n:

 If m<(c_k-ε) n, then F∈SAT w.h.p.
 If m>(c_k+ε) n, then F∉SAT w.h.p.

 3.52 < c₃ < 4.49.
 Large k:

 2^k ln 2 - O(k) ≤ c_k ≤ 2^k ln 2.

Random k-QSAT [Bravyi, 06]

 \blacksquare H = H₁+...+H_m.

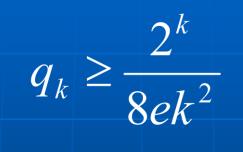
Each H_i – random projector to 1 of 2^k dimensions for random k qubits.
 Do we have |Ψ⟩:H |Ψ⟩ = 0?

Ratio q_k=m/n.

Results on quantum k-SAT [Laumann et al., 09] $q_2 = 1/2.$ ■ For large k, $1 - \varepsilon < q_k < 0.574 \cdot 2^k$. Classically, $c_k < \ln 2 \cdot 2^k = 0.69 \cdot 2^k$.

Huge gap between upper and lower bounds

Our result



Since each H_i involves k qubits, this corresponds to each H_i having common qubits with ^{2^k}/_{8ek} other H_j,
 on average.

QLLL: $\frac{2^k}{ek}$, worst case.

Solution

Divide qubits into two sets:

- "high-degree": includes all qubits that are contained in many H_j and those that are in H_i with such qubits.
- "low-degree".
- Use QLLL on "low-degree" set, another approach on "high-degree" set.
- Combine the two solutions.

[Laumann, et al., 09]

H = H₁+...+H_m.
Theorem If f:{1, ..., m} → qubits:
f(i) - qubit that is involved in H_i;
f(i) ≠ f(j),
there exists |Ψ⟩:H |Ψ⟩ = 0.