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Part 1

(classical) Lovasz local lemma



The setting

s Bad” events A, ..., A..
s Pr [A] <e.
= When can we say that
Pr [none of A ] > 07?



Obvious results

s A independent:
e Pr [not A] > 1- &.
e Pr [none of A ] > (1- &)™>0.
s No assumptions about A.:
e Pr [A] <e.
e Pr [some A occurs] < m-e.
e [f me < 1, then Pr [none of A;] >0.



Limited independence

s Each A is independent of all but at
most d other events A;.

» [Erdos, Lovasz, 1975] If Pr[A] < ¢
and e(d+1) e < 1, then

Pr [none of A ] > 0.



Application 1: K-SAT

s K-SAT formula F,
e F=F, AFS A ... AF;
*F=VYii1VVYiaV .. VViu
® Vi = X; OF —=X;.
s Theorem If each F, has common variables

with at most d=2%/e-1 other clauses F;,
then 3xq, ..., X, F(X4, ..., X,)=TRUE.




Proof

s Pick x; at random:

Pr{x = TRUE]=Pr[x = FALSE]= %

FF =X VX, V... Vv =X,

1

Pr| F, — false] = pv3



Proof

1

2/(

= F; and F; independent = F; and F; have no
common variables.

s Each F; has common variables with at most
d=2%/e-1 other F..

= "Bad events” - pr[F — false] =

e(d+1)——<1



Application 2: Ramsey graphs

s Complete graph

/ ..
s Colour edges in
\ two colours so
| that no K, has all

edges in one
colour.




Solution

| s Colour edges randomly.
/ s Events A, — a fixed
k-vertex subgraph has

\ all edges in the same
colour.

= [Independent for
subgraphs with no
common edges.




Result
J2

» Theorem If m < ——k2%'* , then edges of
e

K., can be coloured with two colours so that

there is no k vertices with all edges among
them in one colour.



Other applications

s Coverings of R3 by unit balls;

s Linear arboricity (partitioning edges
of a graph into linear forests).



Quantum Lovasz lemma



Events < subspaces

s Finite-dimensional Hilbert space H.
s Events A. < "bad subspaces” S..

s Event does not occur < a state |¥) is
orthogonal to S..

s Goal: a state |W¥), |[V)L S, for all i.



Hamiltonian version

s Hamiltonian H = X, P..

s erms H. < subspaces S..

s H|P)=0 < |¥) L S..

s [S there a state |¥) with H |¥) = 0?




Probability << dimension

= Relative dimension

dim H,
dim H
s Pr[A] <e < d(H;) <e.

d(Hi)=




Independence: definition #1.

= Bipartite system H,®Hg.

s Subspaces H;®Hg; and H,®H, are
independent.



Definition #2

s Classically, A;, A, independent if
PrlA; A A5] = Pr[A;] Pr[A,].

= Quantumly, H;, H, — independent if
d(H; A Hy) = d(H,) d(H,);
d(H; A Hy') = d(H;) d(H;");
d(H;+ A Hy) = d(H;*) d(Hy);
d(H;+ A Hyt) = d(H*) d(HyH).



More than 2 subspaces

s H is independent of Hy, ..., H, if H is
independent of any combination
(union, intersection, complement) of
H,, ..., H..



Quantum LLL

s Theorem Let Hy, ..., H,, be subspaces
with:
e d(H) <eg;

e Each H, independent of all but at most d
other H;.

o e(d+1) ¢ <1.
Then, there is |¥), |¥) L H. for all i.




Proof of guantum LLL



Our goal

s Need to show: there exists
|¥), |¥) L H: for all i.

s Equivalently, |¥) € H* for all i.

dim(H; >0



Main lemma

H'=H; "H, Nn..NH;
J

Then
dimH; NH'_ 1
dim H' k+1

for any other H,.




Application:
guantum k-SAT



Quantum SAT

s K-SAT: s K-QSAT
e variables xq, ..., Xy- o N qubits;
e F=F, A... AF; e H=H;, +... +H_;
*Fi=VYii1V ... VViu e Each H; involves k
° Y| = X; OF —=X;. qubits;

e Each H, — projector to 1
of 2k dimensions.

s Goal: H“P} = 0.

s Goal: F = true.



Theorem

s Assume that
eH=H, +... + H, etc.
e each H. has common qubits with at most
d = 2¥/e-1 other H..

= Then there exists |¥) :H|¥) = 0.



Proof

s Each H; is a projector on S::

|
d(s) =

O QLLL 1

e(d+)p<1 = W) |P)LS

H|¥)=0



Random k-SAT and k-
QSAT



Random k-SAT

s F=F, A ... AF;
s Each F;, — random k-clause.

s What should m be so that F is
satisfiable w.h.p.?



Random k-SAT

s [hreshold c,, for large n:
o [f m<(c,-¢) n, then FeSAT w.h.p.
o [f m>(c +¢) n, then FSAT w.h.p.

m 3.52 < Cc; < 4.49.
s Large k:
2k 1In 2 - O(k) < ¢, < 2KIn 2.



Random k-QSAT [Bravyi, 06]

| H — H1+...+Hm.

» Each H. — random projector to 1 of 2X
dimensions for random k qubits.

= Do we have |P):H|¥) = 07



Results on quantum k-SAT
[Laumann et al., 09]

m (,= 1/2.
s For large k, 1-¢ < g, < 0.574e2X,

Classically, ¢, < In 2 2k = 0.69 o2k,



Our result

s | heorem

2k
>
ek’
s Since each H. involves k qubits, this

corresponds to each H; having

common qubits with 2 other H;,
8ek

qy

QLLL: % , Worst case.



Solution

= Divide qubits into two sets:

e "high-degree”: includes all gubits that
are contained in many H; and those that
are in H; with such qublts

° "|ow- degree
s Use QLLL on “low-degree” set,

another approach on “high-degree”
set.

» Combine the two solutions.



[Laumann, et al., 09]

] H — H1+...+Hm.

= [heorem If f:{1, ..., m} — qubits:
e f(i) — qubit that is involved in H;;
o £(i) = f(J),
there exists | ¥):H|¥) = 0.



