

Cryptography that is secure against quantum computers?

Andris Ambainis
University of Latvia

Quantum computing

- New model of computation based on quantum physics.
- More powerful than conventional computing.

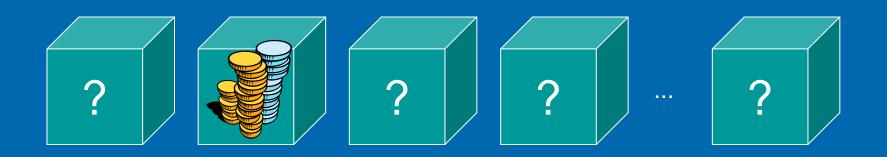
Factoring

- > 6231540623 = 93599 * 66577.
- > Find 6231540623?

 For large (300 digit) numbers conventional computers are too slow.

Shor, 1994: quantum computers can factor large numbers efficiently.

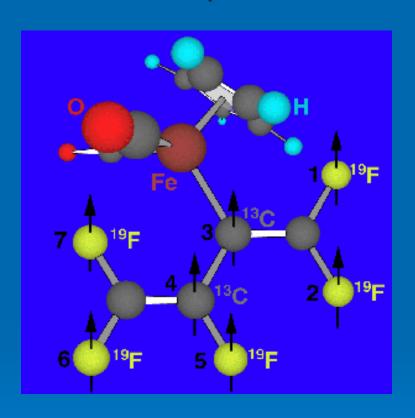
Quantum search



- N objects;
- Find an object with a certain property.

Grover, 1996: can be done in O(√N) quantum steps.

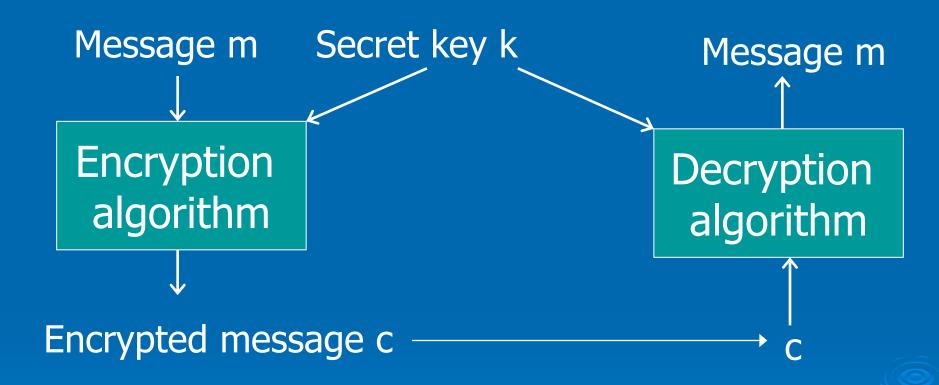
13 bit quantum computer (MIT/Waterloo, 2004)



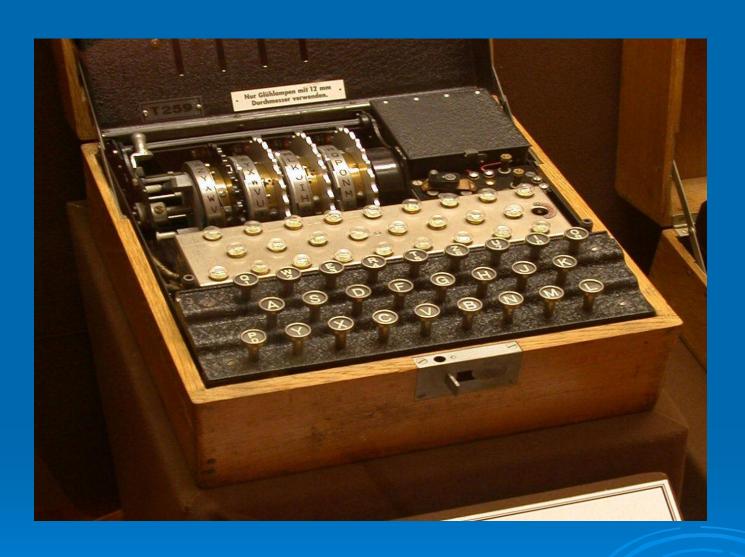
- Quantum computer = molecule.
- Quantum bits = nuclear spins.
- Manipulate nuclear spins with magnetic field.

Post-quantum cryptography

Cryptography



Symmetric cryptography: same key k for encryption and decryption



4-rotor Enigma, 1942

Codebreaking by exhaustive search

> For each k, test:

Classically: N steps; Quantum (Grover): O(√N) steps.

Codebreaking by exhaustive search

> 64 bit key \rightarrow N = 2^{64} secret keys.

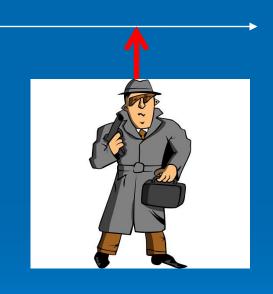
 $N = 2^{64} \approx 18,000,000,000,000,000,000.$ $\sqrt{N} = 2^{32} \approx 4,294,000,000.$

Is this a big advantage for quantum computers?

128 bit key
$$\rightarrow N = 2^{128}$$
, $\sqrt{N} = 2^{64}$.

Cryptography

4252 1890 6767 1345



amazon.com

Where do we get a secret key?

Public-key cryptography (RSA, 1977)

Encrypted message c

Encypted message c

One key for encryption – d, one for decryption – e.

Computing e from d – difficult.

Public key cryptography

e

Encrypt(4252 ..., e)

amazon.com

4252 1890 6767 1345

Eavesdropper does not have decryption key d

RSA

- Rivest, Shamir, Adleman, 1977;
- Computing decryption key d from encryption key e is roughly equivalent to factoring a large number.
- Factoring large (300-digit) number N = pq into p and q is very difficult.

Factoring becomes easy if we have a quantum computer.

Lattice-based cryptography

Lattices

- > Set of vectors v₁, ..., v_m in n dimensions;
- ► Lattice L = { $a_1v_1+...+a_mv_m$: $a_1, ..., a_m$ integers}.



Lattices

- Lattice L = { $a_1v_1+...+a_mv_m$: $a_1, ..., a_m$ integers}.
- Shortest vector problem (SVP): given v₁, ..., v_m, find the shortest vector in L.

Breaking a lattice-based cryptosystem ≈ SVP

Versions of SVP

- > SVP: find the shortest vector v_{min} in L;
- > γ -SVP: find a vector v: $||v|| \le \gamma ||v_{min}||$;
- > γ -Unique-SVP: find v_{min} if we are promised that $||v|| \ge \gamma ||v_{min}||$, unless $v = c \cdot v_{min}$.

SVP is NP-hard; Hardness of γ -SVP and γ -Unique-SVP depends on γ .

γ-Unique-SVP

- ➤ Task: find v_{min} if we are promised that $||v|| \ge \gamma ||v_{min}||$, unless $v = c \cdot v_{min}$.
- ► Lenstra-Lenstra-Lovasz, 1982: efficiently solvable if $\gamma = 2^n$.
- > Thought to be difficult for classical algorithms if $\gamma = n^c$.
- > Regev, 2002: idea for quantum algorithm.

Quantum computing: the model

Probabilistic computation

- 1 0.6
- 0.1

30.2

4 0.1

- Probabilistic system with finite state space.
- Current state: probabilities p_i to be in state i.

$$\sum_{i} p_{i} = 1$$

Quantum computation

1 0.4+0.3i
-0.7 0.4-0.1i
2 3

Current state: amplitudes α_i to be in state i.

$$\sum_{i} \left| \alpha_{i} \right|^{2} = 1$$

4 0.3

For most purposes, real (but negative) amplitudes suffice.

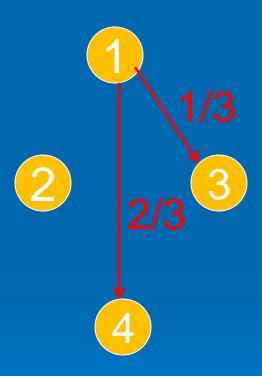
Notation

Sasis states
$$|1\rangle$$
, $|2\rangle$, $|3\rangle$, $|4\rangle$. 0.7

$$|\Psi\rangle = \begin{pmatrix} 0.7 \\ -0.7 \\ 0.1 \\ -0.1 \end{pmatrix}$$

$$|\Psi\rangle=0.7 |1\rangle-0.7 |2\rangle+0.1|3\rangle-0.1 |4\rangle.$$

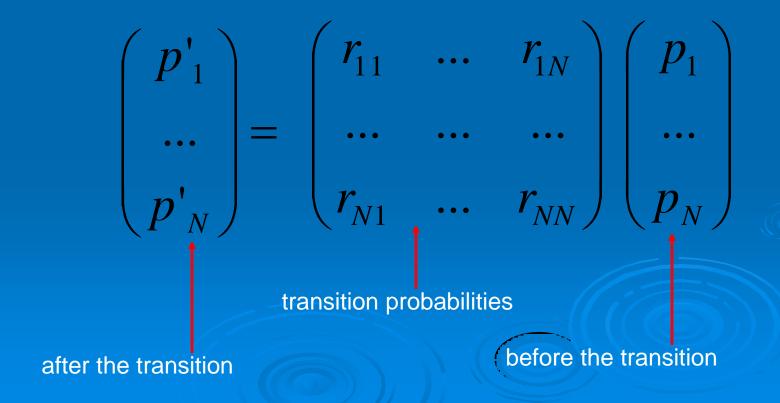
Probabilistic computation



- Pick the next state, depending on the current one.
- ➤ Transitions: r_{ij} probabilities to move from i to j.

Probabilistic computation

- Probability vector (p₁, ..., p_N).
- Transitions:



Quantum computation

> Quantum state

$$\alpha_1 |1\rangle + \alpha_2 |2\rangle + ... + \alpha_N |N\rangle$$

Transitions

$$\begin{pmatrix} u_{11} & \dots & u_{1n} \\ \dots & \dots & \dots \\ u_{n1} & \dots & u_{nn} \end{pmatrix} \quad \begin{pmatrix} \beta_1 \\ \dots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}$$

U-unitary (preserves $\Sigma_i |\alpha_i|^2 = 1$).

Measurements

$$|\Psi\rangle=\alpha_{_1}|1\rangle+\alpha_{_2}|2\rangle+...+\alpha_{_M}|M\rangle$$
 Measurement
$$1\qquad 2\qquad \cdots \qquad M$$
 prob.
$$|\alpha_{_1}|^2 \qquad |\alpha_{_2}|^2 \qquad \qquad |\alpha_{_M}|^2$$

Partial measurements

$$|\Psi\rangle = \alpha_{oo} |oo\rangle + \alpha_{oi} |oi\rangle + \alpha_{io} |io\rangle + \alpha_{ii} |ii\rangle$$

Measure the 1st bit

$$\alpha_{oo} |oo\rangle + \alpha_{o1} |o1\rangle$$

$$\alpha_{10} |10\rangle + \alpha_{01} |11\rangle$$

Quantum algorithm for unique-SVP?

Quantum algorithm for SVP?

- \triangleright Set of vectors $v_1, ..., v_m$ in n dimensions;
- ► Lattice L = { $a_1v_1+...+a_mv_m$: $a_1, ..., a_m$ integers}.
- Task: find v_{min} if we are promised that $||v|| \ge \gamma ||v_{min}||$, unless $v = c \cdot v_{min}$.

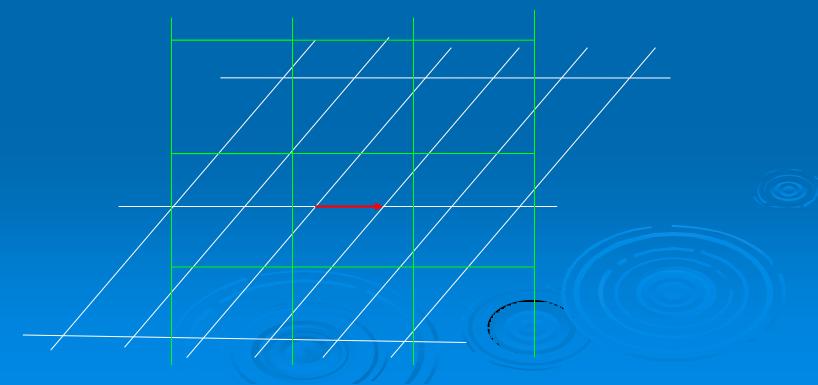
Step 1: prepare

$$\sum_{a_1,...,a_n \in \{-M,...,M\}} |a_1,...,a_n \in \{-M,...,M\}$$

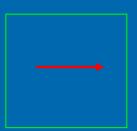
Quantum algorithm for SVP?

Step 2: measure the most significant bits of

$$\sum_{a_1,...,a_n \in \{-M,...,M\}} |a_1,...,a_n \in \{-M,...,M\}$$



Result



Quantum state:

$$|x\rangle + |x + v_{\min}\rangle$$

$$|x\rangle + |x + v_{\min}\rangle + |x + 2v_{\min}\rangle$$

Missing step

How do we get v_{min} from

$$|x\rangle + |x + v_{\min}\rangle$$
?

Measuring the state gives x or $x+v_{min}$, but not v_{min} .

Period-finding

- \triangleright Basis states $|1\rangle$, $|2\rangle$, ..., $|N\rangle$.
- > State

$$|x\rangle + |x+r\rangle + |x+2r\rangle + \dots + |x+kr\rangle$$

Quantum Fourier Transform

One of numbers
$$\frac{N}{r}, \frac{2N}{r}, \dots$$

Fourier sampling

Open problems

Can we extract v_{min} from

$$|x\rangle + |x + v_{\min}\rangle$$
?

- Fourier sampling provides enough information;
- Computing v_{min} from this information is difficult.

Hidden subgroup problem

Hidden Subgroup Problem (HSP)

- \triangleright Group G, function F: G \rightarrow S.
- Promise: subgroup H ⊆ G such that
 F(x) = F(y) ↔ x = yz, z∈H.
 (equivalent: F(x) = F(y) ↔ x, y ∈ xH)
- > Task: find H.

Example: period-finding

- Group: G = Z (integers);
- Subgroup: H = k Z (integers divisible by k).
- \rightarrow Promise: $f(x) = f(y) \leftrightarrow x = y + kx$.

$$f(m) = f(m+k) = f(m+2k) = ...$$

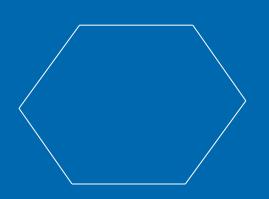
> Task: find k.

Efficient quantum algorithm, subroutine for factoring algorithm

Hidden Subgroup Problem (HSP)

- \triangleright Group G, function F: G \rightarrow S.
- ➤ Promise: subgroup $H \subseteq G$ such that $F(x) = F(y) \leftrightarrow x = yz, z \in H$.
- > Task: find H.
- Abelian G: polynomial time quantum algorithms;
- Non-abelian G: open.

Dihedral HSP



- Group of symmetries of regular N-gon.
- $y \in \{0, 1, ..., N-1\},\$
- \triangleright The most difficult case: H={(0, 0), (k, 1)};
- > Task: find k.
- \triangleright Equivalent to $f(x, 0) = f((x+k) \mod N, 1)$.

Hidden shift problem

Connection to SVP

 $> f(x, 0) = f((x+k) \mod N, 1).$

$$\sum_{x,y} |x,y\rangle \to \sum_{x,y} |x,y,f(x,y)\rangle$$

Measure f(x, y)

$$|x,0\rangle + |(x+k) \mod N,1\rangle$$

SVP:

$$|x\rangle + |x + v_{\min}\rangle$$

Complexity of dihedral HSP

- \triangleright Promise: $f(x, 0) = f((x+k) \mod N, 1)$.
- > Task: find k.
- ➤ Goal: O(log^C N) time quantum algorithm.
- > Solvable with O(log N) evaluations of f.
- Solvable in time $2^{O(\sqrt{\log N})}$

McEliece cryptosystem

McEliece cryptosystem

Based on coding theory;

$$\triangleright$$
 Public key: $\begin{pmatrix} 0 & 1 \end{pmatrix}$

> Public key:
$$G = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Matrix of an error-correcting code + some scrambling

Private key: how G was generated.

McEliece: encryption

$$v = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{encode}} Gv = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{+noise e}} Gv + e$$

Decoding $Gv+e \rightarrow v$ can be performed if we know the structure of G.

McEliece: decryption

- > G = P G' A,
 - P permutation matrix.
 - G' generator matrix of efficiently decodable error correcting code;
 - A invertible matrix;

$$Gv+e \longrightarrow G'A v+P^{-1}e \xrightarrow{decoding} A v$$

Quantum attack on McEliece

- Codebreaking: given G = PG'A and G', determine A and P.
- Reduces to a difficult instance of HSP.
- Define f(A', P', x): A' invertible, P' permutation matrix, x∈{0, 1}:

$$f(A', P', x) = \begin{cases} P'G'A' & \text{if } x = 0 \\ P'GA' & \text{if } x = 1 \end{cases}$$

Quantum attack on McEliece

$$f(A', P', x) = \begin{cases} P'GA' & \text{if } x = 0 \\ P'G'A' & \text{if } x = 1 \end{cases}$$

$$G = PG'A$$

$$f(A', P', 0) = f(A'A, PP', 1);$$

Hidden shift problem: given such f, find A and P.

Quantum attack on McEliece

- HSP for a group that is more complicated than dihedral group.
- Dinh, Moore, Russell, 2010: Standard approach (Fourier sampling) fails to break McEliece, assuming that secret code has:
 - a) large automorphism group and
 - b) generator matrix with almost full rank.

Key size

> Key = k*n matrix
$$G = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

- > Typical parameters: k = 3556, n = 4084.
- Encryption key = 1.5 Mbytes.

Attack by quantum search.

Can be defeated by increasing key size 4 times.

Summary

- Cryptosystems based on factoring and discrete logarithm are insecure against quantum computers;
- > Alternatives:
 - Lattice-based crypto;
 - McEliece system;
 - Multivariate polynomials [Schulman, 2012].