

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Theory of quantum computing

Andris Ambainis University of Latvia

European Social Fund project "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Quantum computing

 New model of computing, based on quantum mechanics.
 More powerful than conventional (classical) computing.

Factoring

▶ 6231540623 = 93599 * 66577.

Given 6231540623, find factors?

For large (300 digit) numbers conventional computers are too slow.

Shor, 1994: quantum computers can factor large numbers efficiently.

Quantum search

N objects;
 Find an object with a certain property.

Grover, 1996: can be done in $O(\sqrt{N})$ quantum steps.

Cryptography

amazon.com

- Two parties who want to communicate secret information.
- Communication channel that may be eavesdropped.

Quantum cryptography

amazon.com

If quantum state (e.g. polarization of photon) is measured, the measurement changes the state.

Security guaranteed by quantum mechanics.

Implementing quantum cryptography

Transmitting quantum information:
 Faint laser pulse (1 photon per pulse) + polarizer;

Receiving quantum information:
 polarizing beam splitter + single photon detector.

Commercially available systems

MagiQ Technologies

Quantum communication over optical cable. 1Mb/s over 20km distance. 10 kb/s over 100km distance.

Next steps

Quantum communication over air

Quantum communication via satellites

Implementing quantum computing

Divincenzo criteria (1997):

- Well defined quantum bits;
- Reliable state preparation;
- Low decoherence;
- Accurate quantum gate operations;
- Strong quantum measurements.

Implementing QC with photonics

Photon-polarization:

Time bin encoding.
 Fock state encoding (presence/absence of a photon).

University of Bristol, 2009

- Photonic implementation of Shor's factoring algorithm.
- ➤ 3 quantum bits.
- ▶ 15=3*5.

A. Politi, J. C. F. Matthews, J. L. O'Brien, Science 325, 1221 (2009)

Quantum computing research at University of Latvia

QCS project

FP7 FET-Open project

- "Quantum Computer Science", 2010-2013
- 1. University of Latvia coordinator;
- 2. University of Bristol (UK);
- 3. Cambridge University (UK);
- 4. University of Paris Diderot (France);
- 5. Centrum Wiskunde & Informatica (Netherlands);
- 6. Tel Aviv University (Israel);
- 7. Universite Libre de Bruxelles (Belgium);
- 8. Institut de Ciences Fotoniques (Spain);

Research directions

- 1. Algorithms for quantum computers.
- 2. Impossibility results for quantum algorithms.
- 3. Quantum cryptography, quantum nonlocality.
- 4. Mathematical questions about quantum states.

Formula evaluation

Evaluating AND-OR trees

AND OR OR X1 X2 X3 X4

Variables x_i accessed by queries to a black box: \geq Input i; \triangleright Black box outputs x_i. Quantum case: $\sum_{i} a_{i} |i\rangle \rightarrow \sum_{i} a_{i} (-1)^{x_{i}} |i\rangle$ Evaluate T with the

smallest number of

queries.

Our results

 ▷ [A, Childs, Reichardt, Spalek, Zhang, 2007]: O(N^{1/2+o(1)}) time quantum algorithm for evaluating any logic formula of size N.
 ▷ [Reichardt, 2010]: O(√N) quantum algorithm.

The problem

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

 $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$

Given a_{ij} and b_i, find x_i.
 Best classical algorithm: O(N^{2.37...}).

Harrow, Hassidim, Lloyd, 2008

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

 $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$

Running time for producing $\sum_{i=1}^{n} x_i |i\rangle$: O(log^c N), but with dependence on two other parameters.

Exponential speedup, if the other parameters are good.

Dependence on other parameters Condition number of A.

- $k = \frac{\mu_{\text{max}}}{\mu_{\text{min}}} \qquad \begin{array}{l} \mu_{\text{max}} \text{ and } \mu_{\text{min}} \text{biggest} \\ \text{and smallest} \\ \text{eigenvalues of A} \end{array}$
- [HHL, 2008]: O(k² log^c N).
 [A, 2010]: O(k^{1+o(1)} log^c N).

When can we achieve big quantum speedups?

Examples

 $\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_3 \qquad \mathbf{X}_N$

> Period-finding:

- Promise: exists p: $x_{i+p} = x_p$.
- O(1) queries quantumly*;
- $\Theta(N^{1/4})$ queries classically.
- * with some assumptions on x_i.

Polynomial vs. exponential speedups

Search: is there i:x_i=1? Period-finding: find p: x_i=x_{i+p}.

Symmetric

Non-symmetric

[Aaronson, A, 2011]

- Let f(x₁, ..., x_N) symmetric w.r.t. permuting x₁, ..., x_N and permuting possible values for x₁, ..., x_N.
- If f computable by quantum algorithm with Q queries, then f – computable with O(Q⁹) queries.