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Quantum computing 

 New model of computation based on 

quantum physics. 

 More powerful than conventional 

computing. 



Factoring 

 6231540623 = 93599 * 66577. 

 Find  6231540623? 

 For large (300 digit) numbers conventional 

computers are too slow. 

Shor, 1994: quantum computers can factor  

large numbers efficiently. 



Quantum search 

 

 ? ? ? ... ? ? 

N objects;  

Find an object with a certain property. 

Grover, 1996: can be done in O(√N)  

quantum steps. 



13 bit quantum computer 

(MIT/Waterloo, 2004) 

 Quantum computer = 

molecule. 

 Quantum bits = 

nuclear spins. 

 Manipulate nuclear 

spins with magnetic 

field. 



Post-quantum 

cryptography 



Cryptography 

Message m 

Encryption  
algorithm 

Secret key k 

Encrypted message c c 

Decryption  
algorithm 

Message m 

Symmetric cryptography: same key k  

for encryption and decryption 



4-rotor Enigma, 1942 



Codebreaking by exhaustive 

search 

 For each k, test: 

Message m Encryption  
algorithm 

Secret key k 

Encrypted  
message c 

Quantum (Grover): O(N) steps. 

Classically: N steps; 



Codebreaking by exhaustive 

search 

 64 bit key  N = 264 secret keys. 

 
N = 264  18,000,000,000,000,000,000. 

N = 232  4,294,000,000. 

Is this a big advantage for quantum computers? 

128 bit key  N = 2128, N = 264. 

 



Cryptography  

amazon.com 

4252 1890 6767 1345 

Where do we get a secret key? 



Public-key cryptography (RSA, 

1977) 
Message m 

Encryption  
algorithm d 

Encrypted message c 

Message m 

Decryption  
algorithm 

e 

Encypted message c 

One key for encryption – d, one for decryption – e. 

Computing e from d – difficult. 



Public key cryptography  

amazon.com 

4252 1890 6767 1345 

Eavesdropper does not have  

decryption key d 

e 

Encrypt(4252 ..., e) 



RSA 

 Rivest, Shamir, Adleman, 1977; 

 Computing decryption key d from 

encryption key e is roughly equivalent to 

factoring a large number. 

 Factoring large (300-digit) number N = pq 

into p and q is very difficult. 

 
Factoring becomes easy if we have  

a quantum computer. 



Lattice-based 

cryptography 



Lattices 

 Set of vectors v1, ..., vm in n dimensions; 

 Lattice L = { a1v1+...+amvm :  

  a1, ..., am - integers}. 

 Shortest vector problem (SVP): given v1, 

..., vm, find the shortest vector in L. 

Breaking a lattice-based cryptosystem  SVP 



Versions of SVP 

 SVP: find the shortest vector vmin in L; 

 -SVP: find a vector v: ||v||   ||vmin||; 

 -Unique-SVP: find vmin if we are promised 

that ||v||   ||vmin||, unless v = cvmin.  

SVP is NP-hard; 

Hardness of -SVP and -Unique-SVP depends on . 

 



-Unique-SVP 

 Task: find vmin if we are promised that ||v|| 

  ||vmin||, unless v = cvmin. 

 Lenstra-Lenstra-Lovasz, 1982: efficiently 

solvable if  = 2n. 

 Thought to be difficult for classical 

algorithms if  = nc. 

 Regev, 2002: idea for quantum algorithm. 



Quantum state 

 States of a classical system: 1, 2, ..., n. 

 Quantum system: basis states |1, |2, ..., 

|n. 

 General state: 

 

 For example: 



| =1 |1 + 2 |2 + … + M |M 

|1|
2 

1 
prob. |2|

2 

2 
|M|2 

M … 

Measurement 

Measurements 

We can apply transformations on |  

without measuring it. 



Partial measurements 

| =00 |00 + 01 |01 + 10 |10 + 11 |11 

Measure the 1st bit 

00 |00 + 01 |01 10 |10 + 01 |11 



Quantum algorithm for SVP? 

 Set of vectors v1, ..., vm in n dimensions; 

 Lattice L = { a1v1+...+amvm :  

  a1, ..., am - integers}. 

 Task: find vmin if we are promised that ||v||  

 ||vmin||, unless v = cvmin. 

 

 
Step 1: prepare 
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Quantum algorithm for SVP? 
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minvxx 

Step 2: measure the most significant bits of 

 

Result: 

minmin 2vxvxx 



Missing step 

 How do we get vmin from 

?minvxx 

   Measuring the state gives x or x+vmin, but 

not vmin. 



Period-finding 

 Basis states |1, |2, ..., |N.  

 State 

krxrxrxx  ...2

Quantum Fourier Transform 

One of numbers ,...
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N

r

N



Open problems 

 Can we extract vmin from 

 

 

 Applying QFT + measuring provides 

enough information; 

 Computing vmin from this information is 

difficult. 

 Other versions of SVP? 

?minvxx 



McEliece cryptosystem 



McEliece cryptosystem 

 Based on coding theory; 

 Public key: 
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Matrix of an error-correcting 

code + some scrambling 

 Private key: how G was generated. 



McEliece cryptosystem 
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Decoding Gv  v can be performed  

if we know the structure of G. 



Key size 

 Key = k*n matrix 
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 Typical parameters: k = 3556, n = 4084. 

 Encryption key = 1.5 Mbytes.  

Attack by quantum search. 

Can be defeated by increasing key size 4 times. 


