

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Classical cryptography that is secure against quantum computers?

> Andris Ambainis University of Latvia

European Social Fund project "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Quantum computing

 New model of computation based on quantum physics.
 More powerful than conventional computing.

Factoring

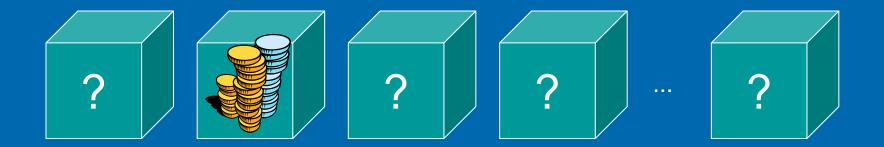
> 6231540623 = 93599 * 66577.

> Find 6231540623?

 For large (300 digit) numbers conventional computers are too slow.

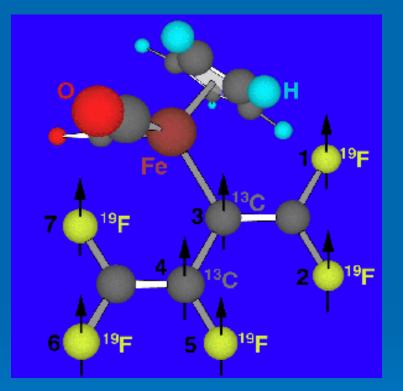
Shor, 1994: quantum computers can factor large numbers efficiently.

Quantum search



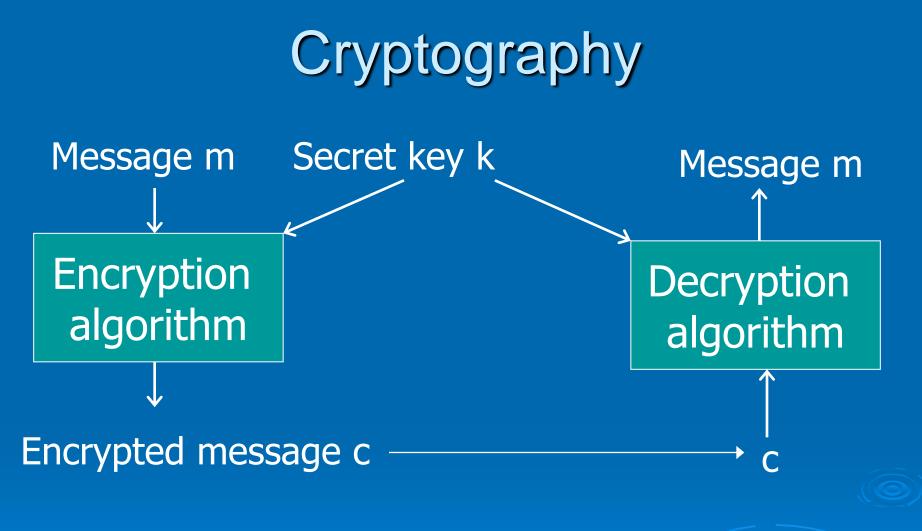
N objects;
Find an object with a certain property.
Grover, 1996: can be done in O(\/N)

13 bit quantum computer (MIT/Waterloo, 2004)



- Quantum computer = molecule.
- > Quantum bits = nuclear spins.
- Manipulate nuclear spins with magnetic field.

Post-quantum cryptography

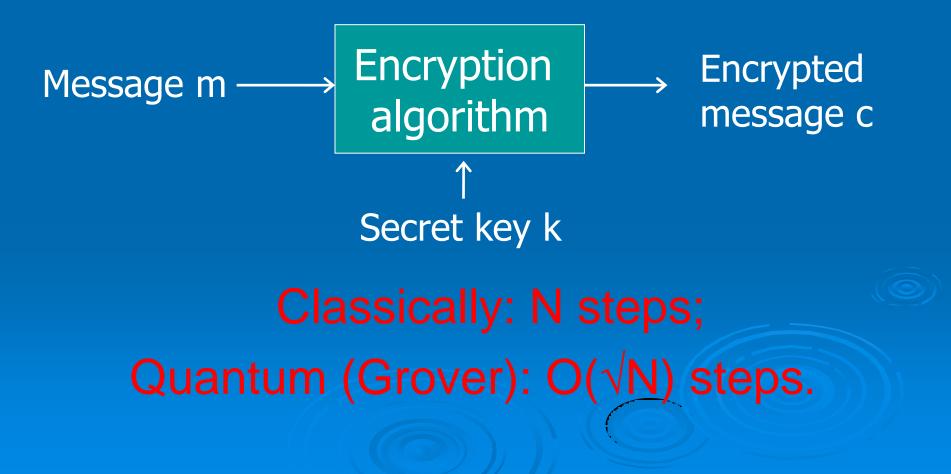


Symmetric cryptography: same key k for encryption and decryption

4-rotor Enigma, 1942

Codebreaking by exhaustive search

For each k, test:



Codebreaking by exhaustive search

> 64 bit key \rightarrow N = 2⁶⁴ secret keys.

N = 2^{64} ≈ 18,000,000,000,000,000,000,000. $\sqrt{N} = 2^{32} \approx 4,294,000,000.$

Is this a big advantage for quantum computers?

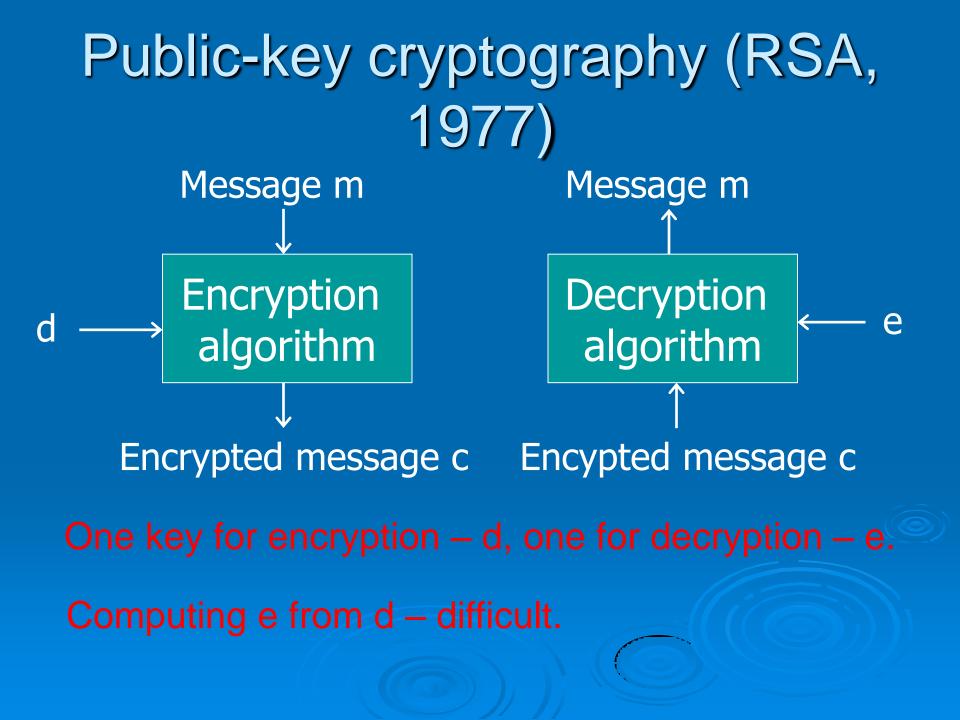
128 bit key \rightarrow N = 2¹²⁸, \sqrt{N} = 2⁶⁴.

Cryptography

4252 1890 6767 1345

amazon.com

Where do we get a secret key?



Public key cryptography

e

amazon.com

Encrypt(4252 ..., e)

4252 1890 6767 1345

Eavesdropper does not have decryption key d

RSA

> Rivest, Shamir, Adleman, 1977;

- Computing decryption key d from encryption key e is roughly equivalent to factoring a large number.
- Factoring large (300-digit) number N = pq into p and q is very difficult.

Factoring becomes easy if we have a quantum computer.

Lattice-based cryptography

Lattices

Set of vectors v₁, ..., v_m in n dimensions;
Lattice L = { a₁v₁+...+a_mv_m : a₁, ..., a_m - integers}.
Shortest vector problem (SVP): given v₁, ..., v_m, find the shortest vector in L.

Breaking a lattice-based cryptosystem ~ SVP

Versions of SVP

SVP: find the shortest vector v_{min} in L;
 γ-SVP: find a vector v: ||v|| ≤ γ ||v_{min}||;
 γ-Unique-SVP: find v_{min} if we are promised that ||v|| ≥ γ ||v_{min}||, unless v = c•v_{min}.

SVP is NP-hard; Hardness of γ -SVP and γ -Unique-SVP depends on γ .

γ-Unique-SVP

> Task: find v_{min} if we are promised that $||v|| \ge \gamma ||v_{min}||$, unless $v = c \cdot v_{min}$.

- > Lenstra-Lenstra-Lovasz, 1982: efficiently solvable if $\gamma = 2^{n}$.
- > Thought to be difficult for classical algorithms if $\gamma = n^c$.

> Regev, 2002: idea for quantum algorithm.

Quantum state

- States of a classical system: 1, 2, ..., n.
- > Quantum system: basis states |1>, |2>, ..., |n>.
- > General state: $a_1|1\rangle + a_2|2\rangle + ... + a_n|n\rangle$

$$|a_1|^2 + |a_2|^2 + \dots + |a_n|^2 = 1$$

$$4 + 3 + 3$$

 $\frac{1}{5}$

> For example: $\frac{4}{5}|1\rangle$

Measurements $|\Psi\rangle = \alpha_1 |1\rangle + \alpha_2 |2\rangle + ... + \alpha_M |M\rangle$ M 2 prob. $|\alpha_1|^2$ $|\alpha_2|^2$ $|\alpha_{M}|^{2}$ without measuring it.

Partial measurements $|\Psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$

$\alpha_{00} |00\rangle + \alpha_{01} |01\rangle \qquad \alpha_{10} |10\rangle + \alpha_{01} |11\rangle$

Quantum algorithm for SVP?

Set of vectors v₁, ..., v_m in n dimensions;
Lattice L = { a₁v₁+...+a_mv_m : a₁, ..., a_m - integers}.
Task: find v_{min} if we are promised that ||v|| ≥ γ ||v_{min}||, unless v = c•v_{min}.

Step 1: prepare $\sum_{a_1,...,a_n \in \{-M,...,M\}} |a_1x_1 + a_2x_2 + ... + a_mx_m\rangle$

Quantum algorithm for SVP?

Step 2: measure the most significant bits of

$$\sum_{a_1,...,a_n \in \{-M,...,M\}} |a_1x_1 + a_2x_2 + ... + a_mx_m\rangle$$

Result:

$$|x\rangle + |x + v_{\min}\rangle$$

 $|x\rangle + |x + v_{\min}\rangle + |x + 2v_{\min}\rangle$

Missing step

> How do we get v_{\min} from $|x\rangle + |x + v_{\min}\rangle$?

Measuring the state gives x or $x+v_{min}$, but not v_{min} .

Period-finding

Basis states |1>, |2>, ..., |N>. State

$$|x\rangle + |x+r\rangle + |x+2r\rangle + \dots + |x+kr\rangle$$

N 2N

r

Quantum Fourier Transform

One of numbers

Open problems

Can we extract v_{min} from

$$x\rangle + |x + v_{\min}\rangle?$$

- > Applying QFT + measuring provides enough information;
- Computing v_{min} from this information is difficult.
- > Other versions of SVP?

McEliece cryptosystem

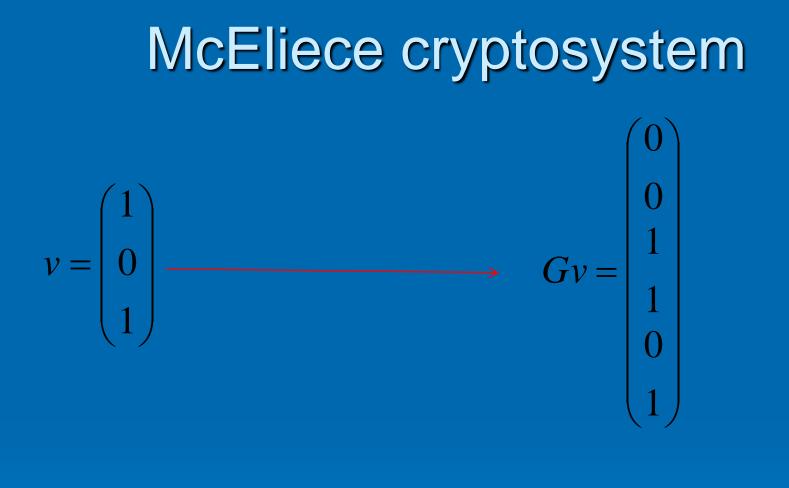
McEliece cryptosystem

Based on coding theory;

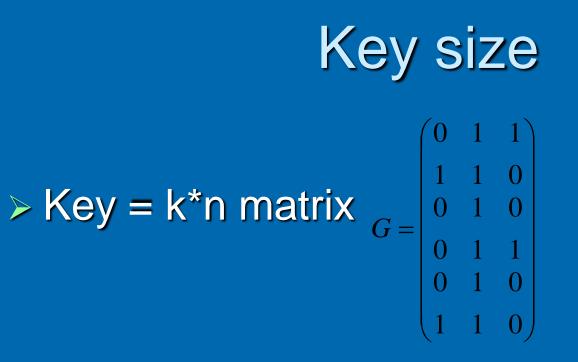
> Public key: $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$

Matrix of an error-correcting code + some scrambling

Private key: how G was generated.



Decoding $Gv \rightarrow v$ can be performed if we know the structure of G.



Typical parameters: k = 3556, n = 4084.
Encryption key = 1.5 Mbytes.

Attack by quantum search. Can be defeated by increasing key size 4 times.