

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Variable time amplitude amplification and quantum algorithms for linear algebra

> Andris Ambainis University of Latvia

European Social Fund project "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

Part 1 Variable time amplitude amplification

Amplitude amplification [Brassard, Hoyer, Mosca, Tapp, 00] Algorithm A that succeeds with probability **.0<**3 Success is verifiable. • k repetitions \rightarrow success probability \approx k ϵ . Success probability of 3/4: \Box O(1/ ε) classical repetitions. - Quantumly: $O(1/\sqrt{\epsilon})$ repetitions.

Find an object with a certain property. Check a random object: success probability $\varepsilon = 1/N$. Success probability 3/4: $O(1/\sqrt{\varepsilon}) = O(\sqrt{N})$ repetitions.

Variable-time algorithm

Success probability: small ε >0. Maximum running time: T_{max}. Average running time T_{avg} << T_{max}. Time to obtain success probability ³/₄? Classically: $T_{avg} \bullet O(1/\epsilon)$ Quantumly: $T_{max} \bullet O(1/\sqrt{\epsilon})$

Why T_{max}?

Standard amplitude amplification regards A as one "quantum black box".

Variable time quantum algorithms

 Algorithm that stops at one of several times T₁, ..., T_k, with probabilities p₁, ..., p_k.

Our result

 $T_{av} = \sqrt{\sum_{i=1}^{k} p_i T_i^2}$ Let

 Quantum algorithm with success probability ε and average running time T_{av} → quantum algorithm with success probability 2/3 and running time

Basic idea

3 outcomes: "success", "failure", "did not stop"
Amplify "success" and "did not stop".
Amplified version A'₁.

Basic idea (2)

3 outcomes: "success", "failure", "did not stop"
Amplify "success" and "did not stop".
Amplified version A'₂.

Difficulties

 Amplitude amplification repeated k times;
 If one amplification loses a factor of c, then k amplifications lose a factor of c^k.
 We need a very precise analysis of amplitude amplification.

Part 2 Testing if a matrix is singular

Singularity testing

Matrix A;
 Promise A is singular or all singular values of A are at least λ_{min}.
 Task: distinguish between the two cases.

Our result

 Let λ₁, λ₂, ..., λ_N - singular values of B.
 <u>Theorem</u> There is a quantum algorithm for singularity with running time *Õ*(√N / λ_w) where

$$\lambda_{av} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \max\left(\left|\lambda_{i}\right|^{2}, \left|\lambda_{\min}\right|^{2}\right)}$$

Component 1: eigenvalue estimation [Cleve et al., 1998] Input: state $|\psi\rangle$: $|\psi\rangle = \lambda |\psi\rangle$. • Output: estimate for λ . To obtain estimate λ' with $|\lambda' - \lambda| \leq \varepsilon$, it suffices to apply B to $|\psi\rangle$ for time O(1/ ϵ). Can be used to check if $\lambda > 0$, in time $O(1/\lambda_{min})$

Component 2: quantum search

- We can search among N eigenvalues in time $O(\sqrt{N})$.
- Straightforward combination with eigenvalue estimation: $O(\sqrt{N}/\lambda_{min})$.
- Variable time amplitude amplification: $O(\sqrt{N/\lambda_{avg}}).$

Part 3 Solving systems of linear equations

The problem $a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$

 $a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$ Given a_{ij} and b_i , find x_i . Best classical algorithm: O(N^{2.37}...).

Quantum algorithm?

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$

 $a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$

Obstacle: takes time O(N) to output all x_i .

Harrow, Hassidim, Lloyd, 2008

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$

 $a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$ Output = $\sum_{i=1}^N x_i |i\rangle$

Measurement → i with probability x_i².
 Enables estimating c₁x₁+c₂x₂+...+c_Nx_N.
 Seems to be difficult classically.

Harrow, Hassidim, Lloyd, 2008

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$

 $a_{N1}x_1 + a_{N2}x_2 + ... + a_{NN}x_N = b_N$ ■ Running time for producing $\sum_{i=1}^{N} x_i |i\rangle$: O(log^c N), but with dependence on two other parameters.

Condition number

 μ_{max} and μ_{min} – biggest and smallest singular values of A

Running time $-O(\kappa^2 \log^c N)$

Our result

Theorem There is a quantum algorithm for generating $\sum_{i=1}^{N} x_i |i\rangle$ in time O(k^{1+o(1)} log^c N).

• [HHL, 2008]: $\Omega(k^{1-o(1)})$ time required, unless BQP=PSPACE.

Open problem

• What problems can we reduce to systems of linear equations (with $\sum_{i} x_i |i\rangle$ as the answer)?

- Examples:
 - Search;
 - Perfect matchings in a graph;
 - Graph bipartiteness.

Biggest issue: condition number.