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Variable time amplitude amplification 



Amplitude amplification 
[Brassard, Hoyer, Mosca, Tapp, 00] 

 Algorithm A that succeeds with probability 
>0. 

 Success is verifiable. 

 k repetitions  success probability  k. 

 Success probability of 3/4: 
 O(1/) classical repetitions. 

  Quantumly: O(1/√) repetitions. 



Search [Grover, 96]  

 

 
? ? ? ... ? ? 

 Find an object with a certain property. 

 

Success probability 3/4: 

 O(1/√)=O(√N) repetitions. 

Check a random object:  

success probability 1/N. 



Variable-time algorithm 

 Success probability: small >0. 

 Maximum running time: Tmax. 

 Average running time Tavg << Tmax. 

 Time to obtain success probability ¾?  

 Classically: TavgO(1/) 

Quantumly: TmaxO(1/√) 



Why Tmax? 
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Running time: 

 Standard amplitude amplification regards A 

as one “quantum black box”. 



Variable time quantum 
algorithms 

 Algorithm that stops at one of several 
times T1, ..., Tk, with probabilities p1, ..., 
pk. 
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Our result 

 Let 

 

 Quantum algorithm with success 
probability  and average running time Tav 
 quantum algorithm with success 
probability 2/3 and running time 



Basic idea 

 3 outcomes: “success”, 
“failure”, “did not stop” 

 Amplify “success” and “did not 
stop”. 

 Amplified version A’1. 
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... 



Basic idea (2) 

 3 outcomes: “success”, 
“failure”, “did not stop” 

 Amplify “success” and “did 
not stop”. 

 Amplified version A’2. 

A’1 

... 

... A2 

... 



Difficulties 

 Amplitude amplification repeated k times; 

 If one amplification loses a factor of c, 
then k amplifications lose a factor of ck. 

 We need a very precise analysis of 
amplitude amplification. 



Testing if a matrix is singular 



Singularity testing 

 Matrix A; 

 Promise A is singular or all singular values 
of A are at least min. 

 Task: distinguish between the two cases. 



Our result 

 Let 1, 2, ..., N - singular values of B. 

 Theorem There is a quantum algorithm for 
singularity with running time          where  
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Component 1: eigenvalue 
estimation [Cleve et al., 1998]  

 Input: state |: B|=|. 

 Output: estimate for . 

 To obtain estimate ’ with |’- |, it 
suffices to apply B to | for time O(1/). 

 Can be used to check if >0, in time    
O(1/min). 



Component 2: quantum search 

 We can search among N eigenvalues in 
time O(√N). 

 Straightforward combination with 
eigenvalue estimation: O(√N/min). 

 Variable time amplitude amplification: 
O(√N/avg). 



Solving systems of linear equations 



The problem 

 Given aij and bi, find xi. 

 Best classical algorithm: O(N2.37...). 
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Quantum algorithm? 

Obstacle: takes time O(N) to output all xi. 
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Harrow, Hassidim, Lloyd, 2008 

Output =  
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 Measurement  i with probability xi
2. 

 Enables estimating c1x1+c2x2+...+cNxN. 

 Seems to be difficult classically. 



Harrow, Hassidim, Lloyd, 2008 

 Running time for producing            : 
O(logc N), but with dependence on two 
other parameters. 
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Condition number 

min

max




k

max and min – biggest 
and smallest singular 
values of A 

 NOtimeRunning clog2



Our result 

 Theorem There is a quantum algorithm for 
generating   in time O(k1+o(1) logc N). 

 

 [HHL, 2008]: (k1-o(1)) time required, 
unless BQP=PSPACE. 
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Open problem 

 What problems can we reduce to systems 
of linear equations (with  as the 
answer)? 


i

i ix

 Examples: 

 Search; 

 Perfect matchings in a graph; 

 Graph bipartiteness. 

 

Biggest issue: condition number. 


