
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 411 (2010) 3436–3443

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Amount of nonconstructivity in deterministic finite automata
Rūsiņš Freivalds
Institute of Mathematics and Computer Science, University of Latvia, Raiņa bulvāris 29, LV-1459 Rı̄ga, Latvia

a r t i c l e i n f o

Keywords:
Finite automata
Nonconstructive methods
Kolmogorov complexity

a b s t r a c t

When D. Hilbert used nonconstructive methods in his famous paper on invariants (1888),
P. Gordan tried to prevent the publication of this paper considering these methods as
non-mathematical. L.E.J. Brouwer in the early twentieth century initiated intuitionist
movement in mathematics. His slogan was ‘‘nonconstructive arguments have no value for
mathematics’’. However, P. Erdös gotmany exciting results in discretemathematics bynon-
constructive methods. It is widely believed that these results either cannot be proved by
constructivemethods or the proofswould have been prohibitively complicated. The author
(Freivalds, 2008) [10] showed that nonconstructive methods in coding theory are related
to the notion of Kolmogorov complexity.
We study the problem of the quantitative characterization of the amount of noncon-

structiveness in nonconstructive arguments. We limit ourselves to computation by deter-
ministic finite automata. The notion of nonconstructive computation by finite automata is
introduced. Upper and lower bounds of nonconstructivity are proved.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The use of nonconstructive methods of proof in mathematics has a long and dramatic history. In 1888 a young German
mathematician David Hilbert presented to his colleagues three short papers on invariant theory. Invariant theory was the
highly estimated achievement of Paul Gordan who had produced highly complicated constructive proofs but left several
important open problems. The youngDavidHilbert had solved all these problems andhad donemuchmore. Paul Gordanwas
furious. Hewas not ready to accept the new solutions because they provided no explicit constructions. Hilbertmerely proved
that the solutions cannot fail to exist. Gordan refused to accept this as mathematics. He even used the term ‘‘theology’’ and
categorically objected to publication of these papers. Nonetheless the papers were published first in Göttingen Nachrichten
and later, in final form, in [14].
Later Hilbert had one more highly publicized controversy. This time Luitzen Egbertus Jan Brouwer was involved.

Following Henri Poincare’s ideas, Brouwer started a struggle against nonconstructive proofs. The intuitionist movement
was started in mathematics. This was part of the attempts to overcome the crisis in foundations of mathematics. Many
possible ways out of the crisis were proposed in twenties of the 20th century. Hilbert axiomatized geometry and wished
to axiomatize all mathematics. K. Gödel proved his famous incompleteness theorems and showed that the crisis cannot be
overcome so easily. Brouwer reasonably turned everybody’s attention to the fact that considering infinite sets as objectively
existing objects is dangerous and it can bring us to unforeseen conclusions not related to our experience. Brouwer challenged
the belief that the rules of the classical logic, which have come down to us essentially from Aristotle (384–322 B.C.) have an
absolute validity, independent of the subject matter to which they are applied. Nonconstructive proofs were to be thrown
out of mathematics.

E-mail address: Rusins.Freivalds@mii.lu.lv.

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.05.038

Author's personal copy

R. Freivalds / Theoretical Computer Science 411 (2010) 3436–3443 3437

In the forties the situation, however, changed. In spite of all philosophical battles the nonconstructive methods found
their way even to discrete mathematics. This was particularly surprising because here all the objects were finite and it
seemed that no kind of distinction between actual infinity and potential infinity could influence these proofswhilemost of the
discussions between intuitionists and classicistswere around these notions. Paul Erdös producedmanynice nonconstructive
proofs, the first paper of this kind being [6].
We try in this paper to go another step.We propose a quantitative approach tomeasure the amount of nonconstructivity

in a proof. A notion of nonconstructive computation is introduced as a result of examination of examples of nonconstructive
proofs [3,4,8–10,19]. This notion can easily be used formany types of automata andmachines. In this paperwe prove several
upper and lower bounds for the amount of nonconstructivity in nonconstructive deterministic finite 2-way automata. This
type of automata is sufficiently simple but it allows nontrivial constructions.
Karp and Lipton have introduced in [15] a notion Turing machine that takes advice which is practically the same notion

for Turing machines as our nonconstructive computation by finite automata below. Later Damm and Holzer have adapted the
notion of advice for finite automata. Since therewas no reference to intuitionism in [15], the adaptationwas performed in the
most straightforward way (what is quite natural). However the notion of finite automata that take advice in [5] differs from
our notion very much. These notions are equivalent for large amounts of nonconstructivity (or large amounts of advice) but,
for the notion introduced in [5] and later extensively used byYamakami andhis coauthors [22,18,21], languages recognizable
with polynomial advice are the same languages which are recognizable with a constant advice. Our notion of the amount of
nonconstructivity is such that our most interesting results concern the smallest possible amounts of nonconstructivity.
A similar situation was in the sixties of the 20th century with space complexity of Turing machines. At first, space

complexity was considered for one-tape off-line Turing machines and it turned out that space complexity is never less
than linear. However, it is difficult to prove such lower bounds. Then the seminal paper by Stearns et al. [20] was published
and many-tape Turing machines became a standard tool to study sublinear space complexity.

2. Re-examining nonconstructive proofs

2.1. Codes and Kolmogorov complexity

The textbook [13] contains

Theorem 1 ([13]). For any integer n ≥ 4 there is a [2n, n] binary code with a minimum distance between the codewords at least
n/10.

However the proof of this theorem in [13] has an unusual property. It is nonconstructive. It means that we cannot find
these codes or describe them in a useful manner. This is why P. Garrett calls themmirage codes.
The paper [10] was written to prove that the size (i.e., the number of states) of a deterministic finite automaton and

the size of a probabilistic finite automaton recognizing the same language can differ exponentially, thus concluding a long
sequence of papers describing the gap between the size of deterministic and probabilistic finite automata recognizing the
same language.
A counterpart of Theorem 1 for cyclic linear codes was needed, but an attempt to prove it failed. Instead of cyclic gen-

erating matrices a slightly different kind of generating matrices was considered. Let p be an odd prime number, and x be a
binary word of length p. The generating matrix G(p, x) has p rows and 2p columns. Let x = x1x2x3 . . . xp. The first p columns
(and all p rows) form a unit matrix with elements 1 on the main diagonal and 0 in all the other positions. The last p columns
(and all p rows) is a cyclic matrix with x = x1x2x3 . . . xp as the first row, x = xpx1x2x3 . . . xp−1 as the second row, and so on.
We will refer below the generating matrices with this property as bi-cyclic.
The notion of Kolmogorov complexity was used to prove the counterpart of Theorem 1 for the codes with a bi-cyclic

generating matrix.

Definition 1. We say that the numbering Ψ = {Ψ0(x),Ψ1(x),Ψ2(x), . . .} of 1-argument partial recursive functions is
computable if the 2-argument function U(n, x) = Ψn(x) is partial recursive.

Definition 2. We say that a numberingΨ is reducible to the numbering η if there exists a total recursive function f (n) such
that, for all n and x, Ψn(x) = ηf (n)(x).

Definition 3. We say that a computable numbering ϕ of all 1-argument partial recursive functions is Gödel numbering if
every computable numbering (of any class of 1-argument partial recursive functions) is reducible to ϕ.

Theorem 2 ([7]). There exists a Gödel numbering.

Definition 4. We say that a Gödel numbering ϑ is a Kolmogorov numbering if for arbitrary computable numbering Ψ (of
any class of 1-argument partial recursive functions) there exist constants c > 0, d > 0, and a total recursive function f (n)
such that:

1. for all n and x, Ψn(x) = ϑf (n)(x),
2. for all n, f (n) ≤ c · n+ d.

Author's personal copy

3438 R. Freivalds / Theoretical Computer Science 411 (2010) 3436–3443

Theorem 3 ([16]). There exists a Kolmogorov numbering.

Definition 5. We say that a binary word w has Kolmogorov complexity s with respect to the Kolmogorov numbering ϑ if
the least value of n such that ϑ(n) = ω where ω is a natural number whose binary representation equalsw.

Unfortunately (or fortunately) there are infinitely many distinct Kolmogorov numberings. Nonetheless, the Kolmogorov
complexities of the same word with respect to distinct Kolmogorov numberings differ at most by an additive constant.
The Kolmogorov complexity is usually understood as the degree of the extent how much the word can be compressed
without loss of information. For an individual word itmay be difficult to implement this semantics but if we consider infinite
sequences of words then this semantics is applicable to all sufficiently long words.
The crucial point in the proof of the main result of [10] was the following lemma.

Lemma 1 ([10]). If p is a sufficiently large prime, and the word x = x1x2x3 . . . xp in the definition of a bi-cyclic matrix has
Kolmogorov complexity p− o(p) then the Hamming distance between arbitrary two codewords is at least 4p19 .

Kolmogorov complexity brings in an element of nonconstructivity. Indeed, no algorithm can exist finding such a word
x = x1x2x3 . . . xp for a given p. Such words merely exist. Moreover, nearly all the words of the length p have this property.
However, every algorithm producing the needed words inevitably fails. On the other hand, if somebody from outside could
help us and provide us with a word x = x1x2x3 . . . xp with the property ‘‘Kolmogorov complexity of this word is maximal
possible for the words of this length’’, we would be able to construct the bi-cyclic generating matrix.

2.2. Kolmogorov complexity of recursively enumerable sets

Bārzdiņš [3] studied the Kolmogorov complexity of binary words of length n expressing whether a natural number x
(where 0 ≤ x ≤ n − 1) belongs to a recursively enumerable set. Recursively enumerable sets are those for which an
algorithm exists enumerating (not always in an increasing order) all the elements of the set.
The resultwas surprising. It turned out that Kolmogorov complexity of suchwords never exceed log n. Themain technical

lemma from Bārzdiņš’ paper can be reformulated as follows.
There is no algorithm uniform in n such that it would showwhich numbers belong to the recursively enumerable set and

which ones do not belong. However, whenwe are trying to decidewhich natural numbers x (where 0 ≤ x ≤ n−1) belong to
the recursively enumerable set, somebody from outside would come and provide us with the number of the natural number
y such that 0 ≤ y ≤ n− 1 and the enumerating algorithm lists this y as the last among the numbers x from the elements of
the recursively enumerable set such that 0 ≤ x ≤ n− 1, then we would be able to construct the needed decision algorithm
for the initial fragment 0 ≤ x ≤ n− 1 ourselves.

2.3. Learning programs for total functions

Podnieks studied learning in the limit programs of total recursive functions by deterministic and probabilistic learning
algorithms. Among other results he produced two theorems on deterministic learning in the limit of indices of total recursive
functions in numberings defined by a total universal function of two arguments U(n, x) = fn(x).

Theorem 4 ([12,19]). If the numbering U is such that the algorithmic problem of equivalence of indices is decidable, then there
is a learning algorithm which makes on any function fi(x) (where 0 ≤ i ≤ n) no more than g(n) mindchanges where g(n) is a
total recursive function arbitrarily slowly monotonically growing to infinity.

Theorem 5 ([4]). There is a numbering U such that an arbitrary learning algorithm for infinitely many values of n makes on
some function fi(x) (where 0 ≤ i ≤ n) no less than n2 mindchanges.

We can re-interpret K. Podnieks’ results as follows. The learning of indices of total recursive functions in numberings
defined by a total universal function of two arguments U(n, x) = fn(x) demands in general n2 mindchanges for infinitely
many functions fn(x). However, if somebody from outside could come and provide us with the information which indices
are equivalent and which ones are not, then we would be able to construct the needed learning algorithm with far less
mindchanges.

3. Definitions

All three examples considered in the previous section have something in common. An algorithm is presented in a
situation where (seemingly) no algorithm is possible. However, this algorithm has an additional input where a special help
is fed in. If this help is correct, the algorithm works correctly. On the other hand, this help on the additional input does not
just provide the answer. There still remains much work for the algorithm.
Is this nonconstructivism merely a version of nondeterminism? Not at all. The construction of bi-cyclic generating

matrices for codes in Section 2.1 had nothing to do with existence of certain inputs. If the Kolmogorov complexity of a
word is high, then its Hamming distance is large.

Author's personal copy

R. Freivalds / Theoretical Computer Science 411 (2010) 3436–3443 3439

The additional information about the recursively enumerable sets in Section 2.2 always exists. If this information is
provided correctly, the algorithm is correct. The answer YES or NO depends on x and the additional information is much
more compact than a list of all the answers.
The additional information in the index learning problem in Section 2.3 also does not provide the needed answers directly.

Surely it is also not a version of nondeterminism.
All these examples naturally lead to the following notion of nonconstructive computation.

Definition 6. We say that an automaton A recognizes the language L nonconstructively if the automaton A has an input tape
where a word x is read and an additional input tape for nonconstructive help y with the following property. For arbitrary
natural numbers n there is a word y such that for all words x whose length does not exceed n the automaton A on the pair
(x, y) produces the result 1 if x ∈ L, and A produces the result 0 if x /∈ L. Technically, the word y can be a tuple of several
words and may be placed on separate additional input tapes.

Definition 7. We say that an automaton A recognizes the language L nonconstructively with nonconstructivity d(n) if the
automaton A has an input tape where a word x is read and an additional input tape for nonconstructive help y with the
following property. For arbitrary natural numbers n there is a word y of the length not exceeding d(n) such that for all
words x whose length does not exceed n the automaton A on the pair (x, y) produces the result 1 if x ∈ L, and A produces
the result 0 if x /∈ L. Technically, the word y can be a tuple of several words and may be placed on separate additional input
tapes. In this case, d(n) is the upper bound for the total of the lengths of these words.

The automaton A in these definitions can be a finite automaton, a Turing machine or any other type of automata or
machines. In this paper we restrict ourselves by considering only deterministic finite automata with 2-way behavior on
each of the tapes.
This way, we can characterize the amount of nonconstructivity in the nonconstructive algorithms considered in

Sections 2.1–2.3. Freivalds’ nonconstructive algorithm for construction of bi-cyclic generating matrices of size 2n × n has
nonconstructivity n. Bārzdiņš’ nonconstructive algorithm for construction of decision algorithm for initial fragments [0, n−
1] of characteristic functions of recursively enumerable languages has nonconstructivity log n. Podnieks’ nonconstructive
algorithm for learning in the limit of indices of total recursive functions in numberings defined by a total universal function
of two arguments U(m, x) = fm(x) with at most g(n) mindchanges for all the functions in the set f0(x), . . . , fn−1(x) has
nonconstructivity const.n2. Of course, these are only upper bounds. It is quite possible that for some of these problems
nonconstructive algorithms with a lesser nonconstructivity are possible. (This is not the case for recursively enumerable
languages since Bārzdiņš has also proven a tight lower bound for the Kolmogorov complexity of recursively enumerable
languages.)

4. Results on finite automata

Theorem 6. There exists a nonregular (and even a nonrecursive) language L such that it can be nonconstructively recognized
with nonconstructivity n.

Proof. Let a1, a2, a3, . . . be an infinite sequence of zeros and ones. We define the language L as follows. A word x is in L iff it
coincides with some initial fragment of the sequence a1, a2, a3,
If the sequence is not recursive then the language is also nonrecursive. On the other hand, the nonconstructive automaton

with the nonconstructive help a1, a2, a3, . . . , an is able to provide the results whether the given wordw is in L for all binary
words of the length not exceeding n. �

Theorem 7. For the language L in the proof of Theorem 6 , if h(n) is a total function such that log2 n = o(h(n)), then no
nonconstructive 2-way deterministic finite automaton can recognize L with nonconstructivity (n− h(n)).

Proof. Martin-Löf [17] proved that there exists an infinite sequence a1, a2, a3, . . . such that infinitelymany initial fragments
of it have Kolmogorov complexity n and all the initial fragments of it have Kolmogorov complexity no less than n−Ω(log2 n).
(He also proved that there are no infinite binary sequences with a higher Kolmogorov complexity.) Take this sequence.
Consider the corresponding language L. Assume from the contrary that there exists a nonconstructive deterministic finite
automaton such that for infinitely many values of n the nonconstructivity is less than (n− h(n)). From the given program of
the automaton and from the given nondeterministic help one can algorithmically reconstruct the values a1, a2, a3, . . . , an.
Hence Kolmogorov complexity of the initial fragment a1, a2, a3, . . . , an exceeds the length of the nonconstructive help no
more than by a constant and the initial fragment has Kolmogorov complexity no higher than (n− h(n)). Contradiction. �

Theorem 8. For arbitrary natural numbers k there exists a nonregular language L such that it can be nonconstructively recognized
with nonconstructivity not exceeding n

1
k .

Proof. At first we consider the language L consisting of all the words

0m10m10m1 . . . 10m

where the number of arrays of zeros is the same as the length of these arrays.

Author's personal copy

3440 R. Freivalds / Theoretical Computer Science 411 (2010) 3436–3443

Can we use 0m as the help-word? Indeed, this help-word helps for 0m10m10m1 . . . 10m. However, our definition of
nonconstructive computation demands that the help-word works for all the shorter input words as well. Unfortunately,
0m does not help for shorter words. The help-word 011021031 . . . 10m works both for 0m10m10m1 . . . 10m and for all the
shorter input words. Unfortunately, the length of this help-word is O(n).
Now we consider the language consisting of all the words

0m10m10m1 . . . 10m20m10m10m1 . . . 10m2 . . . 20m10m10m1 . . . 10m.

This language can be helped by the same help-word 011021031 . . . 10m and this help-word works for all input words the
length of which does not exceedm3. Hence the length of the help-word in terms of the length of the input word is n

1
3 .

This idea can be extended evenmore, and the language can be consideredwhich consists of all thewordsw23w23 . . . 3w2
where

w2 = 0m10m10m1 . . . 10m20m10m10m1 . . . 10m2 . . . 20m10m10m1 . . . 10m.

This language can be helped by the same help-word 011021031 . . . 10m. This reduces the length of help-word to n
1
3 .

Iterating this idea r times, we get the length of the help-word n
2
r which can be made smaller than any n

1
k .

This way, we have constructed a language in an alphabet consisting of more than two letters. There is no difficulty to
encode the input words in a binary alphabet not damaging recognizability of the language. �

Theorem 9. There exists a nonregular language L and a function g(n) such that L can be nonconstructively recognized with
nonconstructivity g(n) and log n ≤ g(n) ≤ (log n)2.

Proof. The language L consists of all binary words in the form 0m20k such that k > 0 is a multiple of the product of the first
m primes (where p1 = 2, p2 = 3, p3 = 5, . . .). The help-word is

0p110p210p31 . . . 10pm .

The nonconstructive automaton has 2-way heads on the two tapes. This allows it to check whether the length k of the array
0k is a multiple of p1 being the length of the first array of zeros on the help-tape, whether the length k of the array 0k is a
multiple of p2 being the length of the second array of zeros on the help-tape, etc.
If the input word w has a prefix 0m1 and w ∈ L then the length of w is at least the product of all first m primes. This

product is called primorial of m and it is known that Primorial(m) ≈ em lnm (see e.g. [2]). The length of the help-word that
helps for all the input words with such a prefix is

Σ(m) =
m∑
s=1

ps + (m− 1).

It is known that

Σ(m) ≈
1
2
m2 lnm.

However, it is not true that all the input words of such a length have the considered prefix. It may happen that the prefix
contains more zeros before the first symbol 1. Nonetheless, the help-word described above works for such input words as
well. Indeed, if the input word w has a prefix 0r1 and r > m and the length of w is less than Primorial(m) then w /∈ L. On
the other hand, |w| < Primorial(m) implies that there exists a natural number u such that |w| does not divide pu and the
help-word described above provides the needed result NO. �

Theorem 10. If a language L can be nonconstructively recognized with a nonconstructivity bounded by a function d(n) =
o(log n), then L is regular.

Proof. Our proof is based on the following feature of the definition of nonconstructiveness. We have demanded that for
arbitrary natural numbers n there is a word y such that for all words x whose length does not exceed n the automaton A
on the pair (x, y) produces a correct result. Let A be a deterministic finite automaton nonconstructively recognizing L, and
d(n) be the smallest possible length of the help-word for the words x of the length n. Assume from the contrary that d(n)
grows to infinity. It follows that for arbitrary n and for arbitrary y with |y| < d(n) there exists a word x(y) such that the
automaton A on x(y) produces a wrong result with the help y. By xn(y)we denote the shortest word x(y) such that A on x(y)
produces a wrong result with the help y. Denote the length of xn(y) bym. Let y(m) be the shortest possible help-word such
that A produces correct results for all input words of the length not exceedingm. Clearly, |y(m)| ≤ d(m). Hence A produces
on xn(y) a correct result with the help y(m) and a wrong result with the help y.
The automaton A is two-way on each of the tapes. For arbitrary k we consider the set of all possible configurations of

the memory and the help-tape at moments when the head on the work-tape in on the distance k from the beginning of the
input word. By B(k) we denote such a set of configurations for A on x0 with the help y(n) and by C(k) we denote such a set
of configurations for A on x0 with the help y(m).
Each of the sets B(k) and C(k) consists of nomore than const.d(m) elements. Hence there can be nomore than exp(d(m))

distinct sets B(k), exp(d(m)) distinct sets C(k), and exp(d(m)) distinct pairs (B(k), C(k)). Since d(n) = o(log n), there exist

Author's personal copy

R. Freivalds / Theoretical Computer Science 411 (2010) 3436–3443 3441

two distinct k and l such that both B(k) = B(l) and C(k) = C(l). Cutting out the fragment between the k-th and the l-th
symbols from xn(y) we get a word named x1 shorter than xn(y). The automaton A produces on x1 with the help y(m) the
same result as on x1 and this is a correct result, by the definition of y(m). The automaton A produces on x1 a different result
on x1 with the help y (because the result on xn(y) and the result on x1 is the same). Hence xn(y) is not the shortest word such
that A produces a wrong result with the help y. Contradiction.
We have proved that the nonconstructivity is bounded by a constant. Hence there is a help-word which fits for infinitely

many n. We can conclude that this help-word fits for all input words x. This universal help-word can be incorporated into
the automaton, andwe get a deterministic finite 2-way automaton recognizing the languagewithout any help from outside.
It follows that the language is regular. �

Theorem 11. There exists a nonrecursive language L and a function g(n) such that L can be nonconstructively recognized by a
DFA with a nonconstructivity g(n) ∈ polylog(n).

Proof. To define the language we need an infinite nonrecursive binary sequence r1, r2, r3, By pi we denote the i-th
prime (p1 = 2, p2 = 3, p3 = 5, . . .). We define a sequence si depending on ri:

si =
{
p2i if r(i) = 0,
p2i+1 if r(i) = 1.

The language L consists of all binary words in the form 0m20k such that k > 0 is a multiple of the product of the first m
numbers in the sequence s1, s2, s3, The help-word is 0s110s210s31 . . . 10sm . �

5. Arbitrary languages

Theorem 12. Every language L over the binary alphabet {0, 1} can be recognized nonconstructively with nonconstructivity
O(n2n).

Proof. The idea is to encode the language as word/answer pairs in the help-word.
We will use the ternary alphabet 0, 1, 2 for our help-word. Suppose that our help-word will have to work for all input

words of length not exceeding n. The help-wordwill be the concatenation of ‘‘w2aw2’’ for allwordsw of length not exceeding
n, where aw is defined to be 1 ifw is in L and 0 otherwise. The order in which these strings are to be concatenated does not
matter to our automaton.
The automaton compares the input word with every wordw encoded in the help-word and returns the answer aw if the

input word is equal tow. The automaton moves on to the next word if it is not.
Each of the possible input words on the help-word tape has length equal or less than to n. There are exactly 2n + 2n−1 +

· · · + 1 = 2n+1 − 1 possible input words in the help-word together with 2n+1 − 2 boundary markers. Therefore the total
length of the help-word is O(n2n). �

The above theorem is provided because of its simplicity. However it is strengthened below.
A k-ary De Bruijn sequence B(k, n) of order n, named after the Dutch mathematician Nicolaas Govert de Bruijn, is a cyclic

sequence of a given alphabet A with size k for which every possible subsequence of length n in A appears as a sequence of
consecutive characters exactly once.
According to De Bruijn himself,[1] the existence of De Bruijn sequences for each order together with the above properties

were first proved, for the case of alphabets with two elements, by Camille Flye Sainte-Marie in 1894, whereas the
generalization to larger alphabets is originally due to Tanja van Aardenne-Ehrenfest and himself.

Theorem 13 (De Bruijn Sequence [1]). For every positive integer n and every alphabet Awith size k there exists a sequence B(k, n)
with length kn + n− 1 that contains every n character substring over A exactly once. �

For example, the sequence ‘‘0001011100’’ is a de Bruijn sequence B(2, 3), because it contains all three digit sequences
000, 001, . . . , 110, 111 as substrings.

Theorem 14. Every language L over the c-ary alphabet {0, 1, . . . , c − 1} can be recognized nonconstructively with
nonconstructivity O(cn).

Proof. The idea is to do a space-efficient encoding of all possible input words.
The help-word will be taken over the (c + 1)-ary alphabet {0, 1, . . . , c − 1, X}.
For a fixed de Bruijn sequence B(c, k) we define H(k) to be a binary sequence of length 2(ck + k − 1) with its i-th term

defined to be:

H(k)2i−1 = B(c, k)i

H(k)2i =
{
0, if i < k or word B(c, k)i−k+1 . . . B(c, k)i is not in L
1, otherwise.

This definition means that H(k) essentially has every k digit sequence S as a subsequence of its odd-numbered terms,
moreover, having located S we can easily check if S is in L, by the definition of H(k)’s even-valued terms.

Author's personal copy

3442 R. Freivalds / Theoretical Computer Science 411 (2010) 3436–3443

We define our help-word as H(0)XH(1)X . . . XH(n).
For input word of length i automaton can position itself on the first character of H(i) by skipping over i c+1’s. After this

step the automaton continues by checking the odd-numbered characters of H(i) to find the input word. When the input
word is found as a subsequence ofH(i)j terms for odd j, the automaton reads the answer, which is exactly the next character
on the help-word. �

Theorem 15. There exists a language L such that it cannot be nonconstructively recognized with nonconstructivity less than 2n.

Proof. Take the sequence constructed by Martin-Löf in [17]. Define the language L by taking, for arbitrary n, its initial
fragment of the length 2n+1 and using these bits as values for ch(wm) where m = 2n+1. Martin-Löf in [17] proved that
infinitely many initial fragments of his sequence have Kolmogorov complexity n and all the initial fragments of it have
Kolmogorov complexity no less than n− O(log2 n).
Assume from the contrary that there exists a nonconstructive deterministic finite automaton such that for infinitelymany

values of n the nonconstructivity is less than (2n − O(2n)). From the given program of the automaton and from the given
nondeterministic help one can algorithmically reconstruct the values a1, a2, a3, . . . , an. Hence Kolmogorov complexity of
the initial fragment a1, a2, a3, . . . , an exceeds the length of the nonconstructive help no more than by a constant and the
initial fragment has Kolmogorov complexity no higher than (2n − O(2n)). Contradiction. �

Theorem 16. There exists a language L in a binary alphabet such that it cannot be nonconstructively recognized by a DFA with a
nonconstructivity less thanΩ(2n).

Proof. ‘Martin-Löf in [17] proved that there exists an infinite sequence a1, a2, a3, . . . such that infinitely many initial
fragments of it have Kolmogorov complexity n and all the initial fragments of it have Kolmogorov complexity no less than
n − O(log2 n) (he also proved that there are no infinite binary sequences with a higher Kolmogorov complexity). A string
of length n has Kolmogorov complexity of O(f (n)) means that there is no way of describing that string by using less than
O(f (n)) bits of information.
Let ch(w) be the characteristic function of language L:

ch(w) =
{
0, ifw ∈ L
1, ifw /∈ L.

We define this language as:

ch(wi) = ith symbol in Martin-Löf sequence

wherewi is the i th binary word in ordering ε, 0, 1, 00, 01, 10, 11, 000, 001,
Assume from the contrary that there exists a deterministic finite automaton such that for all values of n the noncon-

structivity is less than Ω(2n). From the given program of the automaton and from the given nondeterministic help yn one
can algorithmically reconstruct the values a1, a2, a3, . . . , a2n of Martin-Löf sequence. Hence Kolmogorov complexity of the
initial fragment a1, a2, a3, . . . , a2n for every n exceeds the length of the nonconstructive help yn by no more than a constant
and this initial fragment of length 2n has Kolmogorov complexity less thanΩ(2n). But this is a contradiction to properties
of Martin-Löf sequence. �

This paper is an extended version of [11] presented at CIAA 2009. Section 5 is new.

Acknowledgements

The research was supported by Grant No. 09.1570 from the Latvian Council of Science and by Project 2009/0216/1DP/
1.1.2.1.2/09/IPIA/VIA/004 from the European Social Fund.

References

[1] Tanja van Aardenne-Ehrenfest, Nicolaas Govert de Bruijn, Circuits and trees in oriented linear graphs, Simon Stevin 28 (1951) 203–217.
[2] Eric Bach, Jeffrey Shallit, Algorithmic Number Theory, Vol. 1, MIT Press, 1996.
[3] Jānis Bārzdiņš, Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set, Soviet
Mathematics Doklady 9 (1968) 1251–1254.

[4] Jānis Bārzdiņš, Kārlis Podnieks, Towards a theory of inductive inference, in: Proceedings of 2nd Symposium and Summer School on Mathematical
Foundations of Computer Science, Štrbske Pleso, High Tatras, Czechoslovakia, 1973, pp. 9–15.

[5] Carsten Damm, Markus Holzer, Automata that take advice, Lecture Notes in Computer Science 969 (1995) 565–613.
[6] Paul Erdös, Some remarks on the theory of graphs, Bulletin of the American Mathematical Society 53 (4) (1947) 292–294.
[7] Yuri Leonidovich Ershov, Theory of numberings, in: E.R. Griffor (Ed.), Handbook of Computability Theory, North-Holland, Amsterdam, 1999,
pp. 473–503.

[8] Rūsiņš Freivalds, Complexity of probabilistic versus deterministic automata, Lecture Notes in Computer Science 502 (1991) 565–613.
[9] Rūsiņš Freivalds, Non-constructive methods for finite probabilistic automata, Lecture Notes in Computer Science 4588 (2007) 169–180.
[10] Rūsiņš Freivalds, Non-constructive methods for finite probabilistic automata, International Journal of Foundations of Computer Science 19 (3) (2008)

565–580.
[11] Rūsiņš Freivalds, Amount of nonconstructivity in finite automata, Lecture Notes in Computer Science 5642 (2009) 227–236.
[12] Rūsiņš Freivalds, Jānis Bārzdiņš, Kārlis Podnieks, Inductive inference of recursive functions: complexity bounds, Lecture Notes in Computer Science

502 (1991) 111–155.

Author's personal copy

R. Freivalds / Theoretical Computer Science 411 (2010) 3436–3443 3443

[13] Paul Garrett, The Mathematics of Coding Theory, Pearson Prentice Hall, Upper Saddle River, 2004.
[14] David Hilbert, Über die Theorie der algebraischen Formen, Mathematische Annalen 36 (1890) 473–534.
[15] Richard M. Karp, Richard Lipton, Turing machines that take advice, L’Enseignement Mathematique 28 (1982) 191–209.
[16] Andrei Nikolaevich Kolmogorov, Three approaches to the quantitative definition of information, Problems in Information Transmission 1 (1965) 1–7.
[17] Per Martin-Löf, The definition of random sequences, Information and Control 9 (6) (1966) 602–619.
[18] Harumichi Nishimura, Tomoyuki Yamakami, Polynomial time quantum computation with advice, Information Processing Letters 90 (4) (2004)

195–204.
[19] Kārlis Podnieks, Computational complexity of prediction strategies, in: Theory of Algorithms and Programs, vol. 3, Latvia State University, 1977,

pp. 89–102 (in Russian).
[20] Richard Edwin Stearns, Juris Hartmanis, Philip M. Lewis II, Hierarchies of memory limited computations, in: Proceedings of FOCS, 1965, pp. 179–190.
[21] Kohtaro Tadaki, Tomoyuki Yamakami, Jack C.H. Lin, Theory of one tape linear time turing machines, Lecture Notes in Computer Science 2932 (2004)

335–348.
[22] Tomoyuki Yamakami, Swapping lemmas for regular and context-free languages with advice, The Computing Research Repository (CoRR), CoRR

abs/0808.4122, 2008.

