Proceedings of the Ninth International Baltic Conference — Baltic DB&IS 2010

An Implementation of Self-Testing

Edgars Diebelis, Prof. Dr. Janis Bicevskis

Datorikas Institiits DIVI, A.Kalnipa str. 2-7, Riga, Latvia
Edgars.Diebelis@di.lv, Janis, Bicevskis@di.lv

Abstract. This paper is devoted to the analysis of advantages and implementa-
tion mechanisms of self-testing, which is one of the smart technologies. Self-
testing contains two components: full set of test cases and built-in testing
mechanism (self-testing mode). The test cases have been collected since project
start and they have been used in integration, accepiance and regression testing.
The built-in self-testing mode provides execution of test cases and comparison
of test results with saved standard values in different environments. This paper
continues the approach described in article Self-Testing - New Approach to
Software Quality Assurance, expanding it with the concept of a test point,
which allows flexible defining of execution points of testing actions. Further-
more, the paper describes the first implementation of self-testing using test
points.

Keywords: Testing, Smart technologies, Self-testing.

1 Introduction

The self-testing is one of the features of smart technologies [1]. The concept of smart
technologies proposes to equip software with several built-in self-regulating
mechanisms, which provide the designed software with self-management features and
ability to react adequately to the changes in external environment similarly to living
beings. The necessity of this feature is driven by the growing complexity of
information systems and the fact that users without profound IT knowledge can
hardly use such complex systems. The concept of smart technologies besides a
number of significant features also includes external environment testing [2, 3],
intelligent version updating [4], integration of the business model in the software [5].
The concept of smart technologies is aiming at similar goals as the concept of
autonomous systems developed by IBM in 2001 [6, 7, 8]. Both concepts aim at
raising software intellect by adding a set of non-functional advantages - ability to
adapt to external situation, self-renewing, self-optimizing and other advantages.
However, features and implementatton mechanisms of both concepts differ
significantly. The autonomous systems are built as universal and independent from
properties of a specific system. As a rule, they function outside of a specific system
and cooperate on the level of application interface. Hence, we may consider the
autonomous systems being more like environmental properties than specific systems.
Whereas the features of smart technologies provide a scaffolding, which is filled with
functional possibilities of a specific system, thus integrating the implementation

DBIS-2010-maicets-A.indd 487 43.06.2010. 21:06:18



488 E. Diebelis and J. Bicevskis

modules of smart technologies with the modules of a specific system. Therefore,
further development of both concepts is highly valuable.

The first results of practical implementation of smart technologies are available.
Intelligent version updating software was developed and is used in practice in a
number of Latvian national-scale information systems, the largest of which, FIBU,
manages budget planning and performance control in more than 400 government and
local government organisations with more than 2000 users [4]. Firstly, external
environment testing [3] is used in FIBU, where the key problem is the management of
operating systems and software versions for the large number of territorially
distributed users. Secondly, external environment testing is employed by the Bank of
Latvia in managing operations of many systems developed independently.. The use of
smart technologies has proved to be effective in both cases [9]. The third instance of
the use of smart technologies is the integration of a business model and an application
[5]. The implementation is based on the concept of Model Driven Architecture
(MDA) [10], and it is used in developing and maintaining several event-oriented
systems, The use of smart technologies has been proven to be effective according to
the results obtained in practical use. This study continues the research of the
applicability of smart technologies in software testing.

Self-testing provides the software with a feature to test itself automatically prior to
operation; it is similar to how the computer itself tests its readiness for operation
when it is turned on. By turning on the computer self-testing is activated: automated
tests are run to check that the required components, like hard disc, RAM, processor,
video card, sound card etc, are in proper working order. If any of the components is
damaged or unavailable, thus causing operation failure, the user receives notification.
The purpose of self-testing is analogical to turning on the computer: prior to using the
system, it is tested automatically that the system does not contain errors that hinder
the use of the system.

The paper is composed as follows: To explain the essence of the self-testing ap-
proach, the first section repeats in brief the ideas on the self-testing method and deals
with its modes [11, 12]. Section 2 looks at the approach for determining the state of
database prior to system self-test, and Section 3 deals with the concept of test point,
and Section 4 describes in brief the technical implementation of self-testing.

As of writing this paper, the first version of the self-testing software has been de-
veloped; it contains a test control block (test execution and test result control) and a
self-testing software library, which contains the functions included in the system to be
tested. Technology of self-testing could be approbating for different applications.
Now the self-testing technology is being approbated for using in securities and cur-
rency accounting system applications in banking.

2 Method of Self-Testing

The main principles of self-testing are:

» Software is delivered together with the test cases used in automated self-testing;
o Regression testing of full critical functionality before every release of a version;
¢ Testing can be repeated in production, without impact on the production database.

DBIS-2010-makets-A.indd 488 03,06,2010, 21:06;18



An Implementation of Self-Testing 489

As shown in [11, 12], self-testing contains two components:

o Test cases of system’s critical functionality to check functions, which are
substantial in using the system;

e Built-in mechanism (software component) for automated software testing
(regression testing) that provides automated executing of test cases and comparing
the test results with the standard values.

The defining of critical functionality and preparing tests, as a rule, is a part of
requirement analysis and testing process. The implementation of self-testing requires
at least partial inclusion of testing tools functionality in the designed system. The
implementation of self-testing functionality results in complementing the designed
system with self-testing functionality calls and a library of self-testing functions (.dll
file). Certainly, the implementation of self-testing features requires additional efforts
during the development of the system. However, these efforts are justified by many
advantages obtained in development and in long-term maintenance of a high quality
system in particular.

The main feature of self-testing is ability to test the software at any time in any
environment - development, test and production environments. While developing the
mechanism of self-testing the developers may not enter the information into
production database; however, they can be used in read-only mode. Hence, it is
possible to implement testing in test or production environment without any impact
on system use. Of course, it is useful to complement the set of tests with recent
system modifications to ensure that testable critical functionality in self-testing is
covered.

2.1 Self-testing software

The self-testing software is partly integrated in the testable system, which has several
operating modes; one of them is self-testing mode when an automated execution of
testing (process of testing) is available to the user. After testing, the user gets a testing
report that includes the total number of tests executed, tests executed successfully,
tests failed and a detailed failure description. The options provided by self-testing
software are similar to the functionality of testing support tools.

2.2 Phases of system testing

In order to ensure development of high quality software, it is recommendable to
perform testing in three phases in different environments [11]:

e Development environment - in this environment the system has been developed,
errors are corrected and system patches are made;,

e Test environment - this environment is used to test error corrections and
improvements. In order to replicate situations in the production environment in test
environment, at least, for example, once a month production environment should
be renewed from a backup in test environment;

DBIS-2010-makets-A.indd 489 03.06.2010. 21:06:18



490 E. Diebelis and J. Bicevskis

¢ Production environment - this environment is used by the system users. Patches
and improvements are set only after obtaining successfully testing results in
development and test environments.

Testing phases are described in detail in the article Self-Testing - New Approach to
Software Quality Assurance {11]. '

2.3 Modes of self-testing

As shown in [11], the self-testing functionality can be used in the following modes:

o Test storage mode. In this mode, new test cases are defined or existing test cases
are edited/deleted. The system logs all necessary information of reading-writing
and managing actions by recording them into the test storage file. To provide the
self-testing mode in the production environment, an additional database, in which
test cases are registered and executed, is used. In the case of production
environment, during test storage mode the real database is accessible in the read-
only mode. Neither development, nor testing environment requires an additional
database, since one database is used for both storing and playing back tests. The
results of system operation are stored in the test storage file. Moreover, users can
use this mode to report bugs — the user can record the failed test case and forward it
together with the description of error to the developer. As a rule, test cases are
made according to the developer’s interpretation of sofiware specification. In the
course of time, the amount and content of test cases increases due to system’s
evolution.

Application to be tested

Test
storage file

Database

Fig. 1. Test Storage Mode

1. The user registers a test case in the test storage mode. The user uses the same ap-
plication that is used for daily business purposes.

2. In the test storage mode, the application registers in the test file the actions per-
formed in the system.

3. If data storing is performed in the application, the data are stored in the database.
In the case of production environment, the related data are read from the real data-

DBIS-2010-makets-A.indd 490 03.06.2010. 21:06:18



An Implementation of Self-Testing 491

base, while the storing is done in the test registration and execution database, not in
the real database.

» Self-testing mode. In this mode, automated self-testing of the software is done by
automatically executing the stored test cases. Test input data are read from the test
file. In the development and testing environments, test cases are executed in one
database. In the production environment, the test storage and execution database is
used. In the self-testing mode, the real database of the production environment i3
accessible in the read-only mode

Comparison of
test files

Test controi block

Test
storage file
{XML)

Application to be tested

Application to be tested

Test

Application to be tested storage file
{XML}

Database

Fig. 2. Self-Testing Mode

—

To call system self-test, the user opens the test control block window.

2. The user loads the list of the available test files and selects the tests files to be exe-
cuted.

3. The test control block reads information from the test file and executes it; the ac-
tions specified in the test file are performed.

4, In the self-testing mode, similarly to the test storage mode, a test file is created.
The test file is created using the same approach as in the test storage mode.

5. If data storing is performed in the test case, the data are stored in the database. In
the case of production environment, the related data are taken from the real data-
base, while the storing is done in the test registration and execution database, not in
the real database.

6. After the testing, the file created in the test storage mode is compared with the file

created in the self-testing mode. If the contents of the files match, the test case has

DBIS-2010-makeis-A.indd 491 03.06.2010. 21:06:19



492 E. Diebelis and J. Bicevskis

been successful; if they do not match, the test case has failed. Information about
test results is displayed in the user’s test control block, where, if the test case has
failed, the user can find detailed information about the reasons of the failure.

e Use mode. In this mode, there are no testing activities — the user simply uses the
main functionality of the system.

¢ Demonstration mode. The demonstration mode can be used to demonstrate
system’s functionality. User can perform system demonstrations, by using stored
test cases in test storage files. During demonstration mode, form fields are
automatically filled with test data from the test storage file, thus demonstrating the
functionality of the system. Since test cases are taken from the test storage file, the
demonstrator may rely that the demonstration will be always successful, avoiding
any inconveniences and errors during the presentation. The demonstration mode
process corresponds with the self-testing process (Fig. 2. Self-Testing Mode). The
difference between the processes is that self-testing is performed in a mode invisi-
ble to the user, whereas the demonstration is performed step by step in a mode
visible fo the user. Together with the demonstration, it is possible to perform
system self-testing. This approach is much slower, but it is possible to identify
errors in a visible mode, executing the particular action that has been read from the
test file.

3 Preparing the Database for Re-testing

The state of database during the test is crucial for the execution of test. It is possible
that the state of database during the executions will differ from the state during the
test storing. It means that there are cases where the test might, without reason, show a
failure due to changes in the state of the database. For example: a test during which a
certain amount is debited from the client’s account is registered. If the test is per-
formed repeatedly, it is possible that due to changes in account balance the test results
will show a failure. Due to constantly changing database it is difficult and time-
consuming to ensure that the stored test is executed with the same state of the
database as of test registration moment. Solutions for executing re-tests, considering
the variability of database, are described below:

e Creating a backup database. Prior to storing every test, a backup database is pre-
pared, and a backup database is installed prior to executing every test. The backup
is stored for as long as the stored tests, which have been registered using the par-
ticular backup, are being employed. This approach requires a lot of time and work
resources;

e Generation of reverse tests. For every registered test case the self-testing software
automatically generates a reverse test that reverses the database to the initial state.
For example: If the user registers a test during which a certain amount is debited
from the client’s account, the self-testing software automatically generates a test
that credits the particular amount to the client’s account;

o Registration of reverse tests. The aim of the solution is to manage the registration
of user tests so that they would contain a full set of events. The self-testing soft-

DBI1S-2010-makets-A.indd 492 03.06.2010. 21:06:19



An Implementation of Self-Testing 493

ware controls actions of the user who registers the test case, making the user to
provide, with initial test cases, a data set with which the user later registers other
test cases;

s Consecutive execution of all tests, When the self-testing functionality is imple-
mented in the system, the database backup is taken. There after, a new backup is
not taken from the database. Every time when system self-testing is performed, the
taken database backup is installed and all the registered tests are performed consec-
utively; :

e Priorities of self-testing mode. Priorities can be selected in the self-testing mode. If
Priority 1 is selected, only those tests that are not dependant of the state of the da-
tabase are executed. Self-testing mode with Priority 1 would be used by system us-
ers. If priority 2 is selected, all the stored tests will be executed. This priority will
be used by system developers to perform testing, and they will prepare a database
prior to testing according to the test requirements;

o Test execution criteria. Criteria of successful test execution are buiit in the system.
From the solutions described above, the test execution criteria approach will be
used in the system self-testing. Key considerations for the use of this approach are
outlined in the next Section.

3.1 Test execution criteria

To ensure that tests are not dependant of the data set on which the tests are performed,
it is necessary to control the key criteria for successful execution of the test and
without which the execution of the test is impossible. The control is ensured with test
execution criteria built in the system under test, which during the test check that it is
possible to execute the specified criterion. If the criterion specified in the test point
does perform, the test continues to execute; if not, the test execution is terminated and
is marked as failed. The reason of termination is notified to the user, who can
eliminate the failure and execute the test again. For example: a test case where a
certain amount is debited from the client’s account. In this test, the following
execution criteria could be implemented and controlled:

e The amount specified in the test case is available in the client’s bank account;
¢ The bank account specified in the test case is registered in the name of the client;
o The client’s bank account is not closed.

Advantages of this approach:

o When the test is being executed, it is not necessary to provide the same state of the
database it was in when registering the test;

s The solution is not time-consuming. To execute tests, a database backup need not
be installed;

e It s possible to execute a particular test(s) not executing all the registered tests;

¢ The technical implementation is comparatively simple.

The major drawback of this solution is the extra work to be done to implement the
test execution criteria in the software.

DBIS-2010-makets-A.indd 493 03.06.2010. 21:06:19



494 E. Diebelis and J. Bicevskis

Hereinafter the paper deals with the Test Point concept. Test execution criteria in
the self-testing software are realised as test points, which are in line with the general
approach for realisation of self-testing.

4 Test Point

A test point is a command upon which system testing actions are executed. To be
more precise, a test point is a programming language command in the software text,
prior to execution of which testing action commands are inserted. A test point ensures
that particular actions and field values are saved when storing tests and that the
software execution outcome is registered when tests are executed repeatedly. By
using test points, it is possible to repeat the execution of system events.

As described in the sections above, the self-testing features are introduced in the
tested system, namely - written by the test points, which can be introduced in the
system in at least two ways:

e By altering the system software’s source code. When developing the system, the
developer implements in the sofiware code also test points that register system’s
actions.

o The specialist who defines the business process schemes specifies the test points in
the business process. In this case, the business processes and the sofiware must be
compatible, and extra resources for moving the testing actions to the software are
required. For the time being, the authors do not have knowledge of any instances of
application of the approach described above in practice.

When initially developing the self-testing software concept, it was planned to de-
velop only test points that ensure the registration of data storage in the database and
data selection from database events. It was important to check whether when execut-
ing repeatedly a database command (INSERT, UPDATA, SELECT, procedure or
function call etc), the result saved in the database or selected from the database
matches the data storing or data selecting performed in the first time.

While evolving the self-testing concept, the idea to use the test point approach to
register all system events emerged. Thus, test points register not only data storing in
database events or data selection from database events but also other application
events (filling in fields in application form, calling application events etc). Such
changes ensure that user interface and business logics are tested as well; also, this
approach provided a possibility for users to use the system in the demonstration
mode. Consequently, with comparatively low investments, the functionality of self-
testing was increased considerably.

To show how test points are used, a stock purchase transaction process is shown in
the figure below (Fig. 3. Stock Purchase Transaction Process). The registration of a
stock purchase transaction consists of the following main steps:

e Specifying the client;
+ Selecting the stock;
s Specifying the number of stocks;

DBIS-2010-makets-A.indd 494 03.06.2010. 21:06:19



An Implementation of Self-Testing 495

e Saving the transaction.

Stock Purchase Transaction

Fig. 3. Stock Purchase Transaction Process

To implement self-testing in the stock purchase transaction process, the system
would have the following five test points, which various testing actions are written to:

1. Test point Modal window registers the client selected in it in the test storage file.

2. Test point Field with value registers in the test storage file the security specified for
the transaction.

3. Test point Field with value registers in the test storage file the quantity of securities
specified for the transaction.

4. Test point Application event registers in the test storage file the event of clicking
on the button Save.

5. Test point SQL guery resuif registers in the test storage file the data saved in the
database after clicking on the button Save.

Classification of test points 1s outlined in detail below in this Section.

When a stock purchase transaction test case is registered, each of the points in the
test storage file registers information that is used to play back the test. When a stock
purchase transaction test is plaid back, the self-testing software, step by step, reads
from and executes the actions registered in the test file. When the actions specified in
the test file are executed, a new test file is created. When all the actions have been
executed, the test files are compared; they should match if the tests have been suc-
cessful. If the files do not match, the user is able to identify in the testing software ap-
plication the point (command) in the test file that has been executed with errors.

Test points are placed by the developers in the system to achieve that the critical
functionality of the system is covered. Test points are used as follows:

DBIS-2010-makets-A.indd 493 03.06.2410.  21:06:19



496 E. Diebelis and J. Bicevskis

¢ Test storage mode. When the user creates a new test, the specified information in
the test file and obtained in testing is registered in the test points implemented in
the system. Various types of information can be registered in test points, e.g. value
of filled-in fields, clicking a command button, selecting a value from a list etc. Pos-
sible types of test points and their use is described further in this Section;

¢ Self-testing mode. The software automatically executes the events registered in the
test files, replacing the events entered during storage with their selection from the
test file. The test points placed in the system during execution of tests create the
same test file as in the test storage mode. When the testing is finished, the file cre-
ated in the test storage mode is compared with the test file created in the self-
testing mode. If the contents of the files match, the test has been successful; if they
do not match, the testing has failed;

s Demonstration mode. In the demonstration mode, the test files that have been cre-
ated in the test storage mode and successfully executed in the self-testing mode are
used. In the demonstration mode, within a defined time interval or when the user
executes commands from the test file step by step, the functionality of the system
can be demonstrated both to teach new system users and to demonstrate the system
functionality to any potential its buyers.

Self-testing software employs the following testing actions, the use of which is
shown in Table 1:

» Field with value. The action is required to register a field filling-in event;

o Comparable value. This test point is necessary to be able to register and compare
values calculated in the system. The test point can be used when the application
contains a field whose value is calculated considering the values of other fields,
values of which are not saved in the database;

e MessageBox. This test point is required to be able to simulate the message box ac-
tion, not actually calling the messages. This is necessary as not all technologies
provide a possibility to press the message button with the help of the system during
test execution;

¢ Modal window. This test point is required to be able to simulate the modal window
action, not actually calling the modal windows. This is necessary as not all tech-
nologies provide a possibility to access during test execution, after calling the
modal window, the window from which the modal window is called;

e SQL query result. This test point registers specific values that can be selected with
an SQL query and that are compared in the test execution mode with the values se-

" lected in the test storage and registered in the test file. The SQL query test point
can be used after data have been saved to compare the data saved in the database,
the data saved when registering the test and the data saved when performing the
test repeatedly;

¢ Application event. This test point is required to register any events performed in
the application, e.g. clicking on the button Save;

s Test execution criterion. This test point controls whether it is possible to execute
the test. By using test execution criteria test points, it is possible to specify the cri-
teria for the execution of the stored test. In the system self-testing mode, the test
execution criteria points check whether the conditions specified in the test points

DBI1S-2019-makets-A.indd 496 03.06.2010. 21:06:19



An Implementation of Self-Testing 497

are fulfilled. If the criterion is not fulfilled, the test has failed and the user can ac-
cess a detailed description of test execution, in which the reason for non-execution

is specified.

Table 1. Types of Testing Actions

Test storage

| Self-testing

| Demeonstration

Field with value

Registering the field
name and field value in
the test file.

Reading the field name and field
value from the test file and writing
the value in the respective field.

See text execu-
tion mode.

Comparable value

Registering various val-
ues, inter alia values ob-
tained from the calcula-
tion, in the test file.

There are two cases (additional at-
tribute that points to the particular
case):

e Comparing the value calculated
during test execution with the
value registered in the test file
during test storage;

e Using the value registered in the
test file during test storage in test
execution, not recalculating the
value.

Using the value
registered in the
test file during
test storage in
test  execution,
not recalculating
the value.

Message box

Registering in the test
file the message call
and the action per-
formed by the user.

The message is not shown to the
user. Tests are executed taking into
account the action performed by the
user and registered in the test file.

In this mode, the
message box is
shown on the
screen.

Modal window

Registering in the test
file the modal window

The modal window is not opened
during test execution, and the mo-

In this mode, the
modal window is

call and the return | dal window values registered in the | shown on the
values, storage mode are used from the test | screen.

file.
SQL query result

Registering the test re-
sults in the test file.

Test results can be both
a particular field value
and a query result.

Comparing the values obtained in
the result of test execution with the
values registered in the test file
during test storage mode.

Test points are
not used in this
mode.

Application event

Registering application
events in the test file.

Reading application events from
the test file and executing them.

See text execu-
tion mode.

Test execution criterion

The action is not used
in this mode.

Controlling whether it is possible to
execute the tests in the current state
of database.

See text execu-
tion mode.

DBIS-2010-makets-A.indd 497

03.06.2010. 21:06:20




408 E. Diebelis and J. Bicevskis

5 Implementation of Self-Testing

Key components of self-testing software are:
1. Test control block, which provides the following key functions:

¢ Selecting the test execution mode (execution of all or selected tests);

» Selecting the test mode. The user can specify whether tests should be executed in
visible or invisible mode. The visible mode is intended for demonstrations; but if
the user wants, they can follow test execution step by step. The invisible mode
provides for faster test execution;

» Information on test execution. If the test fails, the control block will provide the
user with information on reasons for the failure;

o Deleting tests and test files.

As of writing this paper, the first version of the test control block has been devel-
oped (Fig. 4. Test Control Block). The test control block has been developed with ad-
ditional functionality and improved with user interface.

Fig. 4. Test Control Block

2. Library of test actions. The library contains the test action functions described
herein. Testing action function calls are implemented in the tested system. Test
functions are assigned parameters that characterise the test action. Testing func-
tions, on the basis of the received parameters, make the respective records in the
test file.

3. Test file (XML file). Test functions in XML file, using a particular structure,
register the values that characterise the test case. The XML file structure consists
of the following elements and their attributes:

o Form. Its attributes are the form name and the test point number, and its elements
are test points;

e Action. The element is a set of other elements. It contains all the test points de-
scribed in Section 4;

¢ Control. The element contains data on the control used in the test point. The ele-
ment contains the following attributes: test point number, control name, event (e.g.
change of value) called at the test point, control type;

e Value. Value element. Contains information on the value selected/entered by the
control. In addition, the element can contain the value data type (e.g.
xsi:type="xsd:string" — which means that the control value is a string of symbols);

e Values. Element values. If the control contains a number of selected values, they
are shown under this element. The element contains the Value element;

DBIS-2010-makets-A.indd 498 03.06.2010. 21:06:20



An Implementation of Seclf-Testing 499

+ Function. This test point determines whether a function has been called. The ele-
ment contains the Parameters element and the following attributes: test point num-
ber, function name;

¢ Parameter. Function parameter. Contains information on the value of the parameter
of the called function. In addition, the element can contain the value data type;

o Parameters. The element is a set of function parameters. The element can contain
the Parameter elements;

» ModalFields. The element contains information on the return values of the modal
window. The element contains the Fields element and the test point number
attribute;

* Field. Modal window return value element;

* Query. The element contains the SQL query, which is executed by the system in
the database. Its attribute is the test point number;

o ComparableField. The element contains information on the field that must be
registered when the test is recorded in order to be able, when the test is played
back, to check whether the value matches the value that was registered when the
test was recorded. The element contains the following attributes: test point num-
ber, field name. The element contains the Value element, in which the field value
is specified,;

» DialogResult. The element contains information on the return values of the dialog
box. The element contains the following attributes: test point number, dialog result;

o ChildForm. ChildForm matches with the Form element (form child). The element
is required if another form is called from the form.

The system login test example, in which test points are located, is shown in the
figure below (Fig. 5. System Login Test Example).

ISTehnologija v1.2.5.8 (SEBYUSI)

Fig. 5. System Login Test Example

The user performs the following actions in login form:

. Entering the user name.

. Entering the user password.

. Clicking on the button Log in.
. Choosing work place.

. Clicking on the button Start.

[ R S

When a system login test case is registered, each of the points in the test storage
file registers information (Fig. 6. Test File Example) that is used to play back the test.

DBIS-2010-makets-Aindd 499 03.06.20[0. 21:06;20



500 E. Diebelis and J. Bicevskis

- <Actions>
~ <Conitrol Id="1" Name="Username" Event="Username_TextChanged®
ControlType="System.Windows.Forms._TextBox">
<Afalue xsi:type="xsd:string">~edgars</vakme:-
<fControl>
- <Contro! Id="2" Name="Passwd" Event="Passwd_TextChanged"
Controffype="System.Windows.Forms.TextBox">
<Value xsi: type="xsd:string*>123456</Value>
</Control> '
<Controf Id="3" Name="btnAuth® Event="btnAvuth_Click’
ControlType="System.Windows.Forms.Button" />
- <Query Id="4">
<Query>SELECT d.DVI_NOSAUK,d.DVI_ISN FROM IST_DVI d, IST_SLD s
WHERE s.DVI_ISN=d.DVI_ISN AND s.DAR_ISN=72 order by 1</Query>
</Query>
- «Controf Id="3" Name="Workplace’
Event="Workplace_SelectedIndexChanged’
ControiType="System.Windows_Forms.ComboBox">
<Vahie xsi:type="xsd:int">20</Vakue>
<fCeontrol>
<Control Id="6" Name="StartWork" Event="StartWork_Chck”
ControlType="System.Windows.Forms.Button” />
</Actions>

Fig. 6. Test File Example

In the example (Fig. 5. System Login Test Example) the order in which test is re-
corded (1-2-3-4-5) is not fixed. The user in login form could perform actions in any
order (for example 2-1-3-4-5). The order in which test case will executed will be the
same as the sequence in which the test is recorded.

The test functions library described above can be used in projects developed in the
MS Visual Studio environment. If required, it can be easily supplemented with new
functions.

6 Conclusions

In order to present advantages of self-testing, the self-testing features are integrated in
a large and complex financial system. Although efforts are ongoing, the following
conclusions can be drawn from the experience:

1. Introduction of a self-testing functionality is more useful in incremental
development model, especially gradually developed systems and systems with
long-term maintenance and less useful in the linear development model. '

2. Self-testing significantly saves time required for repeated testing (regression) of the
existing functionality. This is critical for large systems, where minor modifications
can cause fatal errors and impact system’s usability.

3. Self-testing requires additional efforts to integrate the functionality of self-testing
into software, to develop critical functionality tests and testing procedures.

DBIS-2010-makets-A.indd 500 03.06.2010. 21:06:20



An Implementation of Self-Testing 501

4. The introduction of self-testing functionality would lower maintenance costs and
ensure high quality of the system.

5. Self-testing does not replace traditional testing of software; it modifies the testing
process by increasing significantly the role of developer in software testing.

6. Test points make test recording and automatic execution much easier. Test points
ensure that tests can be recorded in a convenient and easy-to-read manner.

7. Test execution criteria test point detzrmines the possibility to execute the test using
the available data set.

8. If test execution criteria test points are used, it is not necessary to maintain the data
set which was used to register the test.

9. If test points are used, the user can, independently from the developer, register and
then repeatedly execute test cases.

10.Test execution criteria test point provides a possibility to execute tests in random
order.

References

1. Bitevska, Z., Bi¥evskis, J.: Smart Technologies in Software Life Cycle. In: Miinch, 1.,
Abrahamsson, P. (eds.) Product-Focused Sofiware Process Improvement. 8th International
Conference, PROFES 2007, Riga, Latvia, July 2-4, 2007, LNCS, vol. 4589, pp. 262-272.
Springer-Verlag, Berlin Heidelberg (2007)

2. Rauhvargers, K., Bicevskis, J.: Environment Testing Enabled Software - a Step Towards
Execution Context Awareness. In: Hele-Mai Haav, Ahto Kalja (eds.) Databases and
Information Systems, Selected Papers from the 8th International Baltic Conference, 10S
Press vol. 187, pp. 169-179 (200%)

3. Rauhvargers, K.: On the Implementation of a Meta-data Driven Self Testing Model. In:
Hrugka, T., Madeyski, L., Ochodek, M. (eds.) Software Engineering Techniques in Progress,
Brno, Czech Republic (2008).

4. Bigevska, Z., Bitevskis, J.: Applying of smart technologies in software development:
Automated version updating. In: Scientific Papers University of Latvia, Computer Science
and Information Technologies, vol .733, ISSN 1407-2157, pp. 24-37 (2008)

5. Ceripa-Bérzina J.,Bitevskis J., Kamitis (.: Information systems development based on
visual Domain Specific Language BiLingva. In: Accepted for publication in the 4th IFIP
TC2 Central and East European Conference on Software Engineering Techniques (CEE-
SET 2009), Krakow, Poland, Oktober 12-14, 2009

6. Ganek, A. G., Corbi, T. A.: The dawning of the autonomic computing era. In: IBM Systems
Journal, vol. 42, no. 1, pp. 5-18 (2003)

7. Sterritt, R., Bustard, D.. Towards an autonomic computing environment. In: 14th
International Workshop on Database and Expert Systems Applications (DEXA 2003), 2003.
Proceedings, pp. 694 - 698 (2003)

8. Lightstone, S.: Foundations of Autonomic Computing Development. In: Proceedings of the
Fourth IEEE international Workshop on Engineering of Autonomic and Autonotnous
Systems, pp. 163-171 (2007)

9. Bicevska, Z.: Applying Smart Technologies: Evaluation of Effectiveness. In: Conference
Proceedings of the 2nd International Multi-Conference on Engineering and Technological
Innovation (IMETI 20:09), Orlando, Florida, USA, July 10-13, 2009

10.J. Barzdins, A. Zarins, K. Cerans, M. Grasmanis, A. Kalnins, E. Rencis, L.Lace, R. Liepins,
A. Sprogis, A.Zarins.: Domain Specific languages for Business Process Managment: a Case
Study Proceedings of DSM’09 Workshop of OOPSLA 2009, Orlando, USA '

DBIS-2010-makets-A.indd 501 03.06.2010. 21:06:20



502 E. Diebelis and J. Bicevskis

11.Diebelis, E., Takeris, V., Bidevskis, J.: Self-testing - new approach to software quality
assurance. In: Proceedings of the 13th East-European Conference on Advances in Databases
and Information Systems (ADBIS 2009), pp. 62-77. Riga, Latvia, September 7-10, 2009

12.Bidevska, Z., Bi¢evskis, J.. Applying Self-Testing: Advantages and Limitations. In: Hele-
Mai Haav, Ahto Kalja (eds.) Databases and Information Systems, Selected Papers from the
8th International Baltic Conference, 10S Press vol. 187, pp. 192-202 (2009)

DBIS-2010-makets-A.indd 502 03.06.2019. 21:06:20



