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The phase of a single quantum state is undefined unless the history of its creation provides a reference

point. Thus, quantum interference may seem hardly relevant for the design of deterministic single-electron

sources which strive to isolate individual charge carriers quickly and completely. We provide a counter-

example by analyzing the nonadiabatic separation of a localized quantum state from a Fermi sea due to a

closing tunnel barrier. We identify the relevant energy scales and suggest ways to separate the

contributions of quantum nonadiabatic excitation and back tunneling to the rare noncapture events. In

the optimal regime of balanced decay and nonadiabaticity, our simple electron trap turns into a single-lead

Landau-Zener back tunneling interferometer, revealing the dynamical phase accumulated between the

particle capture and leakage. The predicted ‘‘quantum beats in back tunneling’’ may turn the error of a

single-electron source into a valuable signal revealing essentially nonadiabatic energy scales of a dynamic

quantum dot.

DOI: 10.1103/PhysRevLett.109.216801 PACS numbers: 73.63.Kv, 73.21.La, 73.23.Hk

Successful demonstration of electron-on-demand
sources based on electrostatic modulation of nanoelec-
tronic circuit elements such as dynamic quantum dots
[1–3] or mesoscopic capacitors [4,5] has offered a prospect
of building an electronic analog of few-photon quantum
optics [6] that exploits the particle-wave duality and entan-
glement of individual elementary excitations in a Fermi
sea [7–10]. This ambitious goal is complemented by a
long-standing challenge in quantum metrology [11] to
untie the definition of ampere from the mechanical units
of the International System of Units [12] and implement a
current standard based on direct counting of discrete
charge carriers. Thus far the overlap between these
research directions [13,14] has been rather limited argu-
ably because metrological applications strive to maximize
the particle nature of on-demand excitations. Optimizing
the trade-off between speed and accuracy of single-
electron isolation [2] does require consideration of quan-
tum error mechanisms such as nonadiabatic excitation
[15–17] or back tunneling [18–21]. However, these effects
have been hard to differentiate experimentally owing to the
complexity of nonequilibrium many-particle quantum dy-
namics [22] and experimental challenges in exercising
high-speed control of the electrostatic landscape. The
quantum phase of the captured particle has been consid-
ered thus far as inconsequential for accuracy and inacces-
sible for measurement unless the particle is ejected into a
separate interferometer [10].

In this Letter, we propose a new type of interferometry to
measure and thus control the nonequilibrium energy scales
governing the decoupling of a dynamic quantum dot from a
Fermi sea. Remarkably, our approach requires neither
multiple spatial paths [9,10] nor noise measurements
[8,22,23], relying instead on quantum beats in spontaneous
emission of electrons back to the source lead. Using a

generic [22,24] effective single-particle model we predict
an interference pattern in the charge capture probability
that reflects the dynamical quantum phase accumulated
between the isolation of the localized quantum state and
the onset of back tunneling.
Our innovations can be explained within a simple two-

path picture of Mach-Zehnder interferometry in a time
domain; see Fig. 1(a). The first branch is quantum excita-
tion above the Fermi edge in the source lead due to the
finite time scale � for the pinch-off of tunneling [16] [see
dark gray arrows in Fig. 1(a)]. The corresponding energy
spread and the (small) path-splitting amplitude can be
estimated by the energy-time uncertainty, �c � @=ð��Þ,
and the Landau-Zener theory [25], respectively. The sec-
ond branch is adiabatic lifting of the occupied energy level
followed by splitting of a small amplitude back into the
lead once the level emerges above the Fermi sea [see light

FIG. 1 (color online). (a) Schematic plot of the rising level
energy "ðtÞ and exponentially decreasing broadening �ðtÞ.
Pictograms illustrate the two paths for interference: dark gray
(blue) arrows mark nonadiabatic excitation followed by phase
accumulation above the Fermi edge �; light gray (yellow)
arrows show adiabatic ‘‘elevator ride’’ and back tunneling.
(b) Instantaneous current flowing into the quantum dot, _nðtÞ.
Thick (blue) line, exact Eq. (3); thin dashed line, quantum-
broadened Markov approximation, Eq. (4). Model parameters
are "c=�ptb ¼ �6, �c=�ptb ¼ 1:2, T ¼ 0.
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gray arrows in Fig. 1(a)]. This elevation and back tunneling
branch is sensitive to electrostatic cross coupling between
the barrier and the bottom of the confining potential well;
we quantify this cross talk by the plunger-to-barrier ratio
�ptb � _"� (shift of the localized energy level " during the

characteristic decoupling time). The output ports of the
interferometer can be read either by detecting excitations
created in the Fermi sea, or, more conveniently, by mea-
suring the charge capture probability. The latter is acces-
sible in experiment by repeated ejection of the captured
electrons into a collector lead and measuring the resulting
dc current [1,2,14,19–21]. The beam splitters are tuned by
�ptb=�c to maximize contrast, the phase measurement

reveals the ‘‘elevator speed’’ _" / �ptb�c, and the tempera-

ture smearing allows absolute calibration of the energy
scales. Our scheme is conceptually related to Landau-
Zener-Stückelberg interferometry [26–28] which measures
the relative dynamical phase of discrete states via creation
of superposition in sequential nonadiabatic level crossings.
In contrast, we propose to access the phase of a single
localized state measured against a reference point in the
continuum (defined by a sufficiently fast decoupling and a
sharp Fermi edge).

The proposed measurement addresses a persistent chal-
lenge in robust utilization of electrostatically defined quan-
tum dot devices: control of rate (�), type (barrier versus
plunger), and magnitude (�ptb) at which external voltage

pulses are converted into the time-dependent potential
guiding individual transport electrons on the chip.
Although parametric time dependency of the electronic
matrix elements is the standard input for theory [24,29],
in practice mesoscopic fluctuations (due to distribution and
charge switching dynamics of impurities, finite fabrication
precision, etc.) and challenges of signal propagation at
high frequencies (GHz range) often require measuring
the characteristic quantities on a sample-to-sample basis.
For near-equilibrium, bias spectroscopy [30] provides a
versatile tool, but for the large-amplitude, high-frequency
modulation the options are limited [1]. As a foreseeable
direct application of our results we expect a reliable
measurement of �c=�ptb to help settle the debate on the

fundamental factors limiting the precision of the state-of-
the-art single-electron-based current sources [2]. More
generally, we hope our analysis will facilitate the crossover
of ideas between fundamental and applied directions of
single electronics.

Model and formalism.—The model is described by an

effective single-particle Hamiltonian H ¼ "ðtÞdydþP
kf�kcyk ck þ VðtÞ½cyk dþ dyck�g, where dy creates a local-

ized nondegenerate electronic state in the dot and cyk
creates a quasicontinuous state in the lead. The lead is
connected to a thermal reservoir with chemical potential
� ¼ 0 and temperature T. Employing a time-dependent
tunneling Hamiltonian relies on time scale separation
[24]: fast screening in the leads determines the instanta-
neous values of the slowly varying parameters for the

underscreened region (the quantum dot). We choose
k-independent real V and the wideband limit so that �ðtÞ �
2��V2ðtÞ and "ðtÞ are the fully dressed elastic width and
the on-site energy, respectively (� is the density of states in
the lead).
The quantum kinetic equation for the average occupa-

tion within the model, nðtÞ � hdyðtÞdðtÞi, is given by the
nonequilibrium Green functions theory [24],

@ _nðtÞ¼��ðtÞnðtÞ

�
Z fð�Þ

�@
Im

Z t

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðtÞ�ðt0Þ

p
Gðt;t0Þei�ðt�t0Þ=@dt0d�;

(1)

where fð�Þ is the Fermi distribution and Gðt; t0Þ is the
retarded Green function of the level,

Gðt; t0Þ ¼ �i�ðt� t0Þe�i
R

t

t0 dt1½"ðt1Þ�i�ðt1Þ=2�=@: (2)

Integrating Eq. (1) gives [cf. Eq. (44) of Ref. [24]]

nðtÞ ¼
Z fð�Þ

2�@2

��������
Z t

�1
dt0Gðt; t0Þ

ffiffiffiffiffiffiffiffiffiffi
�ðt0Þ

p
e�i�t0=@

��������
2

d�: (3)

Equation (3) is the sum of probabilities to be scattered into
the localized state from an occupied state in the continuum;
one can show [31–33] that it agrees with the Floquet
formalism [29,34] which is often used in the scattering
form to study single-charge emitters [23,35,36]. In this
work we consider electron trapping achieved by reducing
�ðtÞ to zero as t ! 1 and compute the capture probability
nf � limt!1nðtÞ.
The history of parametric time dependence that affects

nðtÞ is limited by a finite memory time �mem �
@minfðkTÞ�1;��1ðtÞg due to (a) lead-induced dephasing
of the discrete state and (b) thermal smearing in the
reservoir. One can show [33] that, for sufficiently
slow processes, when j _"j�2mem � @ (no phase rotation)

and j _�j�mem � � (well-defined �), the exact kinetic
equation (1) can be replaced by a (quantum broadened)
Markov approximation,

@ _n ¼ ��ðtÞfnðtÞ � neq½"ðtÞ;�ðtÞ�g; (4)

with parametrically defined standard equilibrium occupa-
tion, neqð";�Þ ¼ ð2�Þ�1

R
d!�fð!Þ=½ð!� "Þ2 þ �2=4�.

Although Eq. (4) still permits strongly nonadiabatic sce-
narios [37], for the decoupling problem at hand �mem

diverges at zero temperature as t ! 1; thus, we must use
Eq. (3).
We define a crossover moment tc as the earliest time

from which the quantum phase of the level can be pre-
served,

Rþ1
tc

�ðtÞdt ¼ @, and explore exponential time

dependence [16] of �ðtÞ around tc,

�ðtÞ ¼ ��ce
�ðt�tcÞ=�; (5)

accompanied by a linear shift of energy [19,20,22,37],
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"ðtÞ ¼ "c þ�ptbðt� tcÞ=�: (6)

The shape of "ðtÞ and �ðtÞ for t � tc as well as the initial
conditions for Eq. (1) are irrelevant for nf if the ansatz (5)

holds from a few � before tc. Whether the last particle
exchange between the dot and the source (most likely to
occur around t � tc) results in a captured electron (nf � 1)

or a hole (nf � 0) depends on the position of "c with

respect to � (below or above, respectively).
Experimental realization.—A prototypical realization

for themodel is a small near-empty electrostatically defined
quantum dot with large level spacing and charging energy,
as in, e.g., [3,17]. A linear ramp of voltageV 1ðtÞ on a gate
that defines the tunnel barrier between the source and the
quantumdot creates the time dependencies (5) and (6)while
a static voltageV 2 on another gate can be used to tune the
decoupling energy, "c ¼ ��V 2�ptb þ const. �c � ��1 is

inversely proportional to the rise time of theV 1ðtÞ pulse.
Once �ðtÞ becomes negligible (t ! 1 in our model),

further modulation of the confining potential can ensure
complete ejection of the captured electrons into the drain
lead [2,21]. Repeating the whole cycle with a frequency
f � ��1 and measuring the dc component of the source-
drain pumping current IðV 2Þ can provide accurate data on
nfð"cÞ ¼ I=ðefÞ (here e is the electron charge). Note that�
is the fitting parameter [2,20,38] of the decay cascade
model [21]; see Eq. (8c).

Qualitative picture.—The essential features of the model
can be seen in the time-dependent ensemble-average cur-
rent _nðtÞ for�ptb � �c and �c <��ptb at low temperature;

see Fig. 1(b). Before the formation of the localized level, at
times t � tc � � lnj�cj=�c, the average occupation num-
ber remains constant and equal to the average density of
electrons per quantum state in the lead (1=2 in our dis-
persionless model). A large peak in the current near tc
marks adiabatic filling of the rapidly narrowing level. A
much smaller opposite sign feature indicates the onset of
back tunneling at t > tb with tb defined by "ðtbÞ ¼ �. It is
instructive to contrast the exact _nðtÞwith the solution of the
Markov equation (4) shown by the dashed line in Fig. 1(b).
The level of agreement correlates with the condition
�ðtÞ> �c being fulfilled exponentially well for t � tc,
breaking down around tc, and being strongly violated
for t > tb.

Probability of charge capture.—Our main result is

nf ¼
Z d�

2�2�c

fð�Þ
��������
Z 1

�1
exp

�
� xþ e�x

2

þ i
�ptb

2��c

�
x� �� "c

�ptb

�
2
�
dx

��������
2

: (7)

nfð"cÞ is a steplike function changing from 1 to 0 as �c
goes from �1 to þ1. The limit forms are

nf ¼ fð"cÞ; �ptb;�c ! 0 (8a)

nf ¼ ð2=�Þtan�1e�"c=�c ; kT;�ptb ! 0 (8b)

nf ¼ e�e
"c=�ptb

: kT;�c ! 0 (8c)

The limit (8a) corresponds to a sudden decoupling from
equilibrium at "ðtcÞ ¼ "c, the corresponding step is sym-
metric under "c ! �"c and maps out the thermal distri-
bution [39]. The limit (8b) reproduces the result of
Flensberg et al. [16], a symmetric step of width �c. The
double-exponential shape (8c) has been predicted previ-
ously [19–21] from a master equation and validated ex-
perimentally [2,38] with up to 10�6 relative accuracy. Our
derivation reveals the plunger-to-barrier ratio �ptb as the

energetic measure of the step width.
Finite temperature is accounted for by simple thermal

smearing, nfð"cÞ ¼
R
nfð"c � �ÞjT¼0ð�@f=@�Þd�; thus,

we focus mainly on T ¼ 0. Figure 2 shows evolution of
the line shape nfð�cÞ as �c=�ptb is increased. The asym-

metry around "c ¼ 0 gets ‘‘inverted’’ with respect to the
double-exponential (8c) at �c � 2�ptb before approaching

the symmetric limit (8b). Nonperturbative asymptotics of
Eq. (7) for �c � max½�ptb;�c� give an exponential depen-
dence with a power-law prefactor,

nf � 2

�

�
2�c
��c

�
�ptb=�c

e�"c=�c ; T ! 0; (9)

shown in the log-scale inset of Fig. 2. This is similar to the

Fermi function tail, �e�"c=kT , which dominates the
small-nf asymptotics for kT > �c regardless of �ptb.

Thus, we conclude that both quantum and thermal fluctua-
tions always trump the double-exponentially suppressed
back tunneling for small nf. This finding may have impli-

cations for the minimal slope position on the plateaus
between successive current quantization steps in single-
gate pumps [20,38]. A change in slope of lognf versus "c

FIG. 2 (color online). Charge capture probability nf as a
function of the level energy "c at the decoupling moment.
T ¼ 0, and �c=�ptb is varied as indicated. The inset shows the

same quantity in the logarithmic scale with additional thick (red)
lines marking the asymptotics (9).
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as the barrier-closing time scale � is reduced may signal
that �c=kT � 1, although this effect on its own would be
hard to differentiate from local heating.

Quantum oscillations.—The asymptotics of 1� nf at

large negative "c switches from �e"c=�ptb to �e"c=�c at
�c ¼ �ptb via a surprising sequence of mini plateaus. The

latter can be seen as ripples in the derivative @nf=@"c, as

shown in Fig. 3(a) and 3(b). Although the oscillation
amplitude decays exponentially, the nonmonotonic behav-
ior of @nfð"cÞ=@"c is manifest in the range of �c from

0:8�ptb to 2:2�ptb at temperatures up to kT � 0:35�ptb; see

Fig. 3(c).
We interpret the oscillations as interference between two

excitation paths that promote lead electrons above the
Fermi energy. One path is capture, elevation, and back
tunneling similar to elevator resonance activation proposed
by Azbel’ [40]. As seen from the scattering interpretation
of Eq. (7), the electrons most likely to be captured have
incoming energies � � "c; thus, we estimate the amplitude
to be raised by an ‘‘elevator ride’’ from "c to an energy
�e > � by a three-amplitude product,

c elevð�eÞ / VðtcÞe�i
R

te

tc
"ðtÞdt=@

VðteÞ; (10)

where the exit time te > tb is determined from "ðteÞ ¼ �e.
The other path from � � "c to � ¼ �e is Landau-Zener-

like excitation due to the time dependence of �ðtÞ. We
estimate the corresponding amplitude by following the
Landau solution of a two-level problem [25] with matrix
elements H11¼�e, H22 ¼ "c, and H12 ¼ H21 ¼ �ðtÞ [41].
The adiabatic eigenvalues E1ðtÞ, E2ðtÞ have a gap �EðtÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2ðtÞþð�e�"cÞ2

p
>0 on the real axis but become

degenerate if analytically continued into the complex t
plane. The branching point of EðtÞ with the smallest
positive imaginary part, t0¼ tcþ� ln½2�c=ð�e�"cÞ�þ
i��=2, determines the transition probability [25]

exp½�2 Im
Rt0
Ret0

�EðtÞdt=@� ¼ exp½���ð�e � "cÞ=@�.

Neglecting preexponential and logarithmic terms, the am-
plitude for excitation at tc and evolution up to te is

c LZð�eÞ / e�ð�e�"cÞ=ð2�cÞ�i’0e�i�eðte�tcÞ=@; (11)

where ’0 is the phase of the Landau-Zener transition
(Stokes phase) known to depend weakly on energy [28].
We estimate the total noncapture probability as

1� nf /
Z 1

�¼0
d�ejc LZð�eÞ þ c elevð�eÞj2: (12)

The competition of jc LZj2 and jc elevj2 at large negative "c
agrees with the asymptotic envelope of nf while

Rec LZð0Þc 	
elevð0Þ gives the oscillating part of @nf=@"c,

e"cð�
�1
ptb

þ��1
c Þ=2 cos

�
’0 þ �2c

2��c�ptb

�
: (13)

The argument of the cosine is the dynamical phase
accumulated between tc and tb; see the shaded triangle in
Fig. 1. Despite the crudeness of approximations leading to
Eq. (13), the result agrees well with the exact solution
Eq. (7) both in amplitude and phase, as shown in Fig. 4.
Feasibility.—The oscillation effect does not rely on any

fine-tuning (apart from balancing the interferometer,
�ptb � �c); thus, it should be robust against deviations

from the assumed time dependencies. The most important
foreseeable limitation is the overlap of additional interfer-
ence modes which must be separated by a sufficiently large
on-the-dot level spacing �" from t � tc onward; our
single-mode formula (7) is limited to �"c < �" requiring
�" * 8�ptb to resolve the first interference minimum

[33,42]. Using a recent Letter [17] on out-of-equilibrium
excited states in a rapidly decoupling dynamic quantum
dot, we read � ¼ 0:28 mV�1 from 100 MHz data in Fig. 1
of Ref. [17] and estimate the gap to the first exited state
observed at 1 GHz to be �"=�ptb � 4:5, which is the same

FIG. 3 (color online). (a) The derivative ��ptb@nf=@"c (ver-
tical axis, log scale) as a function of the decoupling energy "c
and the ratio �c=�ptb at T ¼ 0. Three cuts at �c=�ptb ¼ 0:9, 1.4,

and 2.1 are shown on a linear scale in (b). (c) The ratio of the first
interference maximum in�@nfð"cÞ=@"c to the first minimum on

a log scale as a function of �c=�ptb as kT=�ptb increases through

0, 0.1, 0.2, and 0.3 (from the topmost to the lowermost curve).

FIG. 4. Main panel: The derivative �@nf=@"c multiplied by
�ptbe

�"c=�c for �c=�ptb ¼ 1:4 and T ¼ 0. Left inset: The posi-

tions "m of the minima in the main graph versus their index
number m scaled according to the two-path formula (13). Right
inset: The absolute difference between a maximum and the
preceding minimum of the oscillations shown in the main panel
on a log scale versus a scaled �"m. The straight line of slope of

1 in both insets is plotted according to Eq. (13).
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order of magnitude as our requirements. Measurements of
a similar device [2] have just reached the required accuracy
threshold for nfð"cÞ, suggesting that the proposed

dynamical phase interferometry is feasible with current
technology.

Conclusions.—We have considered the quantum dynam-
ics of isolating a single particle from a Fermi sea by a
closing tunnel barrier and proposed ways to measure the
relevant nonequilibrium energy scales. Time-domain inter-
ferometry revealing the dynamical phase of the confined
particle offers an unexpected ‘‘built-in’’ instrument to
quantify and separate the quantum effects hampering de-
terministic electron-on-demand operation which is a cor-
nerstone for future on-the-chip electron quantum optics
and a quantum realization of the ampere.
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