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Abstract. We study the recognition of R-trivial idempotent (R1) lan-
guages by various models of ”decide-and-halt” quantum finite automata
(QFA) and probabilistic reversible automata (DH-PRA). We introduce
bistochastic QFA (MM-BQFA), a model which generalizes both Nayak’s
enhanced QFA and DH-PRA. We apply tools from algebraic automata
theory and systems of linear inequalities to give a complete character-
ization of R1 languages recognized by all these models. We also find
that ”forbidden constructions” known so far do not include all of the
languages that cannot be recognized by measure-many QFA.

1 Introduction

Measure-many quantum finite automata (MM-QFA) were defined in 1997 [11]
and their language class characterization problem remains open still. The diffi-
culties arise because the language class is not closed under Boolean operations
like union and intersection [3]. The results by Brodsky and Pippenger [5] com-
bined with the non-closure property imply that the class of languages recognized
by MM-QFA is a proper subclass of the language variety corresponding to the
ER monoid variety. The same holds for DH-PRA and for EQFA [8, 14]. In [1],
it is stated that MM-QFA recognize any regular language corresponding to the
monoid variety EJ. Since any syntactic monoid of a unary regular language be-
longs to EJ, the results in [1] imply that MM-QFA recognize any unary regular
language. In [4], a new proof of this result is given by explicitly constructing
MM-QFA recognizing unary languages. In the paper, we consider a sub-variety
of ER, the variety of R-trivial idempotent monoids R1 and determine which
R-trivial idempotent languages (R1 languages) are recognizable by MM-QFA
and other ”decide-and-halt” models. Since R1 shares a lot of the characteris-
tic properties with ER, the obtained results may serve as an insight to solve
the general problem. The paper is structured as follows. Section 2 describes the
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algebraic tools - monoids, morphisms and varieties. Section 3 considers com-
pletely positive maps. We apply the result by Kuperberg to obtain Theorem 3.1,
which is essential to prove the limitations of QFA in terms of language recog-
nition. Sections 4 to 7 present the main results of the paper: (1) We introduce
MM-BQFA, a model which generalizes the earlier ”decide-and-halt” automata
models (MM-QFA, DH-PRA, EQFA) and give some characteristics of the cor-
responding language class. We also obtain the class of languages recognized by
MO-BQFA; (2) We define how to construct a system of linear inequalities for
any R1 language and prove that if the system is not consistent the language
cannot be recognized by MM-BQFA (and MM-QFA, DH-PRA, EQFA); (3) We
construct DH-PRA (this presumes also EQFA and MM-BQFA) and MM-QFA
for any R1 language having a consistent system of inequalities. Thus, we obtain
that an R1 language is recognizable by ”decide-and-halt” models if and only if
the corresponding system of linear inequalities is consistent; (4) We show that
”forbidden constructions” known from [3] do not give all of the languages that
cannot be recognized by MM-QFA.

2 Monoids and Varieties

Given an alphabet A, let A∗ be the set of words over alphabet A. Given a word
x, let |x| be the length of x. Introduce a partial order 6 on A∗, let x 6 y if and
only if there exists z ∈ A∗ such that xz = y. Let P(A) be the set of subsets
of A, including the empty set ∅. Note that there is a natural partial order on
P(A), i.e., the subset order. Given a word s ∈ A∗, let sω be the set of letters of
the word s. We say that u,v ∈ A∗ are equivalent with respect to ω, u ∼ω v, if
uω = vω (that is, u and v consist of the same set of letters). Let F(A) be the
set of all words over the alphabet A that do not contain any repeated letters.
The empty word ε is an element of F(A). Let τ be a function such that for every
s ∈ A∗, any repeated letters in s are deleted, leaving only the first occurrence.
Given u,v ∈ A∗, we say that u ∼τ v, if uτ = vτ . Introduce a partial order 6 on
F(A), let v1 6 v2 if and only if there exists v ∈ F(A) such that v1v = v2. Note
that ∼ω and ∼τ are equivalence relations. The functions ω and τ are morphisms;
(uv)ω = uω ∪ vω and (uv)τ = uτ ·vτ . Moreover, ω (and τ) preserves the order
relation since u 6 v implies uω ⊆ vω (u 6 v implies uτ 6 vτ).

A general overview on varieties of finite semigroups, monoids as well as oper-
ations on them is given in [17]. Unless specified otherwise, the monoids discussed
in this section are assumed to be finite. An element e of a monoid M is called an
idempotent, if e2 = e. If x is an element of a monoid M, the unique idempotent
of the subsemigroup of M generated by x [17] is denoted by xω. Given a regular
language L ⊆ A∗, words u,v ∈ A∗ are called syntactically congruent, u ∼L v,
if for all x,y ∈ A∗ xuy ∈ L if and only if xvy ∈ L. The set of equivalence
classes A∗/ ∼L is a monoid, called syntactic monoid of L and denoted M(L).
The morphism ϕ from A∗ to A∗/ ∼L is called syntactic morphism. Given a
monoid variety V, the corresponding language variety is denoted by V . The set
of languages over A recognized by monoids in V is denoted by A∗V .



Varieties Definitions. In this paper, we refer to the following monoid varieties.
The definitions for G,J1 = [[x2 = x, xy = yx]],R1 = [[xyx = xy]],ER1,J,R
may be found in [9]. The definition for EJ is in [18]. Also, ER = [[(xωyω)ωxω =
(xωyω)ω]], the variety considered in [6]. The respective language varieties cor-
responding to the monoid varieties above are denoted G (group languages), J1

(semilattice languages), R1 (R-trivial idempotent languages, or R1 languages),
ER1, J , R, EJ , ER. It is possible to check that J1 ⊂ J ⊂ EJ, R1 ⊂ R ⊂ ER,
R1 ⊂ ER1 ⊂ ER, J1 ⊂ R1, J ⊂ R and G ⊂ EJ ⊂ ER.

Semilattice Languages and Free Semilattices. A free semilattice over
an alphabet A is defined as a monoid (P(A),∪), where ∪ is the ordinary set
union. For any alphabet A, the free semilattice P(A) satisfies the identities of
J1, therefore P(A) ∈ J1. Given a free semilattice P(A), one may represent it
as a deterministic finite automaton (P(A), A, ∅, · ), where for every X ∈ P(A)
and for every a ∈ A, X · a = X ∪ {a}. It is implied by results in [17] that for
any semilattice language L over alphabet A, Lω is a set of final states, such
that the automaton recognizes the language. Therefore, in order to specify a
particular language L ∈ A∗J1, one may identify it by indicating a particular
subset of P(A). A free semilattice over {a, b, c} represented as a finite automaton
is depicted in Figure 1 on the left side. The states of (P(A), A, ∅, · ) can be
separated into several levels, i.e., a state is at level k if it corresponds to an
element in P(A) of cardinality k.

R1 languages and Free Left Regular Bands. A free left regular band
over an alphabet A is defined as a monoid (F(A), · ), where x·y = (xy)τ , i.e.,
concatenation followed by the application of τ . For any alphabet A, the free left
regular band F(A) satisfies the identities of R1, therefore F(A) ∈ R1. Given
a free left regular band F(A), one may represent it as a deterministic finite
automaton (F(A), A, ε, ·F(A) ). A free left regular band over {a, b, c} represented
as a finite automaton is depicted in Figure 1 on the right side. It is implied by [19]
that for any R1 language L over alphabet A, Lτ is a set of final states, such that
the automaton recognizes the language. Therefore, in order to specify a particular
language L ∈ A∗R1, one may identify it by indicating a particular subset of
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Fig. 1. Free semilattice and free left regular band over {a, b, c}.



F(A). For example, the semilattice language A∗aA∗ may also be denoted as
{a,ab,ba,ac, ca,abc,acb,bac,bca, cab, cba}. We can also see that P(A) is a
quotient of F(A). Indeed, let σ be a restriction of ω to F(A). The function σ is
a surjective morphism from F(A) to P(A) which preserves the order relation.

Free left regular bands and free semilattices are key elements to prove that
a quantum automaton may recognize a particular R1 language if and only if its
system of linear inequalities is consistent.

3 Completely Positive Maps

In this section, we establish some facts about completely positive (CP) maps with
certain properties, i.e., CP maps that describe the evolution of BQFA, defined
in the next section. A comprehensive account on quantum computation and CP
maps can be found in [16]. Following [16], we call a matrix M ∈ Cn×n positive, if
for any vector X ∈ Cn, X∗MX is real and nonnegative. For arbitrary matrices
M,N we may write M > N if M − N is positive. Let Is be the identity map
over Cs×s. Given Φ and Ψ , let Φ

⊗

Ψ be the tensor product of those linear maps.
A positive linear map Φ is called completely positive, if for any s > 1, Φ

⊗

Is
is positive. Any CP map from Cn×n to Cm×m may be regarded as a linear
operator in Cn2×m2

. A CP map Φ is called sub-tracial iff for any positive M we
have Tr(Φ(M)) 6 Tr(M). A CP map Φ from Cn×n to Cm×m is called unital if
Φ(In) = Im. A CP map from Cn×n to Cm×m Φ is called sub-unital if Φ(In) 6
Im. A composition of CP maps Φ0, ..., Φm from Cn×n to Cn×n is a CP map
Φ = Φ0 ◦ · · · ◦Φm such that for any M ∈ Cn×n Φ(M) = Φ0(Φ1(...(Φm(M))...). A
CP map Φ from Cn×n to Cn×n is called bistochastic, if it is both trace preserving
and unital, i.e., for any positive M , Tr(Φ(M)) = Tr(M) and Φ(In) = In. A CP
map Cn×n to Cn×n is called sub-bistochastic, if it is both sub-unital and sub-
tracial. A composition of two sub-bistochastic CP maps is a sub-bistochastic
CP map. We are interested about some properties of the asymptotic dynamics
resulting from iterative application of a CP sub-bistochastic map. A CP map Φ
from Cn×n to Cn×n is called idempotent if Φ◦Φ = Φ. It is said that a CP map Φ
from Cn×n to Cn×n generates a unique idempotent, denoted Φω, if there exists a
sequence of positive integers ns such that 1) exists the limit Φω = lims→∞ Φns ;
2) the CP map Φω is idempotent; 3) for any sequence of positive integers ms

such that the limit lims→∞ Φms exists and is idempotent, lims→∞ Φms = Φω.
By Kuperberg [12], for any CP sub-bistochastic map Φ from Cn×n to Cn×n, its

idempotent Φω exists, is unique and is a linear projection operator in Cn2×n2

.
That implies the subsequent theorem, which ultimately is the reason why certain
models of quantum finite automata cannot recognize all regular languages.

Theorem 3.1. Let e1, ..., ek be idempotent CP sub-bistochastic maps from Cn×n

to Cn×n. Then for any i, 1 6 i 6 k, (1) limn→∞(e1 ◦ ...◦ ek)
n = (e1 ◦ ...◦ ek)

ω =
(eπ(1) ◦ ... ◦ eπ(k))

ω, where π is a permutation in {1, . . . , k}; (2) (e1 ◦ ... ◦ ek)
ω =

ei ◦ (e1 ◦ ... ◦ ek)
ω = (e1 ◦ ... ◦ ek)

ω ◦ ei.

Any finite quantum system at a particular moment of time (i.e., its mixed state)
is described by a density matrix. By [16, Theorem 2.5], a matrix is a density



matrix if and only if it is positive and its trace is equal to 1. Informally, an n×n
density matrix describes a quantum system with n states. A completely positive
trace-preserving map describes an evolution of a quantum system as allowed by
quantum mechanics. It maps a density matrix to a density matrix.

4 Automata Models

For the formal definitions of other indicated automata models, the reader is re-
ferred to the following references. ”Classical” models: Group Automata (GA,
[21]), Measure-Once Quantum Finite Automata (MO-QFA, [15, 5]), ”Classical”
Probabilistic Reversible Automata (C-PRA, [7, 1]), Latvian Quantum Finite
Automata (LQFA, [1]). ”Decide-and-halt” models: Reversible Finite Automata
(RFA, [2, 9]), Measure-Many Quantum Finite Automata (MM-QFA, [11, 5, 3,
1]), ”Decide-and-halt” Probabilistic Reversible Automata (DH-PRA, [7, 8]), En-
hanced Quantum Finite Automata (EQFA, [14]). In case of classical acceptance,
an automaton reads an input word until the last letter, and then accepts or
rejects the word depending on whether the current state is final or non-final. In
case of ”decide-and-halt” acceptance, the automaton reads the input word until
it enters a halting state. The input is accepted or rejected depending on whether
the halting state is accepting or rejecting. Every word is appended with a special
symbol, an end-marker, to ensure that any word is either accepted or rejected.
We define MO and MM bistochastic QFA as a generalization of these models,
which allows to prove the limitations of language recognition for all the models
within single framework.
A bistochastic quantum finite automaton (BQFA) is a tuple (Q,A ∪ {#, $}, q0,
{Φa}), where Q is a finite set of states, A - a finite input alphabet, #, $ /∈ A -
initial and final end-markers, q0 - an initial state and for each a ∈ A ∪ {#, $}
Φa is a CP bistochastic transition map from C|Q|×|Q| to C|Q|×|Q|.
Regardless of which word acceptance model is used, each input word is enclosed
into end-markers #, $. At any step, the mixed state of a BQFA may be described
by a density matrix ρ. The computation starts in the state |q0〉〈q0|.
Operation of a measure-once BQFA and word acceptance is the same as described
for LQFA [1], only instead of sequences of unitary operations and orthogonal
measurements we have arbitrary bistochastic CP maps. On input letter a ∈ A,
ρ is transformed into Φa(ρ).
Operation of a measure-many BQFA and word acceptance is the same as de-
scribed for EQFA [14], but arbitrary bistochastic CP maps are used. The set of
states Q is partitioned into three disjoint subsets Qnon, Qacc and Qrej - non-
halting, accepting and rejecting states, respectively. On input letter a ∈ A, ρ is
transformed into ρ′ = Φa(ρ). After that, a measurement {Pnon, Pacc, Prej} is ap-
plied to ρ′, where for each i ∈ {non, acc, rej} Pi =

∑

q∈Qi
|q〉〈q|. To describe the

probability distribution S#u of a MM-BQFA A after reading some prefix #u, it
is convenient to use density matrices ρ scaled by p, 0 6 p 6 1. So the probability
distribution S#u of A is a triple (ρ, pacc, prej), where Tr(ρ) + pacc + prej = 1,
ρ/Tr(ρ) is the current mixed state and pacc, prej are respectively the probabil-



ities that A has accepted or rejected the input. So the scaled density matrix
ρ may be called a scaled mixed state. For any a ∈ A ∪ {#, $}, let Ψa(ρ) =
PnonΦa(ρ)Pnon. After reading the next input letter a, the probability distribu-
tion is S#ua = (Ψa(ρ), pacc + Tr(PaccΦa(ρ)Pacc), prej + Tr(PrejΦa(ρ)Prej)). For
any word a = a1 . . . ak, define Ψa = Ψak

◦ · · · ◦ Ψa1
. Hence ρ = Ψ#u(|q0〉〈q0|).

Note that Ψa is a CP sub-bistochastic map.
Language recognition is defined in the same way as in Rabin’s [20]. Suppose that
an automaton A is one of the models from the list above. By px,A (or px, if no
ambiguity arises) we denote the probability that an input x is accepted by the
automaton A. We consider only bounded error language recognition.
BQFA as a generalization of other models. Since unitary operations and orthog-
onal measurements are bistochastic operations, MO-BQFA is a generalization of
LQFA and MM-BQFA is a generalization of EQFA. Also, the Birkhoff theorem
[22, Theorem 4.21] implies that MO-BQFA and MM-BQFA are generalizations
of C-PRA and DH-PRA, respectively. On the other hand, BQFA are a special
case of one-way general QFA, which admit any CP trace-preserving transition
maps. One-way general QFA recognize with bounded error exactly the regular
languages [10, 13]. So the recognition power of BQFA is also limited to regular
languages only.
Comparison of the language classes. Having a certain class of automata A, let us
denote by L(A) the respective class of languages. Thus L(GA) = L(MO-QFA)
= G, L(C-PRA) = L(LQFA) = L(MO-BQFA) = EJ , G ( L(RFA) ( ER1,

EJ ( L(MM-QFA)
?
= L(DH-PRA)

?
= L(EQFA)

?
= L(MM-BQFA) ( ER. Re-

lations concerning BQFA depend on the theorem below. All the other relations
are known from the references given in the list of automata models above.

Theorem 4.1. L(MO-BQFA) = EJ and L(MM-BQFA) ⊆ ER. L(MM-BQFA)
is closed under complement, inverse free monoid morphisms, and word quotient.

The proof relies on Theorem 3.1 and ideas in [1, 5] used for LQFA and MM-QFA.
We find that L(MM-BQFA) shares a lot of properties with the language classes
of other ”decide-and-halt” word acceptance models. In Section 7 it is noted that
MM-BQFA does not recognize any of the languages corresponding to ”forbid-
den constructions” from [3, Theorem 4.3]. As other ”decide-and-halt” models,
L(MM-BQFA) ( ER and L(MM-BQFA) is not closed under union and inter-
section (Corollary 6.3).

5 Linear Inequalities

In this section, we define a system of linear inequalities that an R1 language
recognized by a MM-BQFA must satisfy. Let L be an R1 language and S - a
MM-BQFA, both over alphabet A. Let {v0,v1, ...,vR} = F(A). Assume v0 = ε.
For any v in F(A), where v = a1...ak (ai are distinct letters of A), denote by v[i]
a prefix of v of length i, i.e. v[0] = ε and for all i, 1 6 i 6 k, v[i] = a1...ai. Recall
that F(A) can be viewed as an automaton that recognizes an R1 language L,
provided Lτ is its set of final states (see Section 2).



Now define a linear system of inequalities L as follows: (1) For every v in F(A),
where v = a1...ak take the formal expression L(v) = x0 + xv[0]ω,a1

+ xv[1]ω,a2
+

xv[2]ω,a3
+ ...+ xv[k−1]ω,ak

+ yvω; (2) Introduce two another variables p1 and p2.
For any v ∈ F(A), if v ∈ Lτ , construct an inequality L(v) > p2, otherwise con-
struct an inequality L(v) 6 p1; (3) Append the system by an inequality p1 < p2.

Example 5.1. Consider an R1 language L = {ab,bac} over alphabet A =
{a, b, c}. Among others, the system L(L) has the following inequalities:

L(ab) = x0 + x{},a + x{a},b + y{a,b} > p2
L(bac) = x0 + x{},b + x{b},a + x{a,b},c + y{a,b,c} > p2
L(ba) = x0 + x{},b + x{b},a + y{a,b} 6 p1
L(abc) = x0 + x{},a + x{a},b + x{a,b},c + y{a,b,c} 6 p1

p1 < p2

Informally, an inequality L(v) represents the probability of accepting a specifi-
cally defined input word u, such that uτ = v = a1a2...ak. The variable x0 rep-
resents the probability to accept the input after reading the initial end-marker
#. The variable yvω represents the cumulative probability to stay in non-halting
states before reading the final end-marker $ and accept the input after reading
it. The variable xv[i−1]ω,ai

represents the cumulative probability to stay in non-
halting states after reading a (specifically defined) prefix u[i − 1] (of u) such
that u[i−1]τ = v[i−1] and to accept input after reading a (specifically defined)
prefix u[i] such that u[i]τ = v[i].

Theorem 5.2. Suppose L is an R1 language. If the linear system L is not
consistent, then L cannot be recognized by any MM-BQFA.

Proof. Let ml (l = 1, 2, ...) be a sequence of positive integers such that for all
letters a ∈ A liml→∞ Ψml

a = Ψω
a (existence is proved in the same way as the

Kuperberg’s result quoted in Section 3). Let µ be a function that assigns to any
word in A∗ the same word (of the same length) with letters sorted in alphabetical
order. Let κi, i ∈ N, a morphism from A∗ to A∗ such that for any a ∈ A aκi = ai.
Let ξ = ξl be an everywhere defined function from F(A) to A∗, such that εξ = ε
and for all v ∈ F(A), if |v| = 1 then vξ = vml and otherwise, if |v| > 2 then
vξ = (vµκml

)l.
Let us define the function θ (which depends on the parameter l) as follows. For

any v = a1...ak let vθ = v[1]ξ...v[k]ξ = aml

1 ((aml

1 aml

2 )µ)l...((aml

1 aml

2 . . . aml

k )µ)l.
Let εθ = ε. Note that v[i]θ = (v[i− 1]θ)(v[i]ξ). In the discussion preceding this
theorem, the word u corresponding to v is vθ and the prefix u[i] corresponding
to v[i] is v[i]θ. Note that vθτ = v.

Now take the set F(A)θ = {uk | uk = vkθ and 0 6 k 6 R}. Let us take a
positive integer i and any two words u and u′ in F(A)θ, such that u[i− 1]ω =
u′[i − 1]ω. Let v = uτ and v′ = u′τ . If the parameter l is sufficiently large,
Theorem 3.1 implies that after reading u[i − 1] and u′[i − 1] the automaton
S has essentially the same scaled density matrices (which represent the non-
halting states). Suppose that v[i] = v′[i] = a1...ai. The automaton S finishes



reading the prefixes u[i] and u′[i] after reading the next symbols forming the
sub-word v[i]ξ. The cumulative probabilities to stay in non-halting states while
reading u[i− 1], u′[i− 1] and to accept input after reading v[i]ξ = v′[i]ξ will be
essentially the same. (They converge to the same value as l tends to infinity).
Hence those probabilities are reflected in the system of linear inequalities by the
same variable xv[i−1],ai

. Thus, if a MM-BQFA S recognizes an R1 language L,
then the linear system of inequalities L has to be consistent. ⊓⊔

If the linear system L(L) is not consistent, then L cannot be recognized by any
MM-QFA, DH-PRA or EQFA as well. The statement converse to Theorem 5.2
is provided in Section 6 (Theorem 6.2).

Consider the inequalities in the system L(L). The only possible coefficients of
variables in any linear inequality are −1, 0 and 1. Denote by Z = {x0, z1, ..., zs,
y1, ..., yt, p1, p2} the set of all the variables in the system L, where zi are variables
of the form xv[i−1]ω,ai

, and yi are variables of the form yvω.

Proposition 5.3. The system L is consistent if and only if it has a solution
where x0 = 0, yA = 0, 0 6 p1, p2 6 1 and all the other variables z1, ..., zs, y1, ...,
yt−1 are assigned real values from 0 to 1/|A|.

6 Construction of DH-PRA and MM-QFA for R1

languages

Preparation of a linear programming problem. Consider an R1 language L over
alphabet A. Construct the respective system of linear inequalities L. Obtain
a system L1 by supplementing L with additional inequalities that enforce the
constraints expressed in Proposition 5.3, according to which L is consistent if
and only if L1 is consistent. Obtain a system L′

1 by replacing in L1 the inequality
p1 < p2 by p1 6 p2. The linear programming problem, denoted P, is to maximize
p2 − p1 according to the constraints expressed by L′

1. Since L′
1 is homogenous,

it always has a solution where p1 = p2. Since the solution polytope of L′
1 is

bounded, P always has an optimal solution. Obviously, if the optimal solution
yields p1 = p2, then L1 is not consistent and therefore, by Theorem 5.2, a DH-
PRA that recognizes L does not exist. Otherwise, if the optimal solution yields
p1 < p2, then L1 is consistent.
Automata derived from the free semilattice P(A). Assume L1 is consistent, so
we are able to obtain a solution of P where p1 < p2. Given any expression Z
of variables from L1, let P(Z) - the value which is assigned to Z by solving
P. First, we use the obtained solution to construct probabilistic automata Ai,
1 6 i 6 |A|. Those automata are not probabilistic reversible. Similarly as in the
”decide-and-halt” model, the constructed automata have accepting, rejecting
and non-halting states. Any input word is appended by the end-marker $. The
initial end-marker # is not used for those automata themselves. Any automaton
Ai is a tuple (Qi, A ∪ {$}, si, δi), where Qi is a set of states, si - an initial
state and δi - a transition function Q × A × Q −→ [0, 1], so δi(q, a, q

′) is a
probability of transit from q to q′ on reading input letter a. Ai is constructed



as follows: (1) Take the deterministic automaton (P(A), A, ∅, · ), remove all the
states at level greater or equal to i. The remaining states are defined to be
non-halting. The state ∅ is initial, it is the only state of Ai at level 0. For any
a in A and state s at levels {0, . . . , i − 2}, δi(s, a, s· a) = 1. For any state s

at level i − 1 and any a in s, δi(s, a, s) = 1; (2) For any non-halting state s

at levels {0, . . . , i − 2}, add a rejecting state (s$)rej . Let δi(s, $, (s$)rej) = 1;
(3) For any state s at level i − 1, add |A| − |s| + 1 accepting states (sa)acc,
a ∈ (A \ s)∪{$}. Also add |A|− |s|+1 rejecting states (sa)rej , a ∈ (A \ s)∪{$};
(4) If a ∈ A \ s, any element s′a in (sσ−1)a defines the same variable xs,a in
the system of linear inequalities (σ is defined in Section 2). Let cs,a = B(xs,a).
Any element s′ in sσ−1 defines the same variable ys. Let ds = B(ys); (5) Define
missing transitions for the states at level i− 1. For any state s at level i− 1 and
any a in A \ s, let ts,a = δi(s, a, (sa)acc) = cs,a|A| and δi(s, a, (sa)rej) = 1− ts,a.
Let vs = δi(s, $, (s$)acc) = ds|A| and δi(s, $, (s$)rej) = 1 − vs; (6) The formally
needed transitions outgoing the halting states for now are left undefined.
Consider an automaton A (Figure 2), which with the same probability 1/|A|
executes any of the automata A1, ...,A|A| (i.e., it uses the initial end-marker # to
transit to initial states of any of those automata). By construction of A1, ...,A|A|,
the automaton A accepts any word u ∈ A∗ with probability P(L(uτ)). Since
for any word u ∈ L, P(L(uτ)) > P(p2), and for any word w /∈ L, P(L(wτ)) 6
P(p1), the automaton A recognizes the language L.
Construction of a DH-PRA. In order to construct a DH-PRA recognizing L, it
remains to demonstrate that any of the automata A1, ...,A|A| may be simulated
by some DH probabilistic reversible automata, that is, for any automaton Ai,
it is possible to construct a sequence of DH-PRA Si,n, where n > 1, such that
pw,Si,n

converges uniformly to pw,Ai
on A∗ as n → ∞. An automaton Ai =

(Qi, A∪{$}, si, δi) is used to construct a DH-PRA Si,n = (Qi,n, A∪{$}, si, δi,n)
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Fig. 2. An automaton A over alphabet {a, b, c}, the rejecting states are not shown.



as described next. Initially Qi,n is empty. (1) For any non-halting state s at level
j, 0 6 j 6 i − 1, supplement Si,n with non-halting states denoted sk, where
1 6 k 6 nj ; (2) For any non-halting state s at level j, 0 6 j < i− 1, supplement
Si,n with rejecting states (s$)rej,k, where 1 6 k 6 nj ; (3) For any non-halting
state s at level i − 1, accepting state (sa)acc and rejecting state (sa)rej , where
a ∈ (A \ s) ∪ {$}, supplement Si,n with accepting states (sa)acc,k and rejecting
states (sa)rej,k, where 1 6 k 6 ni−1.
It remains to define the transitions. For any non-halting state s of Ai at level
j, 1 6 j 6 i − 1, the states in {sk} are grouped into nj−1 disjoint subsets
with n states in each, so that any state in {sk} may be denoted as sl,m, where
1 6 l 6 nj−1 and 1 6 m 6 n. For any letter a in A, consider all pairs of
non-halting states s, t of Ai such that s 6= t and δi(s, a, t) = 1. For any fixed
k and any l and m, 1 6 l,m 6 n, define δi,n(sk, a, sk) = δi,n(sk, a, tk,m) =
δi,n(tk,m, a, sk) = δi,n(tk,l, a, tk,m) = 1/(n+1). For any non-halting state s of Ai

at level j, 0 6 j < i−1, δi,n(sk, $, (s$)rej,k) = 1, δi,n((s$)rej,k, $, sk) = 1. For the
same (s$)rej,k and any other letter b in A∪{$}, define δi,n((s$)rej,k, b, (s$)rej,k) =
1. For any non-halting state s of Ai at level i − 1 and a ∈ (A \ s) ∪ {$}, the
transitions induced by a among sk, (sa)acc,k, (sa)rej,k are defined by the matrix




0 0 1
r1 r2 0
r2 r1 0



, where r1 = δi(s, a, (sa)acc), r2 = δi(s, a, (sa)rej). The first, second

and third rows and columns are indexed by sk, (sa)acc,k, (sa)rej,k, respectively.
Note that r1 + r2 = 1. For the same (sa)acc,k, (sa)rej,k and any other letter b
in A∪ {$}, define δi,n((sa)acc,k, b, (sa)acc,k) = δi,n((sa)rej,k, b, (sa)rej,k) = 1. We
have defined all the non-zero transitions for Si,n. By construction, the transition
matrices induced by any letter a in A ∪ {$} are doubly stochastic.

Lemma 6.1. For any i, 1 6 i 6 |A|, pw,Si,n
converges uniformly to pw,Ai

on
A∗ as n → ∞.

Now it is possible to construct a DH-PRA S = (Q,A ∪ {#, $}, s, δ), which with
the same probability 1/|A| executes the automata S1,n, . . . ,S|A|,n. The set of
states Q is a disjoint union of Q1, ..., Q|A|. Take the initial state si of any Si,n as
the initial state s. For any a ∈ A∪{$} and q1, q2 ∈ Qi, δ(q1, a, q2) = δi(q1, a, q2).
For any initial states si and sj of Si,n and Sj,n, δ(si,#, sj) = 1/|A|. For any
other state q, δ(q,#, q) = 1. So the transition matrices of S induced by any
letter are doubly stochastic. By Lemma 6.1, S recognizes L if n is sufficiently
large. Hence we have established one of the main results of this section:

Theorem 6.2. Suppose L is an R1 language. If the linear system L is consis-
tent, then L can be recognized by a DH-PRA.

Therefore, if the linear system L is consistent, then L can be recognized by a MM-
BQFA as well. Moreover, since all of the transition matrices of the constructed
DH-PRA are also unitary stochastic, by [7, Theorem 5.2] L can be recognized
by an EQFA.

Corollary 6.3. The class L(MM-BQFA) is not closed under union and inter-
section. Moreover, L(MM-BQFA) ( ER.



Proof. See the language L = {ab,bac} in Example 5.1; the languages {ab} and
{bac} can be recognized since their systems are consistent, while the system
L(L) is inconsistent. ⊓⊔

The construction of MM-QFA for R1 languages has some peculiarities which
have to be addressed separately. Specifically, there exist semilattice languages
that MM-QFA do not recognize with probability 1− ǫ [2, Theorem 2] and there-
fore they can’t simulate with the same accepting probabilities the automata
A1, ...,A|A|. Nevertheless, since the matrices used in the construction of DH-
PRA are unitary stochastic, a modified construction is still possible.

Theorem 6.4. Suppose L is an R1 language. If the linear system L is consis-
tent, then L can be recognized by a MM-QFA.

In summary, Theorems 5.2, 6.2 and 6.4 imply that an R1 language L can be
recognized by MM-QFA if and only if the linear system L(L) is consistent. MM-
QFA, DH-PRA, EQFA and MM-BQFA recognize exactly the sameR1 languages.

7 ”Forbidden Constructions”

In [3, Theorem 4.3], Ķikusts has proposed ”forbidden constructions” for MM-
QFA; any regular language whose minimal deterministic finite automaton con-
tains any of these constructions cannot be recognized by MM-QFA. It is actually
implied by Theorem 3.1 that the same is true for MM-BQFA and other ”decide-
and-halt” models from Section 4. Also, by Theorem 4.1 any language that is
recognized by a MM-BQFA is contained in ER. Therefore it is legitimate to
ask whether all the ER languages that do not contain any of the ”forbidden
constructions” can be recognized by MM-BQFA. The answer to this question is
negative.

Theorem 7.1. There exists an ER language that does not contain any of the
”forbidden constructions” and still cannot be recognized by MM-BQFA.

Proof. It is sufficient to indicate a language in R1 which satisfies the required
properties and for which the system of linear inequalities is inconsistent. Such
a language is L = {aedbc, beca, beda, bedac, eacb, eacbd, eadbc, ebca}
over alphabet A = {a, b, c, d, e}. ⊓⊔

8 Conclusion

In the paper we show which R1 languages can be recognized by ”decide-and-
halt” quantum automata. It is expected that these results can be first generalized
to include any R-trivial language, and finally, any language in ER, thus obtain-
ing the solution of the language class problem for MM-QFA. To apply the same
approach for R-trivial languages, one would need to find convenient sets of finite
R-trivial and J -trivial monoids that generate the varieties R and J and a func-
tion resembling θ (in the proof of Theorem 5.2). That is a subject for further
research.
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