
Probabilistic and Frequency Finite-State
Transducers ?

Kaspars Balodis, Anda Beriņa, Gleb Borovitsky, Rūsiņš Freivalds,
Ginta Garkāje, Vladimirs Kacs, Jānis Kalējs, Iļja Kucevalovs,

Jānis Ročāns, Madars Virza

Faculty of Computing, University of Latvia, Raiņa bulvāris 29, Riga, LV-1459, Latvia

Abstract. A transducer is a finite-state automaton with an input and
an output. We compare possibilities of nondeterministic and probabilis-
tic transducers, and prove several theorems which establish an infinite
hierarchy of relations computed by these transducers. We consider only
left-total relations (where for each input value there is exactly one al-
lowed output value) and Las Vegas probabilistic transducers (for which
the probability of any false answer is 0). It may seem that such limita-
tions allow determinization of these transducers. Nonetheless, quite the
opposite is proved; we show a relation which can only be computed by
probabilistic (but not deterministic) transducers, and one that can only
be computed by nondeterministic (but not probabilistic) transducers.
Frequency computation was introduced by Rose and McNaughton in
early sixties and developed by Trakhtenbrot, Kinber, Degtev, Wechsung,
Hinrichs and others. It turns out that for transducers there is an infi-
nite hierarchy of relations computable by frequency transducers and this
hierarchy differs very much from similar hierarchies for frequency com-
putation by a) Turing machines, b) polynomial time Turing machines,
c) finite state acceptors.

1 Introduction

Frequency computation was introduced by G. Rose [13] as an attempt to have
a deterministic mechanism with properties similar to probabilistic algorithms.
The definition was as follows. A function f : w → w is (m,n)-computable, where
1 ≤ m ≤ n, iff there exists a recursive function R: wn → wn such that, for all
n-tuples (x1, · · · , xn) of distinct natural numbers,

card{i : (R(x1, · · · , xn))i = f(xi)} ≥ m.

R. McNaughton cites in his survey [12] a problem (posed by J. Myhill)
whether f has to be recursive if m is close to n. This problem was answered
by B.A. Trakhtenbrot [14] by showing that f is recursive whenever 2m > n. On

? The research was supported by Grant No. 09.1570 from the Latvian Council of
Science and by Project 2009/0216/1DP/1.1.1.2.0/09/IPIA/VIA/044 from the Eu-
ropean Social Fund.

the other hand, in [14] it was proved that with 2m = n nonrecursive functions
can be (m,n)-computed. E.B. Kinber extended the research by considering fre-
quency enumeration of sets [9]. The class of (m,n)-computable sets equals the
class of recursive sets if and only if 2m > n.

For resource bounded computations, frequency computability behaves dif-
ferently. For example, it is known that whenever n′ −m′ > n −m, under any
reasonable resource bound there are sets which are (m′, n′)-computable, but not
(m,n)-computable. However, for finite automata, an analogue of Trakhtenbrot’s
result holds: the class of languages (m,n)-recognizable by deterministic finite
automata equals the class of regular languages if and only if 2m > n. Con-
versely, for 2m > n, the class of languages (m,n)-recognizable by deterministic
finite automata is uncountable for a two-letter alphabet [1]. When restricted to
a one-letter alphabet, every (m,n)-recognizable language is regular. This was
also shown by Kinber.

Frequency computations became increasingly popular when the relation be-
tween frequency computation and computation with a small number of queries
was discovered [11, 7, 2, 3].

We considered problems similar to those in the classical papers [14, 9, 1] for
finite-state transducers. We found the situation to be significantly different.

A finite state transducer is a finite state machine with two tapes: an input
tape and an output tape. These tapes are one-way, i.e. the automaton never
returns to the symbols once read or written. Transducers compute relations
between the input words and output words. A deterministic transducer produces
exactly one output word for every input word processed.

In this paper we consider advantages and disadvantages of nondeterministic,
deterministic, frequency and probabilistic transducers. Obviously, if a relation is
such that several output words are possible for the same input word, then the
relation cannot be computed by a deterministic transducer. For this reason, in
this paper we restrict ourselves to relations which produce exactly one output
word for every input word processed.

Definition 1. We say that a relation R(x, y) is left-total, if for arbitrary x there
is exactly one y satisfying R(x, y).

Probabilistic algorithms may be of several types: those allowing errors of
all types, Monte Carlo, Las Vegas, etc. Since our relations produce exactly one
output word for every input word processed, it was natural to consider only
Las Vegas transducers, i.e. probabilistic transducers for which the probability
of every false answer is 0. It follows immediately from the definition that ev-
ery relation computed by such a probabilistic transducer can be computed by
a nondeterministic transducer as well. We prove below that nondeterministic
transducers are strictly more powerful than Las Vegas transducers.

The zero probability of all possible false results of a probabilistic transducer
has another unexpected consequence. It turns out that only recursive relations
of small computational complexity can be computed by probabilistic transducers
with a probability, say, 1

4 or 1
7 . Hence a natural question arises, whether every

rational number 0 ≤ p ≤ 1 can be the best probability to compute some relation
by a probabilistic finite-state transducer. It turns out that it is not the case. We
show examples of relations that can be computed by probabilistic finite-state
transducers with probabilities 1

2 , 1
3 , 1

4 , etc. and not better. We believe that no
other best probabilities can exist for relations of the type considered by us.

This hierarchy of relations turns out to be related to the number of symbols of
help needed for deterministic finite-state transducers that take advice to compute
these relations.

2 Definitions

We use standard definitions of deterministic, nondeterministic and probabilistic
transducers, which are well-established in theoretical computer science literature
[5]. Our model is slightly different in the regard that we allow multiple output
symbols for each transition, however it can be easily seen that the expressive
power of transducer is unaffected.

Definition 2. A nondeterministic transducer D is a six-tuple 〈Q,Σ,∆, δ, q0, F 〉,
which satisfies the following conditions:

– Q is a finite set, whose members are called states of D. q0 ∈ Q is called the
initial state of D,

– Σ is a set of input symbols of D and is called the input alphabet,
– ∆ is a set of output symbols of D and is called the output alphabet,
– δ is a relation from Q × (Σ ∪ {ε}) to Q ×∆∗. Each tuple ((q, α), (p, β)) is

called a transition rule of D,
– F ⊆ Q is the set of accepting or final states of D

A transducer operates in discrete time t = 1, 2, 3 . . . and handles two one-
way tapes, where one is read-only input tape and contains a string from the
input alphabet Σ and second is write-only output tape with finite output alphabet
∆.

The computation begins at the start state q0. The computation from state q
proceeds by reading symbol α from the input tape, following a suitable transition
rule ((q, α), (p, β)) (the new state being p) and writing the corresponding output
β to the output tape. The only exception is so called ε-transition ((p, ε), (q, β)),
where the transducer changes the state and possibly writes an output without
reading an input symbol.

We consider all our transducers as machines working infinetely long. At every
moment, let x be the word having been read from the input tape up to this mo-
ment, and let y be the word written on the output tape up to this moment. Then
we say that the pair (x, y) belongs to the relation computed by the transducer.

Definition 3. A deterministic transducer is a nondeterministic transducer such
that transition relation δ is a function from Q×Σ to Q×∆∗, i.e., for each input
state and each input symbol the corresponding output state and output symbols
are uniquely determined according to the transition table δ and there are no
ε-transitions.

Definition 4. A probabilistic transducer is a transducer of the form
〈Q,Σ,∆, Ψ, q0, F 〉 where the transition function Ψ is probabilistic, i.e., for every
state q and input symbol α, output state p and output symbol β there is an asso-
ciated probability with which transition occurs. And if Ψ contains an ε-transition
from a state q then there is no transition from this state that reads an input
symbol. We furthermore stipulate that probabilities of all transitions from any
fixed pair of input state and input symbol (or ε) must sum to one.

Definition 5. We say that a probabilistic transducer A computes the relation
R with probability p if for arbitrary pair (x, y) ∈ R when A has read input x the
probability to be in an accepting state having produced the output y is no less
than p.

Definition 6. We say that a probabilistic transducer A is a Las Vegas trans-
ducer computing the relation R with probability p if for arbitrary pair (x, y) ∈ R
when A has read input x the probability to be in an accepting state having pro-
duced the output y is no less than p, and the probability to be in an accepting
state having produced output other than y equals 0.

We now introduce a new model of transducers, which is modeled after au-
tomata that take advice [6]. We call this model “transducers with help”.

Definition 7. A transducer with n help symbols is a deterministic transducer
that receives on a special input a single symbol α of extra information such
that α ∈ {α1, α2, . . . , αn}, which is always accessible, regardless of the current
position on the input tape.

We say that a pair (x, y) is in the relation computed by the transducer if there
is an α ∈ {α1, α2, . . . , αn} such that the transducer transforms the input x and
the help-symbol α into output y.

Since we consider in our paper only left-total relations and since our proba-
bilistic transducers are Las Vegas, it easily follows that the transducer for arbi-
trary x and for arbitrary α ∈ {α1, α2, . . . , αn} either produces a correct output
y or reaches a non-accepting state.

Definition 8. A frequency transducer with parameters (m,n) is a deterministic
transducer with n input tapes and n output tapes. Every state of the transducer is
defined as (a1, a2, · · · , an)-accepting where each ai ∈ { accepting , nonaccepting }.
We say that a left-total relation R is (m,n)-computed by the transducer if for
arbitrary n-tuple of pairwise distinct input words (x1, x2, · · · , xn) there exist at
least m distinct values of xi such that the i-th output yi satisfies (xi, yi) ∈ R.

Please notice that we do not demand the state of the frequency transducer
to be all-accepting after the reading of the input words. This allows us introduce
a counterpart of Las Vegas transducer.

Definition 9. A Las Vegas frequency transducer with parameters (m,n) is a de-
terministic transducer with n input tapes and n output tapes. Every state of the

transducer is defined as (a1, a2, · · · , an)-accepting where each ai ∈ { accepting , nonaccepting }.
We say that a left-total relation R is (m,n)-computed by the transducer if for
arbitrary n-tuple of pairwise distinct input words (x1, x2, · · · , xn): 1) there exist
at least m distinct values of xi such that the i-th output yi satisfies (xi, yi) ∈
R, and 2) if and only if a result yi is produced on any output tape i and
the current state of the transducer is (a1, a2, · · · , ai−1, accepting, ai+1, · · · , an)-
accepting, then R(xi, yi).

We consider frequency transducers like all other transducers as machines
working infinitely long. At every moment, let x be the word having been read
from the input tape up to this moment, and let y be the word written (and
accepted) on the output tape up to this moment. Then we say that the pair
(x, y) belongs to the relation computed by the transducer. However, in the case
when the input alphabet contains less than n letters, there is a problem how to
define (m,n)-computation correctly.

Definition 10. We say that a frequency transducer is performing a strong (m,n)-
computation of a relation R if at moments when all the input words (x1, x2, · · · , xn)
are distinct there exist at least m distinct values of xi such that the i-th output
yi satisfies (xi, yi) ∈ R.

Definition 11. We say that a frequency transducer is performing a weak (m,n)-
computation of a relation R with parameters (b1, b2, · · · bn), where b1, b2, · · · bn
are distinct integers, if the transducer is constructed in such a way that in the
beginning of the work the transducer reads the first b1 symbols from the input
word x1, the first b2 symbols from the input word b2, · · · , the first bn sym-
bols from the input word xn and at all subsequent moments reads exactly 1 new
symbol from every input tape. This ensures that at all moments the input words
(x1, x2, · · · , xn) are distinct. There is no requirement of the correctness of the
results when the length of input words is (b1, b2, · · · bn) but at all moments af-
terwards there exist at least m distinct values of xi such that the i-th output yi

satisfies (xi, yi) ∈ R.

3 Probabilistic transducers

First, we show that in our setting if a relation can be computed probabilistically
with a probability greater than 1

2 then it can be computed deterministically.

Theorem 1. If a left-total relation R can be computed by a Las Vegas trans-
ducer with probability greater than 1

2 then this relation can also be computed by
a deterministic transducer.

Proof. Our reduction will be in two steps. We will first show how to create a non-
deterministic transducer that computes the same relation and then determinize
it.

Let us take the Las Vegas transducer P that computes the relation R with
probability greater than 1

2 and “drop” the probabilities, i.e. create a nonde-
terministic transducer N that has the same set of states as the probabilistic

transducer and for every transition of the Las Vegas transducer, which has been
associated with a non-zero probability, define a corresponding transition in the
nondeterministic transducer. The initial state and set of accepting states are
copied directly.

Note that for any input word a state of N is reachable if and only if the
corresponding state of P is reachable with a non-zero probability. Also note that
the probability of false results is zero (if an accepting state can be reached with
a positive probability, then the corresponding output is indeed correct). This
proves that pair (x, y) is a part of the relation computed by P if and only if
(x, y) is a part of the relation computed by N , because a path with non-zero
probability in P corresponds to a path in N and vice versa.

We can now use a powerset construction to determinize N . This demands an
elaboration because not every nondeterministic transducer can be determinized.

We will create our deterministic transducer D as follows. D will have “metas-
tates” that will correspond to subsets of the states of N ; we will build metastates
of D incrementally. A metastate will be accepting iff the corresponding subset
of N ’s states contains an accepting state.

For n0, the initial state of N , define {n0} to be the initial metastate of D.
Mark this initial metastate as unvisited.

We now claim a following lemma: denote by Ai the set of accepting states
that N can be in after reading i symbols of a fixed input word w. Then for any
input word w and any i there is a transition from a state from Ai to a state from
Ai+1.

Proof: We will prove this lemma by contradiction. Assume the contrary that
all transitions to the states of Ai+1 are not from Ai. Then the total probability
of being in states from Ai+1 after reading i+ 1 symbols can be no greater than
the probability of not being in states from Ai after reading i symbols. However,
the latter probability is less than 1

2 (as it is the complement of probability in
being in states from Ai after reading i symbols), but the former probability must
be greater than 1

2 . This gives the desired contradiction.
While there is an unvisited metastate S = {s1, . . . , sk} do the following:

– compute all possible metastates {t1, . . . , tl}, such that each ti can be reached
from one of sj ∈ S by the means of one transition of N . Add these metastates
to D and mark them as unvisited.

– for each new metastate T , if S and T are both accepting then add to D
a transition from S to T (any transition from N transforming one of the
accepting states of S to an accepting state of T). We claim that such tran-
sitions are well-defined. This stems from the fact that R is functional, false
positive probability being zero and the lemma.

– mark S as visited.

We can now see that any computational path of N that leads to an accepting
state can also be modeled by a computational path of D that leads to an accept-
ing state and vice versa, therefore D is equivalent to N . By the construction of
N it means that D is equivalent to P .

ut

We believe to an even stronger result that the only interesting acceptance
probabilities are 1

2 ,
1
3 ,

1
4 , . . . i.e. if a relation can be computed with a probability

between them then it can also be computed with a higher probability. However
we have not been able to prove this yet.

Conjecture 1. For every natural n if a left-total relation R can be computed by
a Las Vegas transducer with probability greater than 1

n+1 then this relation can
also be computed by a Las Vegas transducer with probability 1

n .

Here we show that there exists an infinite hierarchy of relations that can be
computed with different probabilities.

Theorem 2. For every n there exists a left-total relation Rn such that it can be
computed by a Las Vegas transducer with probability 1

n , but there exists no Las
Vegas transducer that computes Rn with a probability exceeding 1

n .

Proof. Indeed, consider the following relation:

Rn = {(x, y)|x, y ∈ {1}∗, y = 1|x| mod n}

First let us prove that it can be solved with probability p = 1
n :

We will build a transducer for this relation which will consist of the initial
state, from which n transitions emerge, each with the probability 1

n , and n cycles
of n states (with each state in the cycle outputting nothing and always leading
only to the next, except the n-th state, which leads to the first state of the cycle)
of which only one state is the final. Let transitions coming from the initial state
be numbered from 1 to n, and i be this number, then each transition outputs i
1s (except for i = n, which outputs nothing), and ends up in the first state of
it’s cycle. In each cycle, only the i-th state is the final. (In essence, we compute
this relation with the probability 1

n , by simply guessing which of the n possible
values ends up being.)

Now let us prove that it can not be solved with probability p′ > 1
n :

First, we will assume that there exists a transducer that can achieve that.
Then with |x| being (n − 1) it has to output (n − 1) 1s with the probability
p′ > 1

n . However if we now give it a longer input word once |x| becomes (2n− 2)
the output has to be only (n − 2) 1s with probability at least p′ > 1

n . This
process can be repeated n times, until |x| becomes (n2−n), and the output has
to be empty, with probability at least p′ > 1

n . Since none of these events can
occur simultaneously (remember that the transducer cannot erase symbols from
the output tape), the union of their probabilities is n · p′ > n

n = 1, which is
impossible, hence a contradiction, and it’s proved that no such transducer can
exist. ut

Here we show how nondeterministic transducers compare to Las Vegas trans-
ducers.

It is easy to construct a nondeterministic transducer from a Las Vegas trans-
ducer – one only has to remove probabilities from the transitions. However, as

the next theorem shows, in some cases it is not possible to do this in the op-
posite direction therefore nondeterministic transducers are more powerful than
Las Vegas transducers.

Theorem 3. There exists a left-total relation R such that R can be computed
by a nondeterministic transducer, but R cannot be computed by any Las Vegas
transducer with any fixed probability exceeding 0.

Proof. Consider the following relation:

R =
{

(x, y)
∣∣∣x, y ∈ {0, 1}∗ , x = 0a110a21 . . . 10ak , y = 0f(a1)10f(a2)1 . . . 10f(ak)

}
where

f (n) =
{
n, if n ≡ 0 (mod2)
2n, if n ≡ 1 (mod2)

Blocks of zeros (length of the block can be 0) have to be transformed to the
same block if the length of the block is even and to a block twice the length if
the size of the block is odd.

A nondeterministic transducer can “guess” the parity of the size of each block
and if the guess was correct then go to an accepting state, otherwise stay at a
non-accepting state.

However no Las Vegas transducer can compute this relation. We can proba-
bilistically construct an input word xn = 0X110X21 . . . 10Xn where

Xi =
{
i, with probability 1

2
i+ 1, with probability 1

2

It can be seen that if i is large enough (larger than the number of states of the
transducer) any Las Vegas transducer has to start writing an answer before it
has finished reading block 0Xi . So it has to guess the parity of Xi and after m
such guesses the probability of giving the correct answer cannot be greater than
1

2m . Therefore for every fixed Las Vegas transducer T and fixed probability p, we
can pick n large enough that T gives the correct answer on xn with probability
less than p. ut

4 Deterministic transducers with help symbols

In this section we will show how Las Vegas transducers compare to another
model of computation – deterministic transducers with help symbols.

Here we show how to construct a Las Vegas transducer from a deterministic
transducer with help symbols.

Theorem 4. If a left-total relation R can be computed by a deterministic trans-
ducer with the help of n symbols then R can be computed by a Las Vegas trans-
ducer with probability 1

n .

Proof. Suppose that a deterministic transducer T computes the relation R with
the help of n symbols. We can construct a Las Vegas transducer T ′ that computes
R with probability 1

n in the following way.
We make n copies of T such that the i-th copy contains only the transitions

with i as the help symbol. Then we add an initial state for the transducer T ′

from which we add n ε-transitions each with probability 1
n to the initial states

of each of the copies of T .
It is easy to see that with a probability 1

n the transducer guesses the correct
help symbol and therefore computes the correct relation. ut

We believe that this is true also in other direction, i.e. that every Las Vegas
transducer can be transformed into an equivalent deterministic transducer with
help symbols.

Conjecture 2. If a left-total relation R can be computed by a Las Vegas trans-
ducer with probability 1

n then R can be computed by a deterministic transducer
with a help of n symbols.

For deterministic transducers with help symbols there also is a infinite hier-
archy of relations.

Theorem 5. For every n there exists a left-total relation Rn such that Rn can
be computed by a deterministic transducer with the help of n symbols, but cannot
be computed with the help of n− 1 symbols or less.

Proof. Denote by Rn the relation of Theorem 2. This relation can be computed
by a Las Vegas transducer with probability of 1

n , but cannot be computed with
a probability greater than 1

n .
We now claim that this relation indeed satisfies the required properties:

– Rn can be computed with a deterministic transducer with the help of n
symbols. The help symbol for input word x will be |x| mod n. Having received
the help symbol the transducer will print 1|x| mod n and then loop accepting
any input of the required length.

– assume from the contrary that the deterministic transducer D computes
Rn with the help of n − 1 symbols or less. Then by the Theorem 4 there
is a Las Vegas transducer that computes Rn with probability 1

n−1 . This
contradicts our choice of Rn, therefore our assumption is false and Rn cannot
be computed with the help of n− 1 symbols or less.

ut

5 Frequency transducers

First of all, it should be noted that a frequency transducer does not specify
uniquely the relation computed by it. For instance, a transducer with 3 input
tapes and 3 output tapes (2, 3)-computing the relation

R(x, y) =

 true, if x = y and x 6= 258714,
true, if y = 0 and x = 258714,
false, if otherwise.

can output y = x for all possible inputs and, nonetheless, the result is always
correct for at least 2 out of 3 inputs since the inputs always distinct. Please
notice that the program of the frequency transducer does not contain the
”magical” number 258714. Hence the number of states for an equivalent deter-
ministic transducer can be enormously larger.

Theorem 6. There exists a strong finite-state frequency transducer (1, 2)-computing
a continuum of left-total relations.

Proof. Consider the following frequency transducer with 2 input tapes and 2
output tapes. If the inputs x1 and x2 are such that x1 is an initial fragment of
x2, then the output y1 equals x1, and y2 = 0. If the inputs x1 and x2 are such
that x2 is an initial fragment of x1, then the output y2 equals x2, and y1 = 0.
In all the other cases y1 = y2 = 0.

Let R be a relation defined by taking an arbitrary infinite sequence ω of zeros
and ones, and defining

R(x, y) =

 true, if y = x and x is an initial fragment of ω,
true, if y = 0 and x is not an initial fragment of ω,
false, if otherwise.

There is a continuum of such sequences and a continuum of the corresponding
relations. Each of them is (1, 2)-computed by the frequency transducer. ut

Theorem 7. If 2m > n and there exists a strong finite-state frequency trans-
ducer (m,n)-computing a left-total relation R then R can also be computed by a
deterministic finite-state transducer.

Proof. Let R be a left-total relation and A be a strong finite-state frequency
transducer (m,n)-computing it. Let Q be (another) left-total relation (m,n)-
computed by the same transducer A. Let x1, x2, · · · , xk be distinct input words
such that the pairs (x1, y

′
1), (x2, y

′
2), · · · , (xk, y

′
k) are in R, the pairs (x1, y

′′
1),

(x2, y
′′
2), · · · , (xk, y

′′
k) are in Q, and y′1 6= y′′1 , y

′
2 6= y′′2 , · · · , y′k 6= y′′k . What happens

if k ≥ n and the transducer gets an input-tuple of distinct values containing only
values from {x1, x2, · · · , xk}? The transducer has to output at least m correct
values for R and at least m correct values for Q which is impossible because
2m > n. A careful count shows that k ≤ 2n− 2m .

Hence for arbitrary given relation R (m,n)-computable by A there is a con-
stant k such that any relation Q (m,n)-computable by A differs from R on no
more that k pairs (x, y). Let Q0 be one of the relations where indeed k such pairs
exist, and let (x1, y

′
1), (x2, y

′
2), · · · , (xk, y

′
k) and (x1, y

′′
1), (x2, y

′′
2), · · · , (xk, y

′′
k) be

these pairs. Of course, there is no algorithm to construct k and Q0 effectively,
but they cannot fail to exist. For arbitrary x the value of y such that (x, y) ∈ R
can be calculated effectively using n-tuples of input words involving the input
words x1, x2, · · · , xk and remembering that no relation computed by A can dif-
fer from R and from Q0 in more than k values. Since A is a finite automaton,
the standard cut-and-paste arguments show that this computation needs only
input words which differ from x only on the last d digits where d is a suitable
constant. ut

Theorem 8. There exists a left-total relation R (2, 3)-computed by a weak finite-
state Las Vegas frequency transducer and not computed by any deterministic
finite-state transducer.

Proof. We consider the relation

R(x, y) =

true, if y = 1|x| and | x |≡ 0(mod3),
true, if y = 1|x| and | x |≡ 1(mod3)
true, if y = 1|x|−1 and | x |≡ 2(mod3)
false, if otherwise.

The weak finite-state Las Vegas frequency (2, 3)-transducer starts with read-
ing 1 symbol from the first input tape, 2 symbols from the second input tape and
3 symbols from the third input tape and reads exactly 1 symbol from each input
tape at any moment. Hence at any moment the transducer has no more than one
input word xi with | xi |≡ 2(mod3). To have a correct result for the other two
input words, it suffices to keep the length of the output being equal the length
of the corresponding input. In case if the length of the input is | xi |≡ 2(mod3),
the state becomes non accepting.

The relation cannot be computed by a deterministic transducer because the
length of the output y decreases when the length of of the input increases from
3k + 1 to 3k + 2. ut

This proof can easily be extended to prove the following Theorem 9.

Theorem 9. If m < n then there exists a left-total relation R (m,n)-computed
by a weak finite-state Las Vegas frequency transducer and not computed by any
deterministic finite-state transducer.

Theorem 10. There exists a left-total relation R (2, 4)-computed by a weak
finite-state Las Vegas frequency transducer and not computed by any finite-state
(1, 2)-frequency transducer.

Proof. We consider the relation

R(x, y) =

true, if y = 1|x| and | x |≡ 0(mod9),
true, if y = 1|x| and | x |≡ 3(mod9),
true, if y = 1|x| and | x |≡ 4(mod9),
true, if y = 1|x| and | x |≡ 6(mod9),
true, if y = 1|x| and | x |≡ 8(mod9),
true, if y = 0 and | x |≡ 1(mod9),
true, if y = 0 and | x |≡ 2(mod9),
true, if y = 0 and | x |≡ 5(mod9),
true, if y = 0 and | x |≡ 7(mod9),
false, if otherwise.

(1) The weak finite-state Las Vegas frequency (2, 4)-transducer starts with read-
ing 1 symbol from the first input tape, 2 symbols from the second input tape

and 3 symbols from the third input tape, 4 symbols from fourth input tape and
reads exactly 1 symbol from each input tape at any moment. The transducer
always outputs yi = 1|xi| on the i-th output tape. Since the transducer can count
the length of the input modulo 9, the false outputs (in cases | xi | congruent to
1,2,5 or 7 (mod 9)) are not accepted and the transducer is Las Vegas.

At every moment the lengths of the input words are k, k + 1, k + 2, k + 3 for
some natural k. At least two of them are congruent to 0,3,4,6 or 8 (mod 9).

(2) Assume that the relation is (1, 2)-computed by a transducer performing
a weak (1, 2)-computation with parameters (b1, b2). Whatever the difference d =
b2 − b1, there exists a value of s such that both s+ b1 and s+ b2 are congruent
to 1,2,5 or 7 (mod 9). Hence the transducer produces two wrong results on the
pair 1s+b1 , 1s+b2 in contradiction with the (1, 2)-computability. ut

References

1. Holger Austinat, Volker Diekert, Ulrich Hertrampf, Holger Petersen. Regular fre-
quency computations. Theoretical Computer Science, vol. 330 No. 1, pp. 15–20,
2005.

2. Richard Beigel, William I. Gasarch, Efim B. Kinber. Frequency computation and
bounded queries. Theoretical Computer Science, vol. 163 No. 1/2, pp. 177–192,
1996.

3. John Case, Susanne Kaufmann, Efim B. Kinber, Martin Kummer. Learning re-
cursive functions from approximations. Journal of Computer and System Sciences,
vol. 55, No. 1, pp. 183–196, 1997.

4. A.N.Degtev. On (m,n)-computable sets. Algebraic Systems, Edited by D.I. Molda-
vanskij, Ivanovo Gos. Universitet, pp. 88–99, 1981.

5. Eitan Gurari. An Introduction to the Theory of Computation. Computer Science
Press, an imprint of E. H. Freeman, Chapter 2.2, 1989.

6. Rūsiņš Freivalds. Amount of nonconstructivity in finite automata. Theoretical
Computer Science, vol. 411, No. 38-39, pp.3436–3443, 2010.

7. Valentina Harizanova, Martin Kummer, Jim Owings. Frequency computations and
the cardinality theorem. The Journal of Symbolic Logic, vol. 57, No. 2, pp. 682–687,
1992.

8. Maren Hinrichs and Gerd Wechsung. Time bounded frequency computations. In-
formation and Computation, vol. 139, pp. 234-257, 1997.

9. Efim B. Kinber. Frequency calculations of general recursive predicates and fre-
quency enumeration of sets. Soviet Mathematics Doklady, vol. 13, pp. 873–876,
1972.

10. Efim B. Kinber. Frequency computations in finite automata, Kibernetika, No. 2,
pp. 7–15, 1976(Russian; English translation in Cybernetics 12 (1976) 179-187).

11. Martin Kummer. A proof of Beigel’s Cardinality Conjecture. The Journal of Sym-
bolic Logic, vol. 57, No. 2, pp. 677–681, 1992.

12. Robert McNaughton. The Theory of Automata, a Survey. Advances in Computers,
vol. 2, pp. 379–421, 1961.

13. Gene F. Rose. An extended notion of computability. Abstracts of International
Congress for Logic, Methodology and Philosophy of Science, p.14, 1960.

14. Boris A. Trakhtenbrot. On the frequency computation of functions. Algebra i
Logika, vol. 2, pp.25–32, 1964 (Russian)

