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Abstract. Prediction of functions is one of processes considered in in-
ductive inference. There is a ”black box” with a given total function f in
it. The result of the inductive inference machine F (< f(0), f(1), · · · , f(n) >
) is expected to be f(n + 1). Deterministic and probabilistic prediction
of functions has been widely studied. Frequency computation is a mech-
anism used to combine features of deterministic and probabilistic algo-
rithms. Frequency computation has been used for several types of induc-
tive inference, especially, for learning via queries. We study frequency
prediction of functions and show that that there exists an interesting
hierarchy of predictable classes of functions.

1 Introduction

Physicists are well aware that physical indeterminism is a complicated phe-
nomenon and probabilistical models are merely reasonably good approximations
of reality. The problem ”What is randomness?” has always been interesting not
only for philosophers and physicists but also for computer scientists. The term
”nondeterministic algorithm” has been deliberately coined to differ from ”inde-
terminism”.

Probabilistic (randomized) algorithms is one of central notions in Theory of
Computation. However, since long ago computer scientists have attempted to
develop notions and technical implementations of these notions that would be
similar to but not equal to randomization.

The notion of frequency computation was introduced by G. Rose [28] as an
attempt to have an absolutely deterministic mechanism with properties similar
to probabilistic algorithms. The definition was as follows. A function f : w → w
is (m,n)-computable, where 1 ≤ m ≤ n, iff there exists a recursive function R:
wn → wn such that, for all n-tuples (x1, · · · , xn) of distinct natural numbers,

card{i : (R(x1, · · · , xn))i = f(xi)} ≥ m.

R. McNaughton cites in his survey [25] a problem (posed by J. Myhill)
whether f has to be recursive if m is close to n. This problem was answered
by B.A. Trakhtenbrot [31] by showing that f is recursive whenever 2m > n. On
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the other hand, B.A. Trakhtenbrot [31] proved that if 2m = n then nonrecur-
sive functions can be (m,n)-computed. E.B. Kinber extended the research by
considering frequency enumeration of sets [20]. The class of (m,n)-computable
sets equals the class of recursive sets if and only if 2m > n. The notion of fre-
quency computation can be extended to other models of computation. Frequency
computation in polynomial time was discussed in full detail by M. Hinrichs and
G. Wechsung [19].

For resource bounded computations, the behavior of frequency computability
is completely different: for e.g., whenever n′ − m′ > n − m, it is known that
under any reasonable resource bound there are sets (m′, n′)-computable, but
not (m,n)-computable. However, scaling down to finite automata, the analogue
of Trakhtenbrot’s result holds again: We show here that the class of languages
(m,n)-recognizable by deterministic finite automata equals the class of regular
languages if and only if 2m > n. Conversely, for 2m > n, the class of languages
(m,n)-recognizable by deterministic finite automata [3] is uncountable for a
two-letter alphabet. When restricted to a one-letter alphabet, then every (m,n)-
recognizable language is regular. This was also shown by E.B. Kinber.

Frequency computations became increasingly popular when relation between
frequency computation and computation with a small number of queries was
discovered [23, 18, 6, 7].

Inductive inference is a process to find an algorithm from sample computa-
tions. We restrict ourselves to the case when a total function is to be identi-
fied.The first paper in this area was [17], yet (sometimes indirectly) the research
was influenced by the theory of experiments with finite automata [24].

In the prediction of functions we consider a functional F . We say that F
predicts a total function f : N → N correctly if the result F (< f(0), · · · , f(n) >)
always equals f(n+1). A class U of functions is called predictable if there exists
a functional F correctly predicting every function f ∈ U .

This definition of predictability of functions is rather weak because only
rather non-interesting classes of functions are predictable. All functions in U are
distinguishable using only the value f(0). Hence a more complicated definition
is used.

Definition 1. We say that F predicts a total function f : N → N in the limit
if the result F (< f(0), · · · , f(n) >) equals f(n+ 1) for all but a finite number of
the values of n. It is not even demanded that F (< f(0), · · · , f(n) >) is defined
for all n. A class U of functions is called predictable if there exists a recursive
functional F correctly predicting every function f ∈ U .

Definition 2. We say that F (m,n)-predicts a class U of total functions f :
N → N if for arbitrary n-tuple of pairwise distinct functions f1, f2, · · · , fn
from the class U the frequency algorithm works on n inputs receiving F (<
fj(0), · · · , fj(n) >) on the j-th input (n being the same on all the inputs) and
producing (at different moments!) outputs ”fj(n + 1) = r (the computation
is infinitely long and for some j the result can never be produced). It is de-
manded that there are at least m pairwise distinct functions g1, g2, · · · , gm such



that {g1, g2, · · · , gm} ⊆ {f1, f2, · · · , fn} and for all i ∈ {1, 2, · · · ,m} the correct
result on the corresponding output is produced for all but a finite number of n.

2 Results

Lemma 1. If a total function f is deterministically predicted in the limit then
f is recursive.

Proof. By the definition of predictability, there exists an n0 such that for all
n > n0 the result F (< f(0), · · · , f(n) >) equals f(n + 1). Whatever the values
< f(0), · · · , f(n0) >, the recursivity of f is implied by the recursivity of F . ut

Nonetheless there is specifics of the frequency computation.

Theorem 1. There is a class U of total functions containing a non-recursive
function g such that for arbitrary positive integer n there is an algorithm
(n, n + 1)-predicting the class U .

Proof. Let f be a total non-recursive function such that f(0) = 0. Let U consist
of the function f and all constants c. The frequency algorithm for each fj predicts
the next value as fj(0). For all the constant functions the prediction is correct.
Since the functions are supposed to be distinct, no more than one of the functions
is predicted incorrectly. ut

How (m,n)-predictability and (m′, n′)-predictability is related? Some impli-
cations are evident.

Lemma 2. If U is (m,n)-predictable, then U is also (m,n + 1)-predictable.

Lemma 3. If U is (m+ 1, n+ 1)-predictable, then U is also (m,n)-predictable.

Theorem 2. For arbitrary positive integer k there is a class Uk of total func-
tions such that:
1) for arbitrary positive integer n the class Uk is (n, n + k)-predictable,
2) for no positive integer n the class Uk is (n, n + k − 1)-predictable.

Proof. The class Uk consists of all the constants and k distinct non-recursive
functions. If at any tuple of distinct target functions at least k errors are allowed,
then the frequency algorithm can predict the functions as they were constants. If
less than k errors are allowed then existence of a frequency predicting algorithm
is supposed to predict in the limit at least one non-recursive function. This
contradicts an easy modification of Lemma 1. ut

The proofs of Theorems 1 and 2 used essentially the property of the class U
to contain non-recursive functions. This raises a natural question: does
(n, n + k)-predictability depend on the parameters (n, k) if all the functions in
U are recursive?



Theorem 3. For arbitrary positive integer k there is a class Uk of total recursive
functions such that:
1) for arbitrary positive integer n the class Uk is (n, n + k)-predictable,
2) for no positive integer n the class Uk is (n, n + k − 1)-predictable.

The main idea of the proof is to construct Uk as a set of total recursive func-
tions fab where a ∈ N and b ∈ {1, 2, · · · , k}. Each fab(0) contains information
about the value of a involved and complete information about the programs for
all the functions f0b, f1b, · · · , f(a−1)b but not the information about the pro-
grams for any of the functions fab. This way, if a is the largest first index of the
target functions of the frequency algorithm, there is no need for an error on all
the target functions with exception of fa1, fa2, · · · , fak. On the other hand, the
functions fa1, fa2, · · · , fak are constructed to ensure that the frequency algo-
rithm F computed by Turing machine ϕa working on these k functions cannot
predict correctly all but a finite number of values faj(n) for at least one of the
functions faj . (In our paper ϕ is a Gödel numbering of all one argument partial
recursive functions such that ϕ0 is the nowhere defined function. For instance,
any standard numbering of Turing machines can be used for this purpose.)

Formally, we use Smullyan’s double recursion theorem [30]:

Smullyan’s double recursion theorem. [27, 30] For any recursive functions
g and h, there exist m and n such that

ϕm = ϕg(<m,n>), and ϕn = ϕh(<m,n>).

This theorem can easily be generalized:

Lemma 4. [30] For any s-tuple of total recursive functions (h1, h2, · · · , hs)
there exists an s-tuple of natural numbers < y1, y2, · · · , ys > such that

ϕy1
= ϕh1(<y1,y2,··· ,ys>), · · · , ϕys

= ϕhs(<y1,y2,··· ,ys>).

Proof of Theorem 3. We define fab ∈ Uk by induction. There cannot be a
universal 3-argument recursive function U(a, b, x) = fab(x) because otherwise U
would be deterministically predictable in the limit. We define fa1, · · · , fak only
after fa′b have been defined for all a′ < a. Lemma 4 will be used to prove that ϕa

cannot be a frequency algorithm predicting the k-tuple of functions fa1, · · · , fak.
Basis. We define f01, · · · , f0k as constant functions equal to zero. We define

every number among n01, · · · , n0k as an integer v such that ϕv is constant zero
(every number nab will be a correct ϕ-program for the function fab). We de-
fine every number among z01, · · · , z0k as 0 (every number zab will be a correct
information about all ϕ-programs for all the functions fa′b′ , where a′ < a and
b′ ∈ {1, 2, · · · , k}).

Since we define the functions h1, h2, · · · , hk by a common procedure, we
use infinite injury priority method to establish temporal priorities among the
numbers {1, 2, · · · , k}. These priorities are needed to describe the construction
of the functions. We start with the ”natural” priority (1, 2, · · · , k).



Inductive step. Assume that all the functions fa′b where a′ < a have al-
ready been defined . Let t1, t2, · · · , tk be arbitrary natural numbers. For each
b ∈ {1, 2, · · · , k} we construct a k-tuple of functions as follows. For all b ∈
{1, 2, · · · , k} we define the functions ϕhb(<t1,t2,··· ,ts>) stepwise. First, we define

ϕhb(<t1,t2,··· ,ts>)(0) =< fa−1(0), na−1 > .

This value does not depend on b.

Assume, by a new induction, that each of the functions ϕhb(<t1,t2,··· ,ts>)

is already defined on some (0, 1, · · · , db) and the priority among the numbers
{1, 2, · · · , k} is now {w1, w2, · · · , wk}. For each j ∈ {1, 2, · · · , k}, we define b(j) as
the value p such that wp = j. Assume, by induction, that priority is coordinated
with the number of values of the arguments where the functions are defined, i.e.,
db(1) ≤ db(2) ≤ · · · ≤ db(k).

In a way to serialize the parallel processing of computing predictions by the
frequency algorithm ϕa the k-tuple of functions to be constructed (where the
values of the functions already constructed are taken as they are but the new
values of the target functions are taken equal to zero), we compute (in this order)
· · · q steps of ϕa on all the functions up to the length db(1), then q steps of ϕa

on all the functions up to the length db(2), · · · , then q steps of ϕa on all the
functions up to the length db(k), then q + 1 steps of ϕa on all the functions up
to the length db(1), then q + 1 steps of ϕa on all the functions up to the length
db(2), · · · , then q + 1 steps of ϕa on all the functions up to the length db(k), · · ·
, then q + 1 steps of ϕa on all the functions up to the length db(1) + 1, then q + 1
steps of ϕa on all the functions up to the length db(2) + 1, · · · , then q + 1 steps
of ϕa on all the functions up to the length db(k) + 1, then q+ 2 steps of ϕa on all
the functions up to the length db(1), then q + 2 steps of ϕa on all the functions
up to the length db(2), · · · , then q + 2 steps of ϕa on all the functions up to the
length db(k), then then q + 3 steps of ϕa on all the functions up to the length
db(1)+1, then q + 3 steps of ϕa on all the functions up to the length db(2)+1, · · · ,
then q + 3 steps of ϕa on all the functions up to the length db(k)+1, · · · , then
then q + 4 steps of ϕa on all the functions up to the length db(1)+2, then q + 4
steps of ϕa on all the functions up to the length db(2)+2, · · · , then q + 4 steps of
ϕa on all the functions up to the length db(k)+2, · · · till the first new prediction
on one of the functions is found. Say, the prediction for fj(m + 1) = e is found.
Then we define ϕhj(<t1,t2,··· ,ts>)(db + 1) = ϕhj(<t1,t2,··· ,ts>)(db + 2) = · · · =
ϕhj(<t1,t2,··· ,ts>)(m) = 0 and ϕhj(<t1,t2,··· ,ts>)(m+1) = e+1, (the prediction by
ϕa is made wrong). Additionally, we extend the definition domains for all the
functions whose priority comes after j, i.e., using the notation wp = j, for all
the functions ϕhwp (<t1,t2,··· ,ts>), · · · , ϕhwk

(<t1,t2,··· ,ts>).

By Lemma 4, there exists an s-tuple of natural numbers < y1, y2, · · · , ys >
such that

ϕy1 = ϕh1(<y1,y2,··· ,ys>), · · · , ϕys = ϕhs(<y1,y2,··· ,ys>).



However, these functions may be not total. We define fab as ϕyb
if it is total,

and as

fab(x) =

{
ϕyb

(x) , if ϕyb
is defined on [0, d] and x ∈ [0, d],

0 , if ϕyb
is defined on [0, d] and x ≥ d.

It is easy to see that fab either is equal to ϕyb
and the frequency algorithm ϕa

makes infinitely many incorrect predictions on this function or ϕyb
is a function

defined on a finite segment [0, d] and fab is a total function extending ϕyb
but

ϕa produces no predictions after the segment [0, d].

Nonetheless, Uk is (n, n + k)-predictable for arbitrary natural n. Indeed,
from the values g1(0), g2(0), · · · , gn+k(0) the frequency algorithm can find the
maximum value of a such that the target functions are fab ∈ Uk. The programs
for all functions with a′ < a can be computed knowing fab(0). No more than k
distinct target functions can correspond to the maximum value of a. ut

Theorem 4. There are two classes U1 and U2 of total recursive functions such
that:
1) U1 is deterministically predictable,
2) U2 is deterministically predictable,
3) If U1 ∪ U2 is (m,n)-predictable then m = 0.

Proof. Following example of [4], we define U1 as the class of all total recur-
sive functions f such that for all but a finite number of values of x it is true
that f(x) = 0, and U2 is the class of all total recursive functions f such that
∀x(ϕf(0)(x) = f(x)).

Now we prove that U1∪U2 is not (m,n)-predictable with m > 0. Assume from
the contrary that it is (m,n)-predictable by a frequency algorithm ϕa. In order
to use Lemma 4 we define an n-tuple of recursive functions (h1, h2, · · · , hn). The
functions take values ϕh1(t1,··· ,tn)(0) = t1, · · · , ϕhn(t1,··· ,tn)(0) = tn,
ϕh1(t1,··· ,tn)(1) = 1, · · · , ϕhn(t1,··· ,tn)(1) = n.

To define the values of these functions for x > 1 we compute predictions
made by ϕa initial fragments of these functions of length 2, 3, · · · supposing
that the subsequent values of the functions are zeros (but we do not add any
new values to these functions) till for at least one of these predictions equal zero.

Copying the method used in the proof of Theorem 3 we get that all the con-
structed functions are either defined on a finite initial fragment of the sequence
of natural numbers (and then the algorithm ϕa has produced only a finite num-
ber of predictions for this function) or the algorithm ϕa has produced infinitely
many wrong predictions for this function. ut

It was proved in [2] that Theorem 4 cannot be generalized to 3 classes U1, U2

and U3. More precisely, it was proved in [2] that deterministic predictability of
U1∪U2, U2∪U3 and U1∪U3 implies deterministic predictability of U1∪U2∪U3.



Theorem 5. Let n be a natural number such that n ≥ 7, m > n
2 and U1, U2, · · · , Un

be classes of total recursive functions such that:
1) U1 ∪ U2 ∪ · · · ∪ Un−1 is (m,n)-predictable,
2) U1 ∪ U2 ∪ · · · ∪ Un−2 ∪ Un is (m,n)-predictable,
3) U1 ∪ U2 ∪ · · · ∪ Un−3 ∪ Un−1 ∪ Un is (m,n)-predictable,
· · ·
n)U2 ∪ U3 ∪ · · · ∪ Un is (m,n)-predictable.
Then U1 ∪ U2 ∪ · · · ∪ Un is (2m, 2n)-predictable.

Proof. We describe the processing by the (2m, 2n)-algorithm the 2n-tuple of
functions f1, · · · , f2n from the class U1 ∪ U2 ∪ · · · ∪ Un. The new frequency
algorithm A has 2n distinct functions f1, · · · , f2n as the input. The old n algo-
rithms A1, A2, · · · , An have only n functions as the input. The new algorithm A
uses all possible (2n)!/n! copies of each of algorithms A1, A2, · · · , An by choos-
ing n functions out of f1, · · · , f2n. To predict the next value of any function
fi ∈ {f1, · · · , fn} the algorithm A considers predictions of all old frequency al-
gorithms on all n-tuples such that the tuple contains fi. This restriction removes
n.(2n−1)!

n! for every old algorithm leaving n( (2n)!
n! −

n.(2n−1)!
n! ) predictions in total

for the current value of fi.
Our frequency algorithm A for U1 ∪ U2 ∪ · · · ∪ Un always considers the set

of the pairs (algorithm Aj , n-tuple of inputs fi) having made the least number
of wrong number predictions for the function fi under question. Since n ≥ 7,
and m > n

2 , most of these pairs allow only a finite number of wrong predictions.
When a pair has made a wrong prediction, this pair is removed from the set.
When the first (!) prediction is made by one of the pair in the set, this prediction
is output as the result of the new frequency algorithm for U1 ∪ U2 ∪ · · · ∪ Un.
Since n ≥ 7 and m > n

2 , at least 2m of the functions fi get only finite number
of wrong predictions. ut
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4. Jānis Bārzdiņš (Y.M. Barzdin). Two theorems on limiting synthesis of functions.
Theory of algorithms and programs, Riga, University of Latvia, vol. 1, pp. 82–88,
1974 (in Russian).
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