
Quantum vs. deterministic queries on
permutations

Alina Vasilieva, Taisia Mischenko-Slatenkova, Rūsiņš Freivalds
and Ruslans Tarasovs

Department of Computer Science, University of Latvia, Raiņa bulvāris. 29,
Riga, LV-1459, Latvia ?

Alina.Vasiljeva@gmail.com, Taisia.Miscenko@gmail.com,
Rusins.Freivalds@mii.lu.lv, Ruslan@tarasovs.com

Abstract. K.Iwama and R.Freivalds [12] considered query algorithms
where the black box contains a permutation. Since then several authors
have compared quantum and deterministic query algorithms for permu-
tations. It turns out that the case of n-permutations where n is an odd
number is difficult. There was no example of permutation problem where
quantization can save half of the queries for (2m + 1)-permutations if
m ≥ 2. Even for (2m)-permutations with m ≥ 2 the best proved advan-
tage of quantum query algorithms is the result in [12] where the quantum
query complexity is m but the deterministic query complexity is (2m−1).
We present a group of 5-permutations such that the deterministic query
complexity is 4 and the quantum query complexity is 2.

1 Introduction

Many papers on query algorithms consider computation of Boolean functions.
The input of the query algorithm is a black box oracle containing the values of
the variables x1 = a1, x2 = a2, · · · , xn = an for an explicitly known Boolean
function f(x1, · · · , xn). The result of the query algorithm is to be the value
f(a1, · · · , an). The query algorithm can ask for the values of the variables. The
queries are asked individually, and the result of any query influences the next
query to be asked or the result to be output.

The complexity of the query algorithm is defined as the number of the queries
asked to the black box oracle. Deterministic query algorithms prescribe the next
query uniquely depending only on the previously received answers from the black
box oracle. Probabilistic query algorithms allow randomization of the process of
computation. They sometimes allow to reduce the complexity of the algorithm
dramatically [1].

Quantum query algorithms (see a formal definition in [6]) consists of a finite
number of states in each of which they make a query to the black box oracle

? The research was supported by Grant No. 09.1570 from the Latvian Council of
Science and by Project 2009/0216/1DP/1.1.1.2.0/09/IPIA/VIA/044 from the Eu-
ropean Social Fund.

and determine how to change states. In fact they alternate query operations
and unitary transformations. In the steps called query operations the states of
the algorithm are divided into subsets corresponding to the allowed quantum-
parallel queries. If each of states qi1 , · · · , qim asks a query ”xi =?” then for
every possible answer ”xi = j” a unitary operation over the states qi1 , · · · , qim
is pre-programmed. In the steps called unitary transformations the amplitudes
of all states are transformed according a unitary matrix. All the sequence of the
steps is ended in a special operation called measurement in which the amplitudes
(being complex numbers) for all the states are substituted by real numbers called
probabilities by the following rule. The complex number a + bi is substituted by
the real number a2 + b2. It follows from the unitarity of all the operations that
the total of the probabilities of all states equals 1. Some states are defined to
be accepting, and the other states are defined to be rejecting. This distinction
is not seen before the measurement. After the measurement the probabilities
of the accepting states are summed up and the result is called the accepting
probability. We say that the quantum query algorithm is exact if the accepting
probability is always either 1 or 0.

The notion of promise for quantum algorithm was introduced by Deutsch
and Jozsa [10], and Simon [13]. In quantum query algorithms for problems under
promise the domain of correctness of the algorithm is explicitly restricted. We are
not interested in behavior of the algorithm outside this restriction. For instance,
in this paper all the query algorithms are considered under a promise that the
target function describes a permutation (in a way precisely stated below).

Recently there have been many papers studying query algorithms computing
Boolean functions. Powerful methods to prove lower bounds of quantum query
complexity were developed by A. Ambainis [2, 3]. A good reference is the survey
by Buhrman and de Wolf [6].

We consider in this paper a more general class of functions f(x1, · · · , xn),
namely, functions {0, 1, 2, · · · , n − 1}n → {0, 1}. The domain {0, 1, 2, · · · , n}n
includes a particularly interesting case - permutations. For instance,

x1 = 4, x2 = 3, x3 = 2, x4 = 1, x5 = 0

can be considered as a permutation of 5 symbols {0,1,2,3,4} usually described
as 43210. Under such a restriction the functions f : {0, 1, 2, · · · , n−1}n → {0, 1}
can be considered as properties of permutations. For instance, the function

f(0, 1, 2) = 1, f(1, 2, 0) = 1, f(2, 0, 1) = 1, f(0, 2, 1) = 0, f(1, 0, 2) = 0, f(2, 1, 0) = 0

describes the property of 3-permutations to be even (as opposed to the property
to be odd).

The property of a permutation to be even or odd can be defined in many
equivalent ways. One of the most popular definitions used below is as follows.
A permutation x1 = a1, x2 = a2, · · · , xn = an is called even (odd) if it can be
obtained from the identical permutation x1 = 0, x2 = 1, · · · , xn = n − 1 by an
even (odd) number of transpositions, i.e. mutual changes of exactly two elements
of the permutation: substituting xi = ai and xj = aj by xi = aj and xj = ai. It

is a well-known fact that the property to be even or odd does not depend on the
particular sequence of transpositions. Deciding whether a given permutation is
even or odd is called deciding the parity of this permutation.

Our Contribution. It is easy to see that for every n-permutation (n− 1)
queries uniquely determine the permutation. Hence for arbitrary permutation
problem the deterministic query complexity never exceeds (n − 1). Theorem 1
below gives us a hope that sometimes half of the number of queries can be elim-
inated by quantization. The proof of Theorem 1 suggests that Fourier transform
might be used again in counterparts of this theorem for larger values of n. How-
ever, it is far from obvious how to organize the pairs of the values of results of
the queries into a linear string which is needed to apply the Fourier transform.

The paper [12] attempted to show that quantum query algorithms can use
only about a half of the number of queries needed for deterministic query al-
gorithms for deciding parity of permutations. Unfortunately, this attempt was
only partially successful. It was proved that for 2m-permutations it suffices to
have m quantum queries but for 2m + 1-permutations it suffices to have m + 1
quantum queries. In both cases it is more than the half of the deterministic query
complexity.

In this paper we were not able to construct an effective quantum query algo-
rithm to decide parity of 5-permutations. Instead we propose another permuta-
tion problem for 5-permutations where a quantum algorithm is indeed exactly
twice as efficient as the best deterministic algorithm.

For every problem where a quantum algorithm is more efficient than any
deterministic algorithm, it is crucially important to have a rich structure of
symmetries. This is why we use a group of 5-permutations such that it has
interesting automorphisms. We believe that our algorithm admits a generaliza-
tion for larger values of n but up to now we have been able to use it only for
5-permutations.

2 First example

Theorem 1. ([12]) There is an exact quantum query algorithm deciding the
parity of 3-permutations with one query.

Proof. By the way of quantum parallelism, in the state q1 we ask the query
x1 with an amplitude 1√

3
, in the state q2 we ask the query x2 with an amplitude

1√
3
, and in the state q3 we ask the query x3 with an amplitude 1√

3
.

If the answer from the black box to the query x1 is 0, we do not change the
amplitude of the state q1. If the answer is 1, we multiply the existing amplitude
to ei

2π
3 . If the answer is 2, we multiply the existing amplitude to ei

4π
3 .

If the answer from the black box to the query x2 is 0, we multiply the
amplitude of the state q2 to ei

4π
3 . If the answer is 1, we do not change the

amplitude. If the answer is 2, we multiply the existing amplitude to ei
2π
3 .

If the answer from the black box to the query x3 is 0, we multiply the
amplitude the state q3 to ei

2π
3 . If the answer is 1, we multiply the existing

amplitude to ei
4π
3 . If the answer is 2, we do not change the amplitude.

We process the obtained amplitudes of the states q1, q2, q3 by a unitary trans-
formation corresponding to the matrix (1√

3
) (1√

3
) (1√

3
)

(1√
3
) (1√

3
)ei

2π
3 (1√

3
)ei

4π
3

(1√
3
) (1√

3
)ei

4π
3 (1√

3
)ei

2π
3


This transformation is a particular case of Fourier transform. If we are com-

puting f(0, 1, 2), f(1, 2, 0) or f(2, 0, 1) (these are all even 3-permutations) the

amplitude of the state q1 becomes, correspondingly, 1, ei
2π
3 or ei

4π
3 . After mea-

suring this state we get the probability 1. If we are computing f(0, 2, 1) (which is
an odd permutation) the amplitude of the state q1 becomes 0 but the amplitude
of the state q2 becomes 1. If we are computing f(1, 0, 2) or f(2, 1, 0) (which are
odd permutations) the amplitude of the state q1 becomes 0 but the amplitude

of the state q3 becomes ei
4π
3 or ei

2π
3 , correspondingly. 2

3 Further results

We define a group GR of 5-permutations consisting of 20 permutations. These
permutations are:

01234 12340 23401 34012 40123
02413 13024 24135 30241 41302
03142 14203 20314 31420 42031
04321 10432 21043 32104 43210

First of all, we note that the 5-permutations in GR can be represented as
linear functions modulo 5.

x x + 1 x + 2 x + 3 x + 4
2x 2x + 1 2x + 2 2x + 3 2x + 4
3x 3x + 1 3x + 2 3x + 3 3x + 4
4x 4x + 1 4x + 2 4x + 3 4x + 4

These permutations can be considered as group with a 2-argument algebraic
operation ”multiplication of permutations”. The properties of this group GR
are well-known already long ago. For instance, it is known that GR is not a
commutative group and it is not a cyclic group.

In this section we prove that there is an exact quantum query algorithm
deciding the membership in the group GR of 5-permutations with 2 queries.
Obviously, 4 deterministic queries are needed for this problem because if a per-
mutation

P = {x0 = a0, x1 = a1, x2 = a2, x3 = a3, x4 = a4}
is in GR and only 3 queries are asked, there remain two possibilities, namely,
either xi = ai, xj = aj and the permutation is in GR, or xi = aj , xj = ai and
the permutation is not in GR.

We wil prove below that there is an exact quantum query algorithm deciding
the membership in the group GR of 5-permutations with two queries.

We need a numbering of 20 values of all possible pairs (ai, aj) where ai and
aj values from the black box (i.e. the elements of the permutation in question).
We might arrange these 20 values in accordance with the above-presented table
but we prefer a slightly different layout.

01 12 23 34 40
02 24 41 13 30
04 43 32 21 10
03 31 14 42 20

These values correspond to the linear functions

x x + 1 x + 2 x + 3 x + 4
2x 2x + 1 2x + 2 2x + 3 2x + 4
4x 4x + 1 4x + 2 4x + 3 4x + 4
3x 3x + 1 3x + 2 3x + 3 3x + 4

There is a certain regularity in this layout. Each row can be obtained from
the preceding row multiplying it to 2 modulo 5. Each column can be obtained
from the preceding column adding 1 modulo 5.

Now we introduce two distances among the values of these pairs. The distance
Dr[(u, v), (a, b)] between the pair (u, v) and the pair (a, b) is the the value (the
number of the row of (a, b)) - (the number of the row of (u, v)) (mod 4). The
distance Dc[(u, v), (a, b)] between the pair (u, v) and the pair (a, b) is the the
value (the number of the column of (a, b) - (the number of the column of (u, v))
(mod 5).

Our quantum query algorithm (in a way of quantum parallelism) enters (with
equal amplitudes 1√

20
) 20 states. In each of these states the algorithm asks one

of the 20 possible queries (xi, xj) where xi ∈ {0, 1, 2, 3, 4}, xj ∈ {0, 1, 2, 3, 4}, and
i 6= j. In the result of these queries the amplitude is multiplied either to (-1) or
to (+1). The following is a description of the value of these multipliers.

There are 20 values of all possible pairs (xi, xj) where xi ∈ {0, 1, 2, 3, 4}, xj ∈
{0, 1, 2, 3, 4}, and xi 6= xj . For every pair of queries (xi, xj) where xi 6= xj , the
answer-pair (ai, aj) corresponds to the answer-pair (aj , ai) of the query (xj , xi).
However, for the sake of symmetry, we have considered a quantum query algo-
rithm with 20 possible pairs of queries.

Since the black box contains a permutation, the results of the query are also
such that ai ∈ {0, 1, 2, 3, 4}, aj ∈ {0, 1, 2, 3, 4}, and ai 6= aj . Hence there are
exactly 20 values of all possible answer-pairs (ai, aj).

For each of these 20 pairs (xi, xj) we get the corresponding pair of answers
(ai, aj) and again ai ∈ {0, 1, 2, 3, 4}, aj ∈ {0, 1, 2, 3, 4}, and ai 6= aj . We can
consider 20 distances Dr[(xi, xj), (ai, aj)] and 20 distances Dc[(xi, xj), (ai, aj)].

In the table below each of these pairs of distances is considered as a pair (w, z)
where w = Dr[(xi, xj), (ai, aj)] and z = Dc[(xi, xj), (ai, aj)]. Please observe that
while asking the query (xi, xj) we automatically get an answer to the query

(xj , xi) as well but for this pair the distances may be different. Our quantum
query algorithm uses this distinction essentially.

Suppose that the permutation in the black box is 03241 and we consider the
pair of queries (x2, x4). Then the pair of answers (a2, a4) equals (2, 1) and the pair
of answers for (x4, x2) denoted as (a4, a2) equals (1, 2). Then Dr[(x2, x4), (a2, a4)]
is equal to Dr[(2, 4), (2, 1)] = 1, Dc[(2, 4), (2, 1)] = 2 , Dr[(4, 2), (1, 2)] = 1, and
Dc[(4, 2), (1, 2)] = 3.

The following table describes in which cases the multiplier is +1 and in which
cases it is −1. The first column corresponds to the pair

(w1, z1) = (Dr[(xi, xj), (ai, aj)], Dc[(xi, xj), (ai, aj)]),

the second column corresponds to

(w2, z2) = (Dr[(xj , xi), (aj , ai)]), Dc[(xj , xi), (aj , ai)]),

the last column corresponds to the multiplier (+1) or (−1). For instance, the
above-mentioned example is described in the table below as

(1, 2) (1, 3)→ +1

The table is as follows.

(0, 0) (0, 0)→ +1
(0, 1) (0, 4)→ +1
(0, 2) (0, 3)→ +1
(0, 3) (0, 2)→ +1
(0, 4) (0, 1)→ +1
(1, 0) (1, 0)→ +1
(1, 1) (1, 4)→ +1
(1, 2) (1, 3)→ +1
(1, 3) (1, 2)→ +1
(1, 4) (1, 1)→ +1
(2, 0) (2, 0)→ −1
(2, 1) (2, 4)→ −1
(2, 2) (2, 3)→ −1
(2, 3) (2, 2)→ −1
(2, 4) (2, 1)→ −1
(3, 0) (3, 0)→ −1
(3, 1) (3, 4)→ −1
(3, 2) (3, 3)→ −1
(3, 3) (3, 2)→ −1
(3, 4) (3, 1)→ −1

Lemma 1. If the permutation in the black box is from the group GR then all
the 20 multipliers are equal.

Proof. If the permutation corresponds to the function ax+ b where If a = 3
or a = 4 then the multiplier equals (−1). 2

Lemma 2. If the permutation in the black box is the following ones

01243, 01342, 01423, 01324, 01432

then exactly 10 multipliers equal (−1) and exactly 10 multipliers equal (+1).

Proof. By explicit counting. 2

Lemma 3. If the permutation in the black box f(x) can be obtained from a
permutation g(x) in the set

{ 01243, 01342, 01423, 01324, 01432 }

as f(x) = ag(x) + b(mod5) then exactly 10 multipliers equal (−1) and exactly 10
multipliers equal (+1).

Proof. The definition of the values of multipliers depend only on the dis-
tances Dr but not on the distances Dc. Application of a linear function at + b
does not change the distance Dr. 2

Lemma 4. If the permutation in the black box is not from the group GR then
exactly 10 multipliers equal (−1) and exactly 10 multipliers equal (+1).

Proof. The group G5 of all 5-permutations consists of 120 elements. GR is
a subgroup of G5 consisting of 20 elements. Lagrange’s theorem on finite groups
shows that G5 is subdivided into 6 cosets of equal size, one of the cosets being
GR. The other 5 cosets GC1, GC2, GC3, GC4, GC5 can be described as the set
of all permutations f(x) such that f(x) = ag(x) + b(mod5) and g(x) ∈ GCi.
It follows from Lemma 4 that exactly 10 multipliers equal (−1) and exactly 10
multipliers equal (+1). 2

Theorem 2. There is an exact quantum query algorithm deciding the member-
ship in the group GR of 5-permutations with two queries.

Proof. Our quantum query algorithm (in a way of quantum parallelism)
enters (with equal amplitudes 1√

20
) 20 states. In each of these states the algo-

rithm asks one of the 20 possible queries (xi, xj) where xi ∈ {0, 1, 2, 3, 4}, xj ∈
{0, 1, 2, 3, 4}, and i 6= j. In the result of these queries the amplitude is multi-
plied either to (-1) or to (+1) as described in the table above. Fourier transform
applied to these results. Lemmas 1 and 4 ensure that our quantum algorithm
accepts all permutations in GR and rejects all permutations not in GR with
probability 1. 2

References

1. Farid M. Ablayev, Rūsiņš Freivalds. Why Sometimes Probabilistic Algo-
rithms Can Be More Effective. Lecture Notes in Computer Science, vol.
233, p. 1–14, 1986.

2. Andris Ambainis. Quantum lower bounds by quantum arguments. Journal
of Computer and System Sciences, vol. 64(4), p.750–767, 2002.

3. Andris Ambainis. Polynomial degree vs. quantum query complexity. Pro-
ceedings of FOCS’98, p.230–240, 1998.

4. Andris Ambainis and Rūsiņš Freivalds. 1-way quantum finite automata:
strengths, weaknesses and generalizations. Proceedings of FOCS’98, p. 332–
341. Also quant-ph/9802062.

5. Andris Ambainis and Ronald de Wolf. Average-case quantum query com-
plexity. Proceedings of STACS’2000, p.133–144, 2000.

6. Harry Buhrman and Ronald de Wolf. Complexity measures and decision
tree complexity: a survey. Theoretical Computer Science, vol. 288(1), p.
21–43, 2002.

7. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca and Ronald
de Wolf. Quantum lower bounds by polynomials. Journal of the ACM, vol.
48(4), p. 778—797, 2001.

8. Harry Buhrman, Richard Cleve, Ronald de Wolf and Christof Zalka.
Bounds for small-error and zero-error quantum algorithms. Proceedings of
FOCS’99, p.358–368, 1999.

9. Richard Cleve, Arthur Ekert, Chiarra Macchiavello and Michele Mosca.
Quantum algorithms revisited. Proceedings of the Royal Society of London,
vol. A 454, p. 339–354, 1998.

10. David Deutsch and Richard Jozsa. Rapid solutions of problems by quantum
computation. Proceedings of the Royal Society of London, vol. A 439, p. 553,
1992.

11. Rūsiņš Freivalds. Languages recognizable by quantum finite automata. Lec-
ture Notes in Computer Science, vol. 3845, p. 1–14, 2006.

12. Rūsiņš Freivalds, Kazuo Iwama. Quantum Queries on Permutations with a
Promise. Lecture Notes in Computer Science, vol. 5642, p. 208–216, 2009.

13. I. Simon. String matching algorithms and automata. Lecture Notes in Com-
puter Science, vol. 814, p. 386–395, 1994.

