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Abstract. Nonconstructive proofs are a powerful mechanism in mathe-
matics. Furthermore, nonconstructive computations by various types of
machines and automata have been considered by e.g., Karp and Lip-
ton [17] and Freivalds [11]. They allow to regard more complicated al-
gorithms from the viewpoint of much more primitive computational de-
vices. The amount of nonconstructivity is a quantitative characterization
of the distance between types of computational devices with respect to
solving a specific problem.
In the present paper, the amount of nonconstructivity in learning of
recursive functions is studied. Different learning types are compared with
respect to the amount of nonconstructivity needed to learn the whole
class of general recursive functions. Upper and lower bounds for the
amount of nonconstructivity needed are proved.
inductive inference, recursive functions, nonconstructivity

1 Introduction

Nonconstructive methods of proof in mathematics have a rather long and dra-
matic history. The debate was especially passionate when mathematicians tried
to overcome the crisis concerning the foundations of mathematics.

The situation changed slightly in the forties of the last century, when noncon-
structive methods found their way even to discrete mathematics. In particular,
Paul Erdős used nonconstructive proofs masterly, beginning with the paper [7].

Another influential paper in this regard was Bārzdiņš [2], who introduced the
notion of advice in the setting of Kolmogorov complexity of recursively enumer-
able sets. Karp and Lipton [17] introduced the notion of a Turing machine that
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takes advice to understand under what circumstances nonuniform upper bounds
can be used to obtain uniform upper bounds. Damm and Holzer [6] adapted the
notion of advice for finite automata.

A further step was taken by Freivalds [11, 12], who introduced a qualitative
approach to measure the amount of nonconstructivity (or advice) in a proof.
Analyzing three examples of nonconstructive proofs led him to a notion of non-
constructive computation which can be easily used for many types of automata
and machines and which essentially coincides with Karp and Lipton’s [17] notion
when applied to Turing machines.

As outlined by Freivalds [11, 12], there are several results in the theory of
inductive inference of recursive functions which suggest that the notion of non-
constructivity may be worth a deeper study in this setting, too.

In the present paper we prove several upper and lower bounds for the amount
of nonconstructivity in learning classes of recursive functions. When learning re-
cursive functions growing initial segments (f(0), . . . , f(n)) are fed to the learning
algorithm, henceforth called strategy. For each initial segment the strategy has
then to compute a hypothesis in which is a natural number. These hypotheses
are interpreted with respect to a suitably chosen hypothesis space ψ which is
a numbering. The interpretation of the hypothesis in is that the strategy con-
jectures program in in the numbering ψ to compute the target function f . One
requires the sequence (in)n∈N of all computed hypotheses to converge to a pro-
gram i correctly computing the target function f , i.e., ψi = f . A strategy learns
a class of recursive functions provided it can learn every function from it. The
model just explained is basically learning in the limit as introduced by Gold [14].
Many variations of this model have been studied (cf., e.g., [4, 10, 15, 25], and
the references therein).

For many of these variations it was shown that the class R of all recursive
functions is not learnable. Several attempts have been undertaken to classify the
difficulty of learning the class R. Adleman and Blum [1] showed the degree of
unsolvability of the problem to learn the class R to be strictly less than the degree
of the halting problem. A further approach was to characterize the difficulty of
learning classes of recursive functions by using oracles (cf., e.g., [5, 19]).

We introduce a new measure, i.e., the amount of nonconstructivity needed
to learn the class R. That is, the strategy receives as a second input a bitstring
of finite length which we call help-word. If the help-word is correct, the strategy
learns in the desired sense. Since there are infinitely many functions to learn, a
parameterization is necessary, i.e., we allow for every n a possibly different help-
word and we require the strategy to learn every recursive function contained in
{ψ0, . . . , ψn} with respect to the numbering ψ (cf. Definition 4). The difficulty of
the learning problem is then measured by the length of the help-words needed,
i.e., in terms of the growth rate of a function d bounding this length.

As in previous approaches, the help-word does not just provide an answer
to the learning problem. There is still much work to be done by the strategy.
The usefulness of this approach is nicely reflected by our results which show that
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the function d may vary from arbitrarily slow growing (for learning in the limit)
to n+ 1 (for minimal identification).

2 Preliminaries

Unspecified notations follow Rogers [22]. In addition to or in contrast with [22]
we use the following. Let N = {0, 1, 2, . . .} be the set of all natural numbers, and
let N+ = N\{0}. We use N

∗ for the set of all finite sequences of natural numbers.
By |S| and ℘(S) we denote the cardinality and power set of a set S, respectively.
Let ∅, ∈, ⊂, ⊆, ⊃, ⊇, and # denote the empty set, element of, proper subset,
subset, proper superset, superset, and incomparability of sets, respectively.

By T we denote the set of all total functions of one variable over N. The set
of all partial recursive and recursive functions of one respectively two variables
over N is denoted by P , R, P2, R2, respectively. Let f ∈ P , then we use dom(f)
for the domain of the function f , i.e., dom(f) = {x | x ∈ N, f(x) is defined}.
By Val(f) we denote the range of f , i.e., Val(f) = {f(x) | x ∈ dom(f)}.

A function f ∈ P is said to be strictly monotonic provided for all x, y ∈ N

with x < y we have, if both f(x) and f(y) are defined then f(x) < f(y). By Rmon

we denote the set of all strictly monotonic recursive functions.
Any function ψ ∈ P2 is called a numbering. Let ψ ∈ P2, then we write ψi

instead of λx.ψ(i, x) and set Pψ = {ψi | i ∈ N} as well as Rψ = Pψ ∩ R.
Consequently, if f ∈ Pψ, then there is a number i such that f = ψi. If f ∈ P
and i ∈ N are such that ψi = f , then i is called a ψ–program for f . Let ψ be any
numbering, and i, x ∈ N; if ψi(x) is defined (abbr. ψi(x)↓ ) then we also say that
ψi(x) converges. Otherwise, ψi(x) is said to diverge (abbr. ψi(x)↑ ). Let ψ ∈ P2

and f ∈ P ; then we use minψ f to denote the least number i such that ψi = f .
A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [22]) iff Pϕ = P ,

and for any numbering ψ ∈ P2, there is a compiler c ∈ R such that ψi = ϕc(i)
for all i ∈ N. We use Göd to denote the set of all Gödel numberings.

By NUM = {U | (∃ψ ∈ R2) [U ⊆ Pψ]} we denote the family of all subsets
of all recursively enumerable classes of recursive functions. Let NUM! = {U |
(∃ψ ∈ R2) [U = Pψ]} denote the family of all recursively enumerable classes of
recursive functions. The elements of NUM! are referred to as indexed families.

We call (ϕ,Φ) a measure of computational complexity (cf. [20]) if ϕ ∈ Göd
and Φ ∈ P2 satisfies Blum’s [3] axioms. That is, (1) dom(ϕi) = dom(Φi) for all
i ∈ N and (2) the predicate “Φi(x) = y” is uniformly recursive for all i, x, y ∈ N.

Let 〈. . .〉 be any recursive encoding of N
∗ onto N. We write fn instead of

〈(f(0), . . . , f(n))〉, for all n ∈ N, f ∈ R. A sequence (jn)n∈N of natural numbers
is said to converge to the number j if jn = j for all but finitely many n ∈ N.
Moreover, (jn)n∈N is said to finitely converge to the number j if it converges in
the limit to j and for all n ∈ N, jn = jn+1 implies jk = j for all k ≥ n.

Definition 1 (Gold [13, 14]). Let U ⊆ R and let ψ ∈ P2. The class U is said

to be learnable in the limit with respect to ψ if there is a strategy S ∈ P such

that for each function f ∈ U ,
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(1) for all n ∈ N, S(fn) is defined,

(2) there is a j ∈ N with ψj = f and the sequence (S(fn))n∈N converges to j.

If U is learnable in the limit w.r.t. ψ by S, we write U ∈ LIMψ(S). Let LIMψ =
{U | U is learnable in the limit w.r.t. ψ}, and let LIM =

⋃
ψ∈P2 LIMψ.

In the following modification of Definition 1 we require the strategy to con-
verge to minψ f instead of converging to any program for the target function f .

Definition 2 (Freivalds [9], Kinber [18]). Let U ⊆ R and let ψ ∈ P2. The

class U is said to be ψ-minimal learnable in the limit with respect to ψ if there

is a strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,

(2) the sequence (S(fn))n∈N converges to minψ f .

If U is ψ-minimal learnable in the limit w.r.t. ψ by a strategy S, we write

U ∈ MINψ(S). Furthermore, let MINψ = {U | U is ψ-minimal learnable in
the limit w.r.t. ψ}, and let MIN =

⋃
ψ∈P2 MINψ.

In general it is not decidable whether or not a strategy has already converged
when successively fed some graph of a function. With the next definition we
consider a special case where it has to be decidable whether or not a strategy has
learned its input function. That is, we replace the requirement that the sequence
of all created hypotheses “has to converge” by “has to converge finitely.”

Definition 3 (Gold [14], Trakhtenbrot and Barzdin [23]). Let U ⊆ R and

let ψ ∈ P2. The class U is said to be finitely learnable with respect to ψ if there

is a strategy S ∈ P such that for any function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,

(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N finitely

converges to j.

If U is finitely learnable w.r.t. ψ by a strategy S, we write U ∈ FINψ(S). The

learning types FINψ and FIN are defined analogously to the above.

Of course, we can also combine ψ-minimal learnability and finite identifica-
tion resulting in the learning types MIN -FINψ and MIN -FIN .

The strategies used for nonconstructive inductive inference take as input not
only the encoded graph of a function f ∈ R but also a help-word w. The help-
words are assumed to be encoded in binary. So, for such strategies we write
S(fn, w) to denote the program output by S. Then, for all the inference types
defined above, we say that S nonconstructively identifies f with the help-word w
provided the sequence (S(fn, w))n∈N (finitely) converges to a number j such that
ϕj = f (for LIM and FIN ) and j = minψ f (for MIN ), respectively.

Definition 4. Let ψ ∈ P2, let U ⊆ R, and d ∈ R. A strategy S ∈ P2 infers U
with nonconstructivity d(n) in the limit with respect to ψ, if for each n ∈ N there

is a help-word of length at most d(n) such that for every f ∈ U∩{ψ0, ψ1, . . . , ψn}
the sequence (S(fn, w))n∈N converges to a program i satisfying ψi = f .
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Nonconstructive finite and minimal inference is defined in analogue to the above.
Looking at Definition 4 as well as at the definition of nonconstructive finite

and minimal inference, it should be noted that the strategy may need to know
either an appropriate upper bound for n or even the precise value of n in order
to exploit the fact that the target function is from f ∈ U ∩ {ψ0, ψ1, . . . , ψn}.

To simplify notation in several theorems and proofs given below, we make
the convention that logarithmic function is to the base 2 and that it is replaced
by its integer valued counterpart ⌊logn⌋+ 1.

3 Results

Already Gold [13] showed that R /∈ LIM. So, we start our investigations by
asking for the amount of nonconstructivity needed to identify the set R of all
recursive functions in the limit with respect to any Gödel numbering ϕ.

Using an idea from Freivald and Wiehagen [8], we prove that the needed
amount of nonconstructivity is surprisingly small. To show this result, for every
function f ∈ Rmon we define its inverse finv as follows: finv (n) = µy[f(y) ≥ n]
for all n ∈ N. Recall that Val(f) is recursive for all f ∈ Rmon . Thus, for all
f ∈ Rmon we can conclude that finv (n) ∈ R.

Theorem 1. Let ϕ ∈ Göd be arbitrarily fixed, and let d ∈ Rmon be any function.

Then there is a strategy S ∈ P2 such that the class R can be identified with

nonconstructivity log dinv (n) in the limit with respect to ϕ.

Proof. Let ϕ ∈ Göd be arbitrarily fixed. Without loss of generality, we can also
assume any complexity function Φ ∈ P2 such that (ϕ,Φ) is a complexity measure.

The key idea of the proof is that, in order to learn any function from R,
it suffices to have an upper bound for minϕ f . So, assuming any help-word w
of length precisely log dinv (n), the strategy S uses the length of the help-word
w to create a bitstring that contains only 1s and has the same length as the
help word. This bitstring is interpreted in the usual way as a natural number k.
By construction, we then have k ≥ dinv (n). Furthermore, since d ∈ Rmon , we
directly obtain that d(k) ≥ d(dinv (n)) ≥ n. Consequently, the strategy S uses k
to compute

u∗ =df d(k) ,

and by construction, we have u∗ ≥ n.
Assume any function f ∈ R∩{ψ0, ψ1, . . . , ψn}, and let fm and w be the input

to the strategy S. Then, S initializes the index set Iinit to be Iinit = {0, . . . , u∗}
and checks whether or not Φi(x) ≤ m for every i ∈ Iinit and 0 ≤ x ≤ m. For all i
and x that passed this test successfully, S checks whether or not ϕi(x) = f(x).
If this is not the case, i is removed from Iinit . Let Im be the resulting index set.

The strategy uses the amalgamation technique (cf. [4, 24]). That is, let amal
be a recursive function mapping any finite set I of ϕ-programs to a ϕ-program
such that for any x ∈ N, ϕamal(I)(x) is defined by running ϕi(x) for every i ∈ I
in parallel and taking the first value obtained, if any.
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So, the output of S(fm, w) is amal(Im).
We have to show that the sequence (amal(Im))m∈N converges to a ϕ-program

for f . By construction we know that Iinit contains at least one ϕ-program for f .
This program and any other ϕ-program computing a subfunction of f can never
be removed from Iinit . But if a ϕ-program j from Iinit does not compute a sub-
function of f , then there must be an x such that ϕj(x)↓ 6= f(x). So, as soon as
m ≥ max{x, Φj(x)}, the program j is removed from Iinit . Since Iinit is finite,
there must be an m∗ such that Im∗

contains only ϕ-programs for f or a sub-
function of f . We conclude that amal(Im∗

) is a ϕ-programs for f . Furthermore,
Iℓ = Im∗

for all ℓ ≥ m∗, and thus the strategy S learns f in the limit. ⊓⊔

So there is no smallest amount of nonconstructivity needed to learn R in the
limit. But the amount of nonconstructivity cannot be zero, since then we would
have R ∈ LIM. One can define a total function t ∈ T such that t(n) ≥ d(n) for
all d ∈ Rmon and all but finitely many n. Consequently, log tinv is then a lower
bound for the amount of nonconstructivity needed to learn R in the limit when
using the algorithm from the proof of Theorem 1.

We continue by asking what amount of nonconstructivity is needed to ob-
tain ϕ-minimal identification in the limit of the class R. Now, the situation is
intuitively more complex, since LIMϕ \ MINϕ 6= ∅ for every ϕ ∈ Göd. In-
terestingly, there are even Gödel numberings ϕ such that MINϕ contains only
classes of finite cardinality (cf. Freivalds [10]). On the other hand, the sufficient
amount of nonconstructivity given in Theorem 2 does not depend on the Gödel
numbering. Theorem 2 below is not the best possible and we shall improve it
below, but it shows an easy way to achieve ϕ-minimal learning of R in the limit.

Theorem 2. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal identified with nonconstructivity n + 1
in the limit with respect to ϕ.

Proof. Let ϕ ∈ Göd be arbitrarily fixed, and let n ∈ N. The help-word w is a
bitstring b of length n + 1 defined as follows. If ϕi ∈ R, then the ith entry of b
is 1, and 0 otherwise. So, the length of w allows the strategy to compute n.

Assume any function f ∈ R∩{ψ0, ψ1, . . . , ψn}, and let fm and w be the input
to S. Then S only considers those functions ϕi, 0 ≤ i ≤ n, for which the ith entry
in the help-word is 1. Since all these remaining functions are total, the strategy
searches for the least index j among these functions for which ϕmj = fm. That is,
it essentially uses the identification by enumeration principle (cf. Gold [14]). ⊓⊔

The proof of Theorem 2 was easy which may be an indication that a smaller
amount of nonconstructivity may suffice. So far we could not show a lower bound
for the amount of nonconstructivity needed to achieve ϕ-minimal inference in the
limit of R. As Theorem 4 shows, we can achieve a much better result when using
nonconstructivity n+1, again an indication that we used a too great amount of
nonconstructivity in Theorem 2. And indeed, we can do exponentially better.
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Theorem 3. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal identified with nonconstructivity 2 · logn
in the limit with respect to ϕ.

Proof. The key observation for the proof is that it suffices to know the number of
recursive functions in the set {ϕ0, . . . , ϕn}. To use this information appropriately,
the first half of the help-word w is the binary encoding of n and the second half
of w provides the number, say k, of recursive functions in the set {ϕ0, . . . , ϕn}.
This number is written in binary but leading zeros are added to ensure that both
parts of w have the same length. Thus 2 · logn many bits suffice to represent w.

Assume any function f ∈ R∩{ψ0, ψ1, . . . , ψn}, and let fm and w be the input
to the strategy S. Then S, by dovetailing its computations, first tries to compute
ϕi(0), . . . , ϕi(m) for all 0 ≤ i ≤ n until it finds the first k programs i1, . . . , ik such
that ϕi(0), . . . , ϕi(m) turn out to be defined for every i ∈ {i1, . . . , ik}. Once S
has found these programs i1, . . . , ik, it outputs the least program i ∈ {i1, . . . , ik}
for which it verifies ϕmi = fm provided there is such a program, and m otherwise.

By construction, there are n+1− k many programs j ∈ {0, . . . , n} such that
ϕj ∈ P \ R. For each of these programs j there is a least yj such that ϕj(yj)↑ .
Let ymax be the maximum of all these yj . Hence, as soon as m ≥ ymax, the
strategy S must find precisely the programs i1, . . . , ik such that ϕi ∈ R for all
i ∈ {i1, . . . , ik}. By assumption, the target function f possesses a program i with
0 ≤ i ≤ n, and so for all m ≥ ymax, the strategy must output minϕ f . ⊓⊔

Next we provide the theorem already mentioned above which shows that with
nonconstructivity n+ 1 a much stronger result is possible.

Theorem 4. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal finitely identified with nonconstructivity

n+ 1 with respect to ϕ.

Proof. Let ϕ ∈ Göd, and let n ∈ N. The help-word w is a bitstring b of length
n + 1 defined as follows. If ϕi ∈ R and ϕi 6= ϕj for all 0 ≤ j < i, then the ith
entry of b is 1, and 0 otherwise. So, the length of the help-word directly allows
the strategy to compute n. Note that now the help-word allows for implicitly
having a one-to-one enumeration for the functions f ∈ R ∩ {ϕ0, . . . , ϕn}.

Assume any function f ∈ R ∩ {ϕ0, ϕ1, . . . , ϕn}, and let fm and w be the
input to S. Then S only considers those functions ϕi, 0 ≤ i ≤ n, for which
the ith entry in the help-word is 1. For all these i, the strategy computes ϕmi
and checks whether or not they are pairwise different. As long as this is not the
case, the strategy outputs m. If all these ϕmi are pairwise different, then the
strategy outputs the i for which it could verify fm = ϕmi .

By construction, it is obvious that S finitely converges to minϕ f . ⊓⊔

So far we could not prove the amount of nonconstructivity given in Theorem 4
to be the best possible. We thus look at the case, where we have to learn an
indexed family U of recursive functions. Note that for every indexed family U
and any of its numberings ψ ∈ R2 we have U ∈ MINψ (cf. Gold [14]). In
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contrast, NUM#FIN (see e.g., [25] and the references therein). So, it is only
natural to ask for the amount of nonconstructivity needed to finitely learn ψ-
minimal programs. The answer is provided by our theorems below.

Theorem 5. Let U be any indexed family, and let ψ ∈ R2 be any numbering

for U . Then there is a strategy S ∈ P2 such that the class U can be ψ-minimal

finitely identified with nonconstructivity 2 · logn with respect to ψ.

Proof. The key observation is that it suffices to know the number k of distinct
functions in {ψ0, . . . , ψn}. The help-word w is divided in two halves, where the
first half is the binary encoding of n and the second half encodes k in binary
(again including leading zeros). So 2 · logn many bits suffice for representing w.

On input fm and w the strategy S computes, by dovetailing its computations,
ψi(x) for all i ∈ {0, . . . , n} and x = 0, 1, 2, . . . until it has verified that there are
exactly k different functions. Let i1, . . . , ik be the least indices of these k different
functions. Next, it checks whether or not there is precisely one i ∈ {i1, . . . , ik}
such that fm = ψmi . If this is the case, S outputs this i. Otherwise, it outputs m.

By construction, it is obvious that S finitely converges to minψ f . ⊓⊔

Next we show that the amount of nonconstructivity given in Theorem 5
cannot be substantially reduced.

Theorem 6. There is an indexed family U and a numbering ψ ∈ R2 for it

such that no strategy S ∈ P2 can ψ-minimal finitely identify the class U with

nonconstructivity c · logn with respect to ψ, where c ∈ (0, 1) is any constant.

Proof. We construct the indexed family U by defining the numbering ψ ∈ R2

for it. For this purpose, we use the following pairing function c : N × N → N,
where c(x, y) = 2x(2y + 1)− 1. Note that this pairing function is a bijection. It
may be traced back to Pepis [21] and Kalmár [16]. Furthermore, we interpret
every function in P2 as a strategy and obtain thus an effective enumeration
S0, S1, S2, . . . of all possible strategies. Below, for ℓ ∈ N, we use the shortcut iℓ+1

to denote the encoding f ℓ of the initial segment of the function f for which
f(z) = i for all i = 0, . . . , ℓ.

For every i ∈ N we define two functions ψ2i and ψ2i+1 as follows. Let x and y
be the uniquely determined numbers such that i = c(x, y). Now, we successively
define for k = 1, 2, 3, . . . the functions values ψ2i(k − 1) = ψ2i+1(k − 1) = i
and input ik and y to the strategy Sx until we find the smallest k such that the
following Conditions (A) and (B) are satisfied.

(A) There is an ℓ < k such that each of the values Sx(i, y), . . . , Sx(i
ℓ+1, y) turns

out to be computable in at most k steps.
(B) Sx(i, y) 6= Sx(i

2, y) 6= · · · 6= Sx(i
ℓ, y) = Sx(i

ℓ+1, y).

If Conditions (A) and (B) never turn out to be satisfied then the function values
ψ2i(k) and ψ2i+1(k) are defined for all k ∈ N, and thus ψ2i, ψ2i+1 ∈ R.

On the other hand, if Conditions (A) and (B) turn out to be satisfied then
Condition (B) implies that the sequence Sx(i, y), . . . , Sx(i

ℓ+1, y) tends to con-
verge finitely. That is, it either converges finitely or it cannot converge finitely
at all. Now, we continue to define the functions ψ2i and ψ2i+1 as follows.
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(C) If Sx(i
ℓ, y) = 2i, then we define ψ2i(z) = i + k + z for all z ≥ k.

Furthermore, we set ψ2i+1(z) = i for all z ≥ k.
(D) If Sx(i

ℓ, y) = 2i+ 1, then we define ψ2i+1(z) = i+ k + z for all z ≥ k.
Furthermore, we set ψ2i(z) = i for all z ≥ k.

(E) If Sx(i
ℓ, y) /∈ {2i, 2i+1}, then we define ψ2i(z) = ψ2i+1(z) = z for all z ≥ k.

So we have ψ2i, ψ2i+1 ∈ R, and thus, ψ ∈ R2. Finally, we set U = Rψ.
We show that there is no strategy S ∈ P2 that ψ-minimal finitely infers U

with nonconstructivity c·log n with respect to ψ, where c ∈ (0, 1) is any constant.
Suppose the converse, i.e., there is a strategy S ∈ P2 that ψ-minimal finitely

infers U with nonconstructivity c · logn with respect to ψ. Then there must be
a v ∈ N such that S = Sv in our enumeration S0, S1, S2, . . . of all possible strate-
gies. Let d be the function from Definition 4. Furthermore, for every n ∈ N and
every f ∈ {ψ0, . . . , ψn} there has to be a help-word w of length at most d(n) and
depending only on n such that the sequence (Sv(f

m, w))m∈N finitely converges
to the minimal ψ-program of f .

By assumption, there is a c ∈ (0, 1) such that d(n) ≤ c · logn. We fix this c
and conclude that for n large enough we have

d(n) > 1 and
1− c

2
>

2 + (v + 1)

logn
. (1)

Now, we obtain successively

1 >
c+ 1

2

1 >
2c+ 1− c

2

1 >
c · logn

log n
+

1− c

2

1 >
d(n)

log n
+

2 + (v + 1)

logn
, since c · logn ≥ d(n) and by (1)

log n > d(n) + 2 + (v + 1)

logn− log 2v+1 > d(n) + 2

log
n

2v+1
> d(n) + 2

n

2v+1
> 2d(n)+2

n+ 2

2v+1
> 2 · 2d(n) + 1

n+ 2

2v+1
> 2w + 1 , since 2d(n) ≥ w

n

2
> 2v(2w + 1)− 1

n

2
> c(v, w) .

Now, let i = c(v, w) and consider the functions ψ2i and ψ2i+1. By our choice
of n, these functions must be among the functions {ψ0, . . . , ψn}.



10 R. Freivalds and T. Zeugmann

Let ℓ ∈ N
+ be the least number such that Sv on two successive inputs outputs

the same hypothesis, i.e., Sv(i, w) 6= · · · 6= Sv(i
ℓ, w) = Sv(i

ℓ+1, w). Such an ℓ has
to exist, since otherwise Sv can neither finitely identify ψ2i nor ψ2i+1.

If Sv(i
ℓ, w) /∈ {2i, 2i + 1} we are already done, since ψ2i and ψ2i+1 are the

only functions from U having an initial segment where all values are equal to i.
Finally, if Sv(i

ℓ, w) ∈ {2i, 2i+1} then by construction (cf. Condition (C) and (D),
respectively), we have ψ2i(z) = ψ2i+1(z) for all z = 0, . . . , ℓ but ψ2i 6= ψ2i+1. So
the strategy Sv fails to finitely learn either function ψ2i or ψ2i+1. ⊓⊔

As the proof of Theorem 6 shows, the failure to ψ-minimal finitely identify
the indexed family U with respect to the numbering ψ with nonconstructivity
c · logn, for c ∈ (0, 1), is caused by the requirement to finitely identify the
functions from U . Thus, we directly obtain the following corollary.

Corollary 1. There is an indexed family U and a numbering ψ ∈ R2 for it such

that no strategy S ∈ P2 can finitely identify the class U with nonconstructivity

c · logn with respect to ψ, where c ∈ (0, 1) is any constant.

4 Conclusions and Open Problems

We have presented a model for the inductive inference of recursive functions that
incorporates a certain amount of nonconstructivity. In our model, the amount
of nonconstructivity needed to solve the learning problems considered has been
used as a quantitative characterization of their difficulty.

We studied the problem of learning the whole class R under various postu-
lates. These postulates range from learning in the limit to finite and minimal
identification. As far as learning in the limit is concerned, the amount of noncon-
structivity needed to learn R can be very small and there is no smallest amount
that can be described in a computable way (cf. Theorem 1).

This result is nicely contrasted by the fact that we needed nonconstructivity
2 · logn to ϕ-minimal identify the class R in the limit and nonconstructivity n+1
to ϕ-minimal finitely identify R (cf. Theorems 3 and 4, respectively). That is,
each additional postulate exponentially increased the amount of nonconstruc-
tivity needed. It remains, however, open whether or not these results can be
improved.

Furthermore, we investigated the amount of nonconstructivity needed to ϕ-
minimal finitely identify any indexed family of recursive functions. In this set-
ting we obtained an upper bound of 2 · logn for the amount of nonconstructivity
needed and showed that this amount cannot be substantially improved (cf. The-
orems 5 and 6).

Unfortunately, so far we could only show the lower bound presented in The-
orem 6. Proving lower bounds for the other cases studied in this paper remains
open and should be addressed in the future.
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