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Abstract

A nearsemilattice is a poset having the upper-bound property.
A binary operation − on a poset with the least element 0 is said
to be subtraction-like if x ≤ y if and only if x − y = 0 for all x, y.
Associated with such an operation is a family of partial operations
lp defined by lp(x) := p − x on every initial segment [0, p]; these
operations are thought of as local (sectional) complementations of
some kind. We study several types of subtraction-like operations,
show that each of these operations can be restored in a uniform
way from the corresponding local complementations, and state some
connections between properties of a (sufficiently strong) subtraction
on a nearsemilattice and distributivity of the latter.
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1 Introduction and preliminaries

We define a nearsemilattice to be a poset A possessing the upper bound
property: every pair of elements having an upper bound has the least upper
bound. Equivalently, every initial segment Ap := {x : x ≤ p} of A is a
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join semilattice. Two elements a and b of a nearsemilattice are said to be
compatible (notation: a |◦ b) if their join exists. Thus,

a |◦ b if and only if a, b ≤ x for some x,

if a ≤ b and b |◦ c, then a |◦ c, if a ≤ b, then a |◦ b .

A nearsemilattice that is also a meet semilattice is known as a nearlattice
[4, 7, 8, 16, 21]. This is the case, for example, when A has the least element
and satisfies the ascending chain condition. Indeed, then, by an argument
involving the Axiom of Choice (cf. [11], Lemma 2.39), every subset Ap ∩Aq

of A, being non-empty, has a maximal element a. This element is even the
greatest one, for otherwise a < a ∨ x, where x is any element of Ap ∩ Aq

such that x 6≤ a. Hence, every two elements p and q of A have the g.l.b.
In particular, every initial segment of a nearlattice is a lattice. By defi-

nition, a nearlattice is distributive if every its initial section is a distributive
lattice [7, 8, 9, 16, 21]. It is worth to note that the class of nearlattices
is shown in [16] to be definitionally equivalent to a variety of ternary alge-
bras, called there join algebras. The ternary join j is defined in terms of
nearlattice operations by

j(x, y, z) := x ∧ y. ∨ .y ∧ z . (1)

The inverse translation is x∧ y := j(x, y, x), and it turns a join algebra into
a meet semilattice with the upper bound property, in which x, y ≤ p implies
that x ∨ y = j(x, p, y).

We shall assume in this paper that a nearsemilattice always has the
least element 0 and consider it as a partial algebra of kind (A,∨, 0). In
[4], a subtractive nearsemilattice was defined to be an algebra (A,∨,−, 0),
where (A,∨, 0) is a nearsemilattice and − is a binary operation satisfying
the axioms

s1: if y |◦ z, then x− y ≤ z iff x ≤ y ∨ z,
s2: if x− y ≤ z, then x− z ≤ y.

In the case when ∨ is total, A becomes a subtractive semilattice, the order
dual of an implicative semilattice (see [10]). According to Corollary 16 of
[4], an algebra (A,∨,−, 0) is a subtractive nearsemilattice if and only if its
reduct (A,−, 0) is a Henkin algebra (implicative model of [15], alias positive
implicative BCK-algebra; the order duals of Henkin algebras are known as
Hilbert algebras) and the partial operation ∨ is related to subtraction − in
this way:
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for all x ∈ A, x = a ∨ b if and only if x = max{z : z − b ≤ a}.
It was also shown in [4, Theorem 18] that if A is actually a nearlattice,
subtraction on it (when defined) is unique. For nearsemilattices this was
observed, in the dual form, in [5] (on p. 277). At last, every subtractive
nearsemilattice A is a relative subalgebra of some subtractive semilattice A′

(Theorem 17(1) in [4]), which means that A is a subset of A′ closed under
subtraction and such that, for all x, y, z ∈ A, z is the join of x and y in A
if and only if it is their join in A′.

By [4, Proposition 8], the axiom s1 may be replaced with the triple of
simpler conditions

s1a: if x− y |◦ y, then x ≤ x− y. ∨ y,
s1b: if x |◦ y, then x ∨ y.− y ≤ x,
s1c: if x |◦ y, then x− z ≤ x ∨ y.− z .

(see also Section 3). One more easy consequence of s1 is the equivalence

s0: x ≤ y if and only if x− y = 0.

Let us call a binary operation− on a poset with the least element subtraction-
like if it satisfies s0. Algebras of kind (A,−, 0), where A is such a poset and
− is a subtraction-like operation on it, are the order duals of implicative
algebras in the sense of [24].

In this paper, we study several subtraction-like operations on posets
and, more specifically, nearsemilattices. Namely, we deal with operations
− that satisfy, besides s0, one of the following sets of axioms: s2, s2+s1a,
s2+s1a+s1b. It will be shown, in particular, that each of the respective
classes of algebras, termed weak BCK-algebras (Section 2), weak Henkin
algebras and almost subtractive nearsemilattices (Section 3) is determined
by a certain kind of complementation on initial segments of algebras from
this class. Moreover, an almost subtractive nearsemilattice turns out to
be subtractive just in the case when it is distributive (Section 3), while a
stronger form of distributivity turns subtraction into dual relative pseudo-
complementation (Section 4). A few of the presented results not depending
on the upper bound property have already appeared in [6] in a dual form;
in particular, dual weak BCK-algebras were introduced in that paper.

Let us discuss distributivity for nearsemilattices in more detail. Recall
that an upper semilattice A is said to be distributive if x ≤ y ∨ z implies
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that x = y′ ∨ z′ for some y′, z′ ∈ A such that y′ ≤ y and z′ ≤ z (see [14]).
There are two ways how to adjust this definition to nearsemilattices.

Suppose that A is a nearsemilattice. Given a, b, c ∈ A, we call an element
a (b, c)-decomposable if a = b′ ∨ c′ for some compatible b′ and c′ such that
b′ ≤ b and c′ ≤ c. We say that A is distributive if the following holds for all
x, y, z ∈ A:

if y |◦ z and x ≤ y ∨ z, then x is (y, z)-decomposable. (2)

or, in a more concise form, if every initial segment of A is a distributive
semilattice. Therefore, this definition corresponds to the standard notion of
a distributive nearlattice. Furthermore, we say that A is strongly distributive
if, for all x, y, z ∈ A,

if x ≤ y ∨ z provided y |◦ z, then x is (y, z)-decomposable. (3)

This condition is equivalent to the conjunction of two: distributivity (2)
and

if y 6 |◦ z, then x is (y, z)-decomposable. (4)

Actually, the nearsemilattice is strongly distributive if and only if its order
dual is a distributive poset in the sense of [23], i.e., if and only if [y)∩[z) ⊆ [x)
in A implies that x is (y, z)-decomposable. In semilattices, both concepts
of distributivity coincide with that recalled above.

We end this section with a convention on notation. Following [4, 5], we
use dots rather than parentheses to indicate the scope of a binary operation,
as in (1) and s1a–s1c. Here is a more illustrative example of using dots for
grouping symbols in terms: the notation

x ∧ :y ∨ x. ∨ z = x ∧ .y ∨ x: ∨ .x ∧ z

stands for
x ∧ ((y ∨ x) ∨ z) = (x ∧ (y ∨ x)) ∨ (x ∧ z).

2 Weak BCK-algebras

In this section, we shall investigate the role of the axiom s2.
An algebra (A,−, 0), where A := (A,≤) is a poset with the least element

0 and − is a binary operation on A is said to be a weak BCK-algebra, or a
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wBCK-algebra, for short, if it satisfies the conditions s0 and s2. The order
duals of weak BCK-algebras, called weak BCK*-algebras, were introduced
in [6]. See Lemma 2 therein for the following basic properties of wBCK-
algebras.

Proposition 2.1 In any wBCK-algebra,
(a) x− .x− y ≤ y,
(b) if x ≤ y, then z − y ≤ z − x,
(c) x− :x− .x− y = x− y,
(d) x− x = 0,
(e) x− y ≤ x,
(f) x− .x− y ≤ x,
(g) x− 0 = x,
(h) 0− x = 0 .

Another description of wBCK-algebras is useful.

Proposition 2.2 Let A be a poset with the least element 0. The algebra
(A,−, 0) is a wBCK-algebra if and only if the operation − satisfies the items
(a), (b) and (g) of the preceding proposition.

Proof. The items (a) and (b) can replace s2 as an axiom of wBCK-algebras:
if x− y ≤ z, then x− z ≤ x− .x− y ≤ y by (b) and (a). Furthermore, (g)
can replace the axiom s0: by s2 and (g), a − b ≤ 0 ⇔ a − 0 ≤ b ⇔ a ≤ b.

ut
Note also that, due to (d) and (g), a weak BCK-algebra (hence, every

subtractive nearsemilattice as well) is a subtractive algebra in the general
sense of [26]. By (h), it is even arithmetical at 0 [12]. Clearly, the class of
all wBCK-algebras is a quasivariety; as noticed at the beginning of Section
5 in [6], it is not a variety.

Theorem 2.3 below will demonstrate that the structure of a wBCK-
algebra is completely determined by the structure of its initial segments.
We have first to make some preparatory work.

Let, for every element p of a wBCK-algebra A, Lp be the operation on A
defined by Lp(x) := p−x. Such operations have been called left maps in the
context of BCK-algebras. Note that every initial segment Ap is closed under
Lp (see Proposition 2.1(e)). Let us denote by lp the restriction of Lp to Ap.
Owing to (6) (see below), properties of A are closely related to those of the
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“local” left maps lp. We shall treat each lp as a kind of complementation in
the initial segment (“section”) Ap.

By an upper Galois connection on a poset (P,≤) we shall mean a pair
(ϕ, ψ) of selfmaps of P that is an ordinary Galois connection on the dual
poset (P,≥). If ϕ = ψ, the connection is said to be symmetric. Thus, an
operation + on P is a member of a symmetric upper Galois connection, or
just an upper Galois map, if and only if, for all x and y,

x+ ≤ y if and only if y+ ≤ x

or, equivalently,

x++ ≤ x, if x ≤ y, then y+ ≤ x+.

If, moreover, the range of + is cofinal:

for every x, there is y such that x ≤ y+ ,

then the operation + will be called a dual Galois complementation (or g*-
complementation, for short; the asterisk is for ‘dual’). In a bounded poset
P always 1+ = 0, while the above cofinality condition reduces to the re-
quirement 0+ = 1 (or, in more expanded form, if x+ = 0, then x = 1).

Now observe that an algebra (A,−, 0) satisfying s0 is a wBCK algebra if
and only if every left map Lp is an upper Galois map. Moreover, every lp is
a g*-complementation on Ap (Proposition 2.1(g)). This motivates the name
“sectionally g*-complemented poset” (like sectionally pseudocomplemented
semilattices in [17] and sectionally semicomplemented nearlattices in [21])
for the partial algebra (A, lp, 0)p∈A. (Other kinds of sectional complement-
edness of A in further sections will be understood similarly.) However, it is
convenient to replace here the family of the local left maps with one partial
binary operation ª, where pª x stands for lp(x).

We thus define a partial wBCK-algebra to be an algebra (A,ª, 0), where
A is a poset with the least element 0, and ª is a partial operation on A
satisfying conditions

(ª1) xª y is defined if and only if y ≤ x,
(ª2) if x ≤ y, then y ª x ≤ y,
(ª3) if x, y ≤ z and z ª x ≤ y, then z ª y ≤ x,
(ª4) xª 0 = x.

In every partial wBCK-algebra,
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(ª5) if x ≤ y, then y ª .y ª x ≤ x,
(ª6) if x ≤ y ≤ z, then z ª y ≤ z ª x,
(ª7) if x ≤ y, then y ª :y ª .y ª x = y ª x,
(ª8) xª x = 0.

These properties are parallel to (a)–(d) in Proposition 2.1 and are proved
in a similar fashion: by (ª3), y ª x ≤ y ª x implies (ª5) and (ª5) implies
(ª6); (ª7) is a consequence of (ª6) and (ª5); again by (ª3), (ª4) implies
the non-trivial half of (ª8).

For example, a D-poset in the sense of [20] is a bounded partial wBCK-
algebra satisfying two more conditions

(ª9) if x ≤ y, then x ≤ y ª .y ª x,
(ª10) if x ≤ y ≤ z, then z ª x.ª .z ª y = y ª x.

It is easily seen that every wBCK-algebra is an extension of a unique
partial wBCK-algebra. The subsequent theorem shows how this extension
is obtained.

Theorem 2.3 Let A be poset with the least element 0. Suppose that ª is
a partial operation on A and that − is a total binary operation on A. The
following assertions are equivalent:

(a) (A,−, 0) is a wBCK-algebra, and ª is related to − by

for every u, u = pª x if and only if x ≤ p and p− x, (5)

(b) (A,ª, 0) is a partial wBCK-algebra, and − is related to ª by

p− x = min{pª z : z ≤ p, x}. (6)

Proof. (a) → (b). Suppose that A is a wBCK-algebra and ª is the restric-
tion of − given by (5). Then, by s2 and Proposition 2.1(e,g), (A,ª, 0) is a
partial wBCK-algebra. Furthermore, if z ≤ x, p, then pªz = p−z ≥ p−x,
and if z := p− .p− x, then z ≤ x, p and pª z = p− z = p− x (in virtue of
Proposition 2.1(b,a,f,c)). So, p− x is the least element of the set indicated
in (6).

(b) → (a). Suppose that A is a partial wBCK-algebra and that − is
defined as in (6). It follows that − is indeed an extension of ª: if x ≤ p,
then, by (6),
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p− x = pª z for some z ≤ p, x, but pª x ≤ pª z in Ap

(see (ª6)); thus, pª x ≤ p− x,

x ≤ p, x and p− x ≤ pª x.

Furthermore, − fulfills the conditions (a), (b) and (g) of Proposition 2.1:

(a): x− .x−y = x− .xªz = xª .xªz (see (ª2)) for some z with z ≤ x, y,
and then xª .xª z ≤ z ≤ y in virtue of (ª5),

(b): if x ≤ y, then min{zªu : u ≤ z, y} ≤ min{zªu : u ≤ z, x}; henceforth
z − y ≤ z − x,

(g): x− 0 = x by (ª4).

By Proposition 2.2, (A,−, 0) is a wBCK-algebra. ut
By a normal extension of a partial wBCK-algebra (A,ª, 0) (a section-

ally g*-complemented poset (A, lp, 0)) we shall mean an algebra (A,−, 0)
in which the operation − is determined by (6). If A is actually a meet
semilattice, then (6) reduces to

x− y = xª .x ∧ y . (7)

Connections between wBCK-algebras and partial wBCK-algebras can now
be summed up as follows.

Corollary 2.4 Every wBCK-algebra is a normal extension of a unique par-
tial wBCK-algebra and is completely determined by it. Conversely, if a par-
tial wBCK-algebra has a normal extension, then this extension is a wBCK-
algebra.

In other words, wBCK-algebras are just normal extensions of section-
ally g*-complemented posets. The question “which partial wBCK-algebras
admit a normal extension?” will be answered in another paper (devoted to
the structure of weak BCK-algebras).

Posets with involutive sectional g*-complementations have further nice
properties; we mention here only one of them. An upper Galois map + on
a poset P is involutive if x++ = x for every x. An equivalent condition is

if x+ ≤ y+, then y ≤ x.
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An involutive upper Galois map is a g*-complementation. Moreover, it is
at the same time also a lower map and, therefore, is a de Morgan comple-
mentation. For short, we call it an m-complementation.

In a partial wBCK-algebra, the local left maps are involutive if and
only if (ª9) holds. The essential part of the following result, in the more
specialized context of commutative BCK-algebras, is implicit in the proof
of Lemma 2.1 in [25].

Lemma 2.5 A sectionally m-complemented poset admits a normal exten-
sion if only if it is a nearlattice.

Proof. In view of (7), only the necessity of the condition requires a demon-
stration. Let (A,ª, 0) be a partial wBCK-algebra that satisfies (ª9), and
denote by p f x any of the elements z which realize the minimum in (6).
Then pfx ≤ p, x. Furthermore, if u ≤ p, x for some u, then lp(pfx) ≤ lp(u).
It follows that u ≤ p f x, as lp is an involutive g*-complementation. There-
fore, pfx is the g.l.b. of p and x, and f turns out to be the meet operation
in A.

Now suppose that x, y ≤ p for some elements x, y, p ∈ A. Denote by
x g y the element lp(lp(x) f lp(y)). A standard argument shows that x g y
is the l.u.b. of x and y.

At first, xgy is an upper bound: lp(x)flp(y) ≤ lp(x), lp(y); hence x, y ≤
xgy. Further, suppose that x, y ≤ v for some element v. Then x, y ≤ pfv
and, furthermore, lp(p f v) ≤ lp(x), lp(y). Hence, lp(p f v) ≤ lp(x) f lp(y)
and x g y ≤ lp(lp(p f v)) = p f v ≤ v. ut

3 From wBCK-algebras to subtractive near-

semilattices

We now turn to the axiom s1a. Note that it is item (a) in the subsequent
lemma. By a wBCK-nearsemilattice we shall mean a wBCK-algebra that
is a nearsemilattice.

Lemma 3.1 The following conditions on a wBCK-nearsemilattice are equi-
valent:

(a) if x− y |◦ y, then x ≤ x− y. ∨ y,
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(b) if x− y ≤ y, then x ≤ y,

(c) if x− y ≤ z and y |◦ z, then x ≤ y ∨ z,

(d) if x |◦ y, then x− y. ∨ y = x ∨ y,

(e) if y ≤ x, then x− y. ∨ y = x,

(f) if x− y ≤ z, then x is (y, z)-decomposable,

(g) if y, z ≤ x and x− y ≤ z, then x = y ∨ z.

Proof. (a)→ (b). If x−y ≤ y, then x−y |◦ y and, further, x ≤ x−y.∨y = y.
(b) → (c). If y |◦ z, then x−y ≤ z implies that x− .y∨z ≤ x−y ≤ y∨z

(see Proposition 2.1(b)), whence x ≤ y ∨ z.
(c) → (a). Put z := x− y in (c).
(a) → (d). If x |◦ y, then x − y |◦ y and x ≤ x − y. ∨ y. Moreover,

y ≤ x− y. ∨ y. Now x ∨ y ≤ x− y. ∨ y ≤ x ∨ y—see Proposition 2.1(e).
(d) → (e). If y ≤ x, then x |◦ y and x− y. ∨ y = x ∨ y = x.
(e) → (a). If x− y |◦ y, then, in virtue of Proposition 2.1(a,c),

x = x− (x− .x− y). ∨ (x− .x− y) ≤ x− y. ∨ y .

(a) → (f). Suppose that x − y ≤ z. By (6), x − y = x ª y′ for some
y′ ≤ x, y, and x− z = xª z′ for some z′ ≤ x, z. Then y′ |◦ z′ and y′∨ z′ ≤ x.
On the other hand,

x− z′ = x− z ≤ x− .x− y, x− :x− .x− y ≤ z′, x− y′ = x− y ≤ z′

(see (5), Proposition 2.1(b), s2, (5) and Proposition 2.1(c)). As x− y′ ≤ x
by Proposition 2.1(e), it follows that x − y′ |◦ x, and an application of (a)
now yields that x ≤ x− y′. ∨ y′ ≤ z′ ∨ y′. In the end, x = y′ ∨ z′.

(f) → (g). Trivially.
(g) → (e). If y ≤ x and z := x − y then z ≤ x (Proposition 2.1(e)),

x− y ≤ z and x = y ∨ z = z ∨ y. ut
The condition (b), being ∨-free, is applicable to arbitrary wBCK-algeb-

ras. For convenience, we designate this version of s1a by s1a’. Incidentally,
its converse is a consequence of Proposition 2.1(e). In virtue of s0, the
equivalence x − y ≤ y ⇔ x ≤ y may be considered as a weak form of the
contraction law x − y. − y = x − y. As noted (in the dual form) in [6,
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Section 3], the class of BCK-algebras satisfying the weak contraction law
coincides with that of Henkin algebras (see Introduction). Adapting the
term used in [6], a wBCK-algebra could be called weakly contractive if it
satisfies s1a’. We, however, choose for such an algebra a shorter term weak
Henkin algebra. A weak Henkin nearsemilattice is, then, a weak Henkin
algebra that is a nearsemilattice.

Now let us look at the structure of initial segments of a weak Henkin
algebra.

A g*-complementation on a poset with a top element 1 is said to be
regular if

x+ ≤ x only if x = 1.

This is the case if and only if x ≤ y and x+ ≤ y imply y = 1 (i.e., x∨x+ exists
and equals to 1). Therefore, the notion of a regular g*-complementation
is dual to that of intuitionistic complementation, known also as Brouwer
complementation (see [3, 2]; dual Brouwer complementation was called anti-
Brouwerian there). For short, we shall call a dual Brouwer complementation
just a b*-complementation.

Theorem 3.2 A wBCK-algebra is a weak Henkin algebra if and only if it
is a normal extension of a sectionally b*-complemented poset.

Proof. The item (e) of Lemma 3.1 just states that all local left maps lp are
regular. ut

As Lemma 3.1(c) shows, the condition s1a can be rewritten as a half of
the axiom s1, which we shall refer to as s1→. Likewise, s1b can be rewritten
as

if y |◦ z and x = y ∨ z, then x− y ≤ z ; (8)

this is “almost” the other half of s1:

s1←: if y |◦ z and x ≤ y ∨ z, then x− y ≤ z .

Actually, s1← follows from s1c and s1b: if y |◦ z and x ≤ y ∨ z, then
x − y ≤ y ∨ z. − y ≤ z. (The converse does not hold true; cf. the end of
the section.) In view of these observations, we call a nearsemilattice with
an additional operation − satisfying s1a, s1b and s2 an almost subtractive
nearsemilattice. The particular cases x ≤ x − 0 and x − 0 ≤ x of s1a and
s1b respectively show that the identity x− 0 = x is derivable from s1a and
s1b therefore, an almost subtractive nearsemilattice is also a wBCK-algebra
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(cf. Proposition 2.2) and even a weak Henkin algebra. It follows that such
nearlattices are the order duals of sectionally j-pseudocomplemented posets
(see [6]) having the lower bound property; the next theorem explains this
other name.

Pseudocomplemented posets were first defined in [18] and, under the
name “inf-complemented ordered systems”, in [1]. Dual pseudocomplemen-
tation (or ∨-pseudocomplemention, as in [13]) on a poset is the operation
+ such that

x+ ≤ y if and only if 1 is the least upper bound of x and y.

An operation + is a dual pseudocomplementation (p*-complementation, for
short) if and only if it is a b*-complementation and satisfies the condition
x ∨ y = 1 ⇒ x+ ≤ y .

Theorem 3.3 A wBCK-nearsemilattice is almost subtractive if and only if
it is a natural extension of a sectionally p*-complemented nearsemilattice.

Proof. Suppose that A is a wBCK-nearsemilattice. The conjunction of the
item (g) of Lemma 3.1 and the condition (8), if written as

if y, z ≤ x, then (x− y ≤ z iff x = y ∨ z), (9)

just says that every operation lp is the p*-complementation in the initial
segment Ap of A. ut

Theorem 3.4 Let − be a binary operation on a nearsemilattice (A,∨, 0).
Then the following assertions are equivalent:

(a) (A,∨,−, 0) is an almost subtractive nearsemilattice,

(b) the operation − fulfills the condition

x− y ≤ z if and only if x is (y, z)-decomposable. (10)

Proof. (b)→(a). It is easily seen that s1a’, s1b and s2 are consequences of
(10) (recall that s1a’ is equivalent to s1a; see p. 10):

s1a’: x− y ≤ y ⇔ x = y′ ∨ y′′ for some y′, y′′ with y′, y′′ ≤ y ⇔ x ≤ y,
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s1b: x∨ y.− y ≤ x ⇔ x∨ y = y′ ∨x′ for some y′ ≤ y and x′ ≤ x ⇔ x∨ y ≤
y ∨ x; thus, the left-most inequality is true,

s2: x− y ≤ z ⇒ x = y′ ∨ z′ for some y′ ≤ y and z′ ≤ z ⇒ x = z′ ∨ y′ for
some z′ ≤ z and y′ ≤ y ⇒ x− z ≤ y.

(a)→ (b). If x− y ≤ z, then x is (y, z)-decomposable by Lemma 3.1(f).
If, conversely, x = y′ ∨ z′ for some y′ ≤ y and z′ ≤ z, then x− y ≤ x− y′ =
y′ ∨ z′.− y′ ≤ z by Proposition 2.1(b) and s1b. ut

The equality (7) shows that in a nearlattice one may take x∧y for y′ and
x∧z for z′ in the second part of the above proof. Then y′∨z′ = j(y, x, z) ≤ x
(see (1)), and we come to a useful particular case of the theorem.

Corollary 3.5 A nearlattice (A,∨,∧, 0) with an additional operation − is
almost subtractive if and only if the operation satisfies the condition

x− y ≤ z ⇔ x ≤ j(y, x, z). (11)

It was noticed in the note added in proof to [4] that this condition
could replace the axioms s1 and s2 in a nearlattice. Since not all almost
subtractive nearsemilattices are subtractive, this observation is not quite
correct. Another consequence of the theorem characterizes those almost
subtractive nearsemilattices that are subtractive.

Corollary 3.6 An almost subtractive nearsemilattice is subtractive if and
only if it is distributive.

Proof. Suppose that A is a subtractive nearsemilattice. If y |◦ z and x ≤
y∨z, then x−y ≤ z (see s1←) and, by Theorem 3.4, x is (y, z)-decomposable,
as needed for (2).

Now suppose that A is a distributive almost subtractive nearsemilattice.
By (2) and (8), if y |◦ z and x ≤ y ∨ z, then x− y′ ≤ z′ for some y′, z′ such
that y′ ≤ y and z′ ≤ z. But then x− y ≤ z — see Proposition 2.1(b), and
we have obtained s1←. ut

Thus, subtractive nearsemilattices are distributive. One may conclude
that distributivity is equivalent in an almost subtractive nearlattice to s1c,
isotonicity of subtraction in the first argument, which can be stated also in
a ∨-free form:

s1c’: if x ≤ y, then x− z ≤ y − z.
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However, s1c’ is not derivable from s1←, and even s1, alone. For example,
suppose that x ≤ y. Then x ≤ y − .y − z: ∨ .y − z by s1a and, further,
x−.y−z ≤ y−.y−z ≤ z by s1← and Proposition 2.1(a). Now an application
of s2 gives us that x− z ≤ y − z.

4 Beyond subtractive nearsemilattices

It was observed in [4] that the class of subtractive nearsemilattices is a
proper subclass of that of relatively dually pseudocomplemented nearlat-
tices. The notion of a relative pseudocomplementation in posets was defined
in [19]; this definition reduces to the standard one when the poset is a meet
semilattice. For the dual notion, we prefer the term relative dual pseudo-
complementation, or just relative p*-complementation, for short. Therefore,
a relative p*-complementation on a poset A is a binary operation − defined
by

x− y ≤ z if and only if [y) ∩ [z) ⊆ [x) .

Notice that the “only if” part of this definition is equivalent in nearsemi-
lattices to s1→.

Lemma 4.1 An operation − on a nearsemilattice is the relative p*-comple-
mentation if and only if it satisfies s1 and the condition

if y 6 |◦ z, then x− y ≤ z. (12)

Proof. In a nearsemilattice, the right-hand side of the above definition of
relative p*-complementation can be simplified:

[y) ∩ [z) ⊆ [x) ⇔ for every v, if y, z ≤ v, then x ≤ v

⇔ if y |◦ z, then x ≤ y ∨ z. (13)

Therefore, − is relative p*-complementation exactly in the case when

x− y ≤ z if and only if y |◦ z implies x ≤ y ∨ z . (14)

This condition consists of two implications—s1→ and

if either y 6 |◦ z or x ≤ y ∨ z, then x− y ≤ z ,

14



which, in its turn, is equivalent to the conjunction of s1← and (12). But
the conjunction of s1← and s1→ is s1. ut

It is easily seen that not only s1, but also s2 is fulfilled in every relatively
p*-complemented nearsemilattice. The converse does not hold true: as
noticed in [4], the subtractive nearsemilattice with four elements a, b, c, 0,
where a, b, c are maximal and − is defined by

x− y := if x = y then 0 else x,

is not relatively p*-complemented. Nevertheless, if a subtractive nearsemi-
lattice is total, i.e., is a subtractive semilattice, then s1 and (14) become
equivalent: in this case (12) is trivially true.

Corollary 4.2 Relatively p*-complemented nearsemilattices are just those
subtractive nearsemilattices satisfying (12).

The condition (12) is related also to strong distributivity of the under-
lying nearsemilattice. Our final result is, up to order duality, a particular
case of Theorem 2 in [6]: due to (13), the distributivity mentioned in the
latter theorem is what we call here the strong distributivity. However, this
counterpart of Corollary 3.6 is also an immediate consequence of Theorem
3.4 above, which implies that (12) and (4) are equivalent in an almost sub-
tractive nearsemilattice.

Corollary 4.3 An almost subtractive nearsemilattice is relatively p*-com-
plemented if and only if it is strongly distributive.

By the way, (strong) distributivity of relatively pseudocomplemented
posets was stated already in [22, Theorem 4].
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