Algebra Univers. 65 (2011) 41-60
DOI 10.1007/s00012-011-0116-5
Published online February 6, 2011 ) -
© Springer Basel AG 2011 ﬁlgebra Universalis

Freeoids: a semi-abstract view on endomorphism
monoids of relatively free algebras

JANIS CIRULIS

ABSTRACT. A freeoid over a (normally, infinite) set of variables X is defined to be a
pair (W, E), where W is a superset of X, and E is a submonoid of WW containing
just one extension of every mapping X — W. For instance, if W is a relatively free
algebra over a set of free generators X, then the pair F(W) := (W, End(W)) is a
freeoid. In the paper, the kernel equivalence and the range of the transformation F'
are characterized. Freeoids form a category; it is shown that the transformation F
gives rise to a functor from the category of relatively free algebras to the category of
freeoids which yields a concrete equivalence of the first category to a full subcategory
of the second one. Also, the concept of a model of a freeoid is introduced; the variety
generated by a free algebra W is shown to be concretely equivalent to the category of
models of F(W). The sets X, W, and the algebras W may generally be many-sorted.

1. Introduction

The motivation for this study lies in first-order algebraic logic; more specif-
ically, the paper may be considered as a step towards algebraization of first-
order logic with terms.

Polyadic algebras [23] (called Halmos algebras in [31]) form a well-known
algebraic counterpart of first-order logic without equality. Another algebraiza-
tion, for logic with equality, is cylindric algebras [24]. In both cases, logic
means logic “without terms”, when the language does not contain functional
symbols (in particular, constants) for sake of simplicity. Of course, functional
symbols can be introduced in a logical theory by means of definitions, and
terms likewise can be extracted algebraically both in polyadic and cylindric
algebras; see, e.g., [23, pp. 169-209, 251-257] and [30]. Regrettably, these con-
structions have turned out to be highly involved, in spite of efforts of several
authors to simplify the initial approach (see, for example, [17]), and have not
been used much even inside algebraic logic.

Another possible way to deal with terms in polyadic or cylindric algebras
algebraically is to take them seriously from the very beginning and consider
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two-sorted polyadic and cylindric algebras with terms, where, along with the
usual “algebra of formulas” (structured Boolean algebra) also an “algebra of
terms” of some kind is explicitly presented. This idea was proposed in [2],
and independently realized by B. Plotkin in a series of papers preceding the
monograph [31]. On the level of abstractness needed for algebraic logic, the
algebras of terms should not be merely the term algebras known in general
algebra, i.e., absolutely (or even relatively, as in [44]) free algebras of some
signature. On the contrary, they should be “signature-free” (independent on
the signature of the concrete logical language) and provide only a means for
describing substitution of terms for variables. Speaking more technically, the
additional component in an extended cylindric or polyadic algebra should be
a kind of abstract clone (in a wide sense of this term).

Probably, the versions of abstract clones most popular in general algebra
are clones as partial algebras (P. Hall, see [14]), as heterogeneous algebras
(W. Taylor, [41]) and as categories (algebraic theories) (F.W. Lavwere, [25]).
However, they are not quite suitable for incorporating in traditional structures
of algebraic first-order logic. First of all, the potential candidates should be
total algebras, homogeneous in the sense that elements of a clone representing
operations of different ranks all belong to one unified universe. Furthermore,
clones in general algebra are normally tools for treating finitary operations,
while structures of algebraic logic do not exclude infinitary relations, and
should not exclude infinitary operations. (True, occasionally also infinitary
clones have been considered in the literature—such as No-clones [29] and in-
finitary Menger algebras [9, 10]. Recently, Z. Luo has developed in [26, 27, 28]
a version of clone theory and sketched its possible use in the algebraization of
first-order logic. On the other hand, various heterogeneous algebras of rela-
tions have also occasionally been discussed in the literature on algebraic logic.)

In the framework of cylindric algebras, it is natural to admit only local, or
one-dimensional, substitutions (i.e., substitutions for one variable) as primary
operations; in addition, they should be defined everywhere (in other words,
applicable to any element in the clone). Two attempts to develop a concept
of a cylindric algebra with terms were made in 80-ies by N. Feldman [20]
(this work is based upon [19]) and independently by the present author [7, 8].
The two notions of algebras of local substitutions proposed in [7] and [19] are
slightly different; their equipollence in the important case of local finiteness
was proved in [40]. Several other similar approaches have also been described
in the literature—see [15, 16, 37, 38] for instance.

In the contrast, substitutions in the traditional theory of polyadic algebras
(they act on algebras of formulas) are global—for all variables simultaneously—
and also are defined everywhere. Probably, it is the lack of an appropriate
similar version of clones that explains why a fully satisfactory general notion
of a polyadic algebra with terms has not been developed yet. For certain
applications (see the monograph [31] and surveys [32, 33]), B. Plotkin and
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his collaborators have introduced and successfully used a certain kind of ex-
tended polyadic algebra, relativized in a sense to a variety of algebras. In [44]
(see also the abstract [6]), their description was considerably simplified by the
present author: it was shown how varieties can be replaced by relatively free
algebras. A relatively free algebra may be interpreted as a factorized term
algebra; actually, only its endomorphisms are necessary (they play the role of
global substitutions). Eliminating the free algebras in favour of appropriate al-
gebras of global substitutions, the final step to general signature-free polyadic
algebras with terms, has never been made (but cf. [28]).

With an eye on this problem, we develop in this paper several ideas from [43,
45] and introduce certain abstract structures, called freeoids, which simulate
endomorphism monoids of relatively free algebras and can be considered also
as a variant of abstract clones. The generality of this approach is, however,
restricted here in a sense, for we keep fixed the set of variables to which all
structures under consideration are relativized. On the other hand, this set is
assumed to be sorted; correspondingly, the relatively free algebras and other
structures we deal with are many-sorted. This is motivated, in part, by the
significant role in theoretical computer science played by many-sorted algebras,
first-order logic and, correspondingly, polyadic algebras with terms.

Many-sorted (in this technical sense) versions of clones have already been
considered in the literature (for instance, see Section 6 of [31]). In [3, 4],
J. Bénabou introduced many-sorted analogues of Lawvere’s algebraic theories
(referred to as Bénabou theories in [12, 13]). J. Goguen and J. Messeguer
used many-sorted Hall type clones to prove completeness theorem of (finitary)
many-sorted equational logic. The description of many-sorted Hall algebras is
simplified in [12]. In this paper (see [13] as well) J. Climent Vidal and J. So-
liveres Tur introduce also certain equational presentations of Bénabou theories
called Bénabou algebras (these algebras are many-sorted analogues of Taylor
type clones), and prove that the category of Bénabou algebras is isomorphic
to that of Bénabou theories and equivalent to the category of (many-sorted)
Hall algebras.

We note that the descriptions of these three kinds of structures in [12, 13] are
rather unwieldy; that of freeoids is much simpler. This is one of the reasons why
we, to substantiate adequacy of this latter concept, compare the category of
freeoids with the category of relatively free algebras rather than with any of the
three categories of many-sorted clones mentioned in the preceding paragraph.
Unfortunately, the description of freeoids is not equational.

In this paper, we do not go into the above-mentioned applications in alge-
braic logic, and concentrate mainly on the aspects of freeoids that might be
of interest for general algebra. The structure of the paper is as follows. In
Section 2, we fix notation and terminology concerning (finitary) many-sorted
algebras, mention a few preliminary results on relatively free algebras and in-
troduce the category W of relatively free algebras of various signatures. We
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also associate here with every algebra its augmented clone—the least opera-
tion clone containing the primitive operations of the algebra and closed under
deleting of any fictitious variables. The concept of a freeoid is introduced in
Section 3. An example of a freeoid is provided by any algebra W from W:
it is a pair F(W) := (W, End(W)), where W is the carrier of W. Freeoids
arising in this particular way are called algebraic. It turns out that two alge-
bras with a common carrier have the same freeoid if and only if they have the
same augmented clone. We construct a functor F' from W into the category of
freeoids. Section 4 is devoted to models of a freeoid. Models are to a freeoid
as clone algebras are to an abstract clone. The models of a freeoid W form a
category M (W); we construct a functor M from V(W), the variety generated
by W, to M(F(W)), and also show that the category of all model categories
M (W) and concrete functors between them form a category dual to the cate-
gory of freeoids. Algebraic freeoids are studied in the final section. We prove
there that the functor F establishes a concrete equivalence between ¥V and the
subcategory of algebraic freeoids, and that M yields a concrete isomorphism
between V(W) and M (F(W)). We also give here an intrinsic characteristic
of algebraic freeoids. The main results of the paper are concentrated in the
two last sections.

Several results presented in the paper were reported on the AAA77 confer-
ence in Potsdam, March 2009 [11]. The study of relations between arbitrary
freeoids and infinitary relatively free algebras (see Remark 5.9 in this connec-
tion) is postponed to another paper.

2. Preliminaries: many-sorted algebras

We keep fixed some finite set T’ of sorts. A I'-sorted set, or I'-set, is an
arbitrary family A := (4; | ¢ € T') of (possibly, empty) sets. Each A; is a
component of A. A T'-set is said to be essentially non-empty, resp., essentially
infinite, if all its components are non-empty, resp., infinite. An element of a
T'-set A is an element of any of its components endowed with the respective
sort, and A is a subset of another such a set Bif A; C B; forall: € T'. A
mapping of a I'-set A into a [-set B is a family f := (f; | ¢ € I'), where each
fi is a function A; — B;, and B4 stands for the set of all such mappings. If
a is an element of A of sort 4, then f(a) stands for f;(a). I'-sets together with
all mappings composed componentwise form a category I'-Set.

Let A be a I'-sorted set. An operation on A is any function o: A;; x A;, X

- x A;,, — Aj, where i1,12,...,im,j € I and m > 0; the (m + 1)-tuple
(11,79, .. .,%m; ) is said to be the type of this operation. An operation 7 of
type (i1,12, - .. ,im; k) With 1 < k < m is a projection if w(a1, ag, . . ., Gm) = Q.
A clone of operations on A is any set of operations containing all projections
and, together with operations o, 01, 02, ..., 0 of appropriate types, also their
composition 0(01, 02, ...,0m). Recall that a set of operations is a clone if and
only if it contains the identity map and is closed under all superpositions,



Freeoids and endomorphism monoids of relatively free algebras 45

permutation (exchange) and identification (fusion) of two variables, as well as
adding a fictitious (dummy, non-essential) variable. Every clone is closed also
under deleting all but one fictitious variable of any sort. We adopt the term
used in [38] for the one-sorted case and call a clone complete if it is closed
under deleting any fictitious variable and, consequently, all fictitious variables
of the same sort.

An operation symbol is a symbol attached to which is some operation type.
If © is some set of operation symbols, or signature, an Q-algebra A is a I'-set
equipped with a family (o, | w € Q) of operations on A, each o, being an
operation of the type attached to w; these are the primitive operations of A.
A homomorphism from A to an algebra B of the same signature is a mapping
from B4 that respects the primitive operations.

The clone of A, denoted by CI(A), is the least clone containing all primitive
operations of A; operations in CI(A) will be called derived operations of the
algebra (they are known also as term functions and Grétzer polynomials). The
augmented clone of A, CIT(A), is defined to be the least complete clone con-
taining the primitive operations of A; operations in this clone will be referred
to as operations derived in a wide sense or, in short, w-derived operations of
A. Tt is easily seen that if, for instance, every primitive operation of A has
arguments of all sorts, and if the algebra has a derived operation with a ficti-
tious sort (i.e., all of its arguments of this sort are fictitious), then there are
w-derived operations that are not derived. However, every w-derived operation
is an algebraic function in the sense of [22], i.e., can be obtained from a derived
operation by substituting elements of A for some variables (such functions are
also frequently called polynomials). Of course, the converse generally is not
true.

A full algebra is an algebra A whose clone is complete: CI(A) = CIT(A).
There is a simple one-sorted illustration: a Boolean algebra considered as
a {A, -, 0}-algebra is full, while it is not full in the case when its supposed
signature is {V, A, 7} (the w-derivable O-ary operations 0 and 1 are not then
derivable).

Let us call two algebras of possibly different signatures comparable if they
have a common underlying I'-set. Such algebras have been called term equiv-
alent or definitionally equivalent if they have the same clone. We shall call
comparable algebras fully equivalent if they have the same augmented clone.
Clearly, every algebra is fully equivalent to a full algebra.

In the rest of the section, we fix also a I'-set X.

Suppose that W is a I'-set and that X is a subset of it. An algebra W
with the carrier W is relatively free over X if every mapping o € WX can be
extended to an endomorphism & of W; as usual, such an extension is unique.

The following proposition is a particular case of a result obtained in [43] for
slightly more general kinds of algebras (see Lemma 3.1 therein); the assump-
tion of the finiteness of I' is crucial for its proof.
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Proposition 2.1. The augmented clone of a relatively free algebra over an
essentially infinite set of free generators consists exactly of the operations which
permute with all endomorphisms of the algebra.

Independently, Sangalli in [39, Example 3] has proved a similar result for
the one-sorted case: an infinitely generated (absolutely) free algebra W is
endoprimal, i.e., the clone C1(W) consists precisely of the operations preserved
by every endomorphism. Actually, the clones he deals with in that paper
do not contain, by definition, 0-ary operations; then the difference between
complete and incomplete clones disappears. (The many-sorted analogue of
this restriction should exclude all operations of any type (i1, %2, .., im;j) With
{1,492, ...,1m} # [; such a restriction, thought not fundamental, is, of course,
too severe in practice.)

The proposition immediately leads us to the following conclusion.

Corollary 2.2. Two comparable relatively free algebras over the same essen-
tially infinite set of free generators are fully equivalent if and only if they have
the same set of endomorphisms.

Therefore, up to full equivalence, a relatively free algebra is completely de-
termined by its endomorphism monoid. This observation is our starting point:
described more abstractly (i.e., without referring to a concrete relatively free
algebra), these monoids of mappings can serve as presentations of (and sub-
stitutes for) abstract complete clones. The related question of when relatively
free algebras have isomorphic endomorphism monoids is still open.

Definition 2.3. Let W and W' be relatively free algebras over X. An inter-

pretation of W into W’ is a mapping h € W’V such that

(a) for every z € X, h(z) =z, and,

(b) to every primitive operation o of W there is a w-derived operation o' on
W' of the same type such that, for all wy,ws, ..., w, € W,

ho(wi,wa, ..., W) = o' (hwy, hws, ..., hwy,).

Of course, such an operation o’ can also be found for every derived oper-
ation o of W; more formally, h induces a clone homomorphism ’: CI(W) —
CIT(W’). Tt is easily seen that the relatively free algebras (of various signa-
tures) over X together with their interpretations form a category, which we
denote by W.

Remark 2.4. Let us call an interpretation strong if every operation o’ in (b)
may actually be chosen derived. If there is an interpretation (resp., strong
interpretation) of W into W’, then the algebra W is said to be interpretable
(strongly interpretable) in W’. The latter notion is closely related to that of
representability of varieties in the sense of [42, Definition 1.3] (where the one-
sorted case is dealt with): W is strongly interpretable in W' if and only if the
variety V(W) generated by W is representable in V(W’).
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3. Freeoids and systems of substitutions

In this section, W is a I'-sorted set, and X is a subset of it. We refer to
elements of X as wvariables, and informally consider elements of W as entities
depending of variables. For example, W could be the set of terms of some
signature. Mappings in WX are called substitutions, and those in Q¥ with an
arbitrary [-set Q, assignments (in Q). The identity substitution is denoted
by €.

Definition 3.1. A freeoid is a pair W := (W, E), where E is a subset of WV
that contains just one extension & of every substitution «, contains the identity
map of W, and is closed under composition. The mappings in F are called
extended substitutions of W. An operation o on W is said to be invariant if it
is preserved by all extended substitutions.

By the uniqueness of extensions, &E = 573 The invariant operations of a
freeoid W form a complete clone Inv(W), which we shall call the clone of W.

Example 3.2. An algebra W on W belongs to the category W (introduced
at the bottom of the previous page) if and only if the pair (W, End(W)) is a
freeoid. In such an event, we call this pair the freeoid of W and denote it by
F(W). Freeoids of algebras from W are said to be algebraic. In an algebraic
freeoid, an operation is invariant if and only if it is a w-derived operation of
the algebra (Proposition 2.1), and two algebras from W have the same freeoid
if and only if they are fully equivalent (Corollary 2.2). Lastly, endomorphisms
of an algebra from W coincide with extended substitutions of its freeoid. The
algebraic freeoids will be characterized in the final section (Theorem 5.7).

For a fixed freeoid W, the set S of all substitutions can be treated as a

monoid (5, -, €) isomorphic to E, where - is uniquely defined by

(o~ B)z = a(fz). (3.1)
Then

(o Byw = a(Bw). (3:2)
We shall call this monoid the substitution system (or a substitution monoid)
of W. Note that T := XX, the transformation monoid of X, is always a
submonoid of S.

Evidently, the substitution monoid of a freeoid satisfies also the condition
that for all o, 51,02 € S and 2,y € X,

prz = Boy implies (a - fr)z = (a - f2)y. (3.3)

Generally, by a system of substitutions we shall mean any monoid (S, -, ) that
fulfills this condition.

Theorem 3.3. Ewvery system of substitutions is the substitution monoid of
some freeoid.
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Proof. Assume that (5, -, ¢) is a system of substitutions. Every substitution «
extends in it to a mapping & € W™ by

aw = (a- f)z, (3.4)

where z is any variable and 8 is any substitution such that w = gz. This
definition can be rewritten as (3.1), where /3 is arbitrary. The definition is
correct: by (3.3), aw does not depend on the choice of 4 and z. Clearly, € is
the identity map on W, and (3.2) holds; therefore, the extension operation ~
embeds the monoid S into WW. Of course, its range S := {& | & € S} gives
rise to a freeoid (W, S). It is easily seen that S is its substitution monoid. [

The described correspondence between freeoids and systems of substitutions
is bijective, and we shall freely switch from a freeoid to its substitution monoid
and back. In particular, we now may dispense with dots and parentheses in
notation like (a - 8) - v, (o - B)z or a(fw).

Remark 3.4. Systems of substitutions were introduced by the author in [45].
Recently, G. Ricci has called the author’s attention to his papers [35, 36].
In the notation of the present paper, Corollary 6.8(D) of [36] essentially says
(for the one-sorted case) that the set E of our Definition 3.1 is the set of
endomorphisms of some (possibly infinitary) free algebra on W over X if and
only if it is a monoid under composition and, moreover, the restriction £ — S
is a bijection.

Actually, the corollary treats the situation when the set X is not fixed
beforehand, and provides, therefore, a certain characteristic of those monoids
of functions that are endomorphism monoids of free algebras. (The referee has
pointed out to the author that every monoid is isomorphic to a monoid of this
kind. By the way, this is a reason why the attribute ‘semi-abstract’ in the title
of the paper could not be changed to ‘abstract’.)

The construction of a freeoid in Example 3.2 extends to much more general
situations.

Example 3.5. A T'-concrete category, or concrete category, for short, is a
category K equipped with a faithful functor |..|: K — I'-Set (the underlying
functor); see [1]. Without loss of generality, we may assume that this means
the following: for any K-objects K, L, the set of morphisms Moryx (K, L) from
K to L is a subset of L¥ and |..| realizes this inclusion (we write K and
L for |K| and |L|, repectively). In particular, the identity morphisms and
composition in K are inherited from I'-Set. Any variety of algebras together
with their homomorphisms is a natural example of a concrete category.

Now suppose that W is a free object [1, Definition 8.22] over X in some
concrete category K; this means essentially that every set Morx(W,L) of
morphisms contains just one extension of every assignment from L. Then,
in particular, the pair Wi (W) := (W, Mori (W, W)) is a freeoid. We call it
the freeoid of W.
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In the next example, the concept of a freeoid is related to that of a Menger
algebra (infinitary Menger algebras were introduced in [9]).

Example 3.6. Supose that |T'| = 1 and that v is any ordinal. A Menger
algebra of dimension v is a (possibly infinitary) algebra (W, o, ;);<,, where o
is an (14v)-ary operation on W, every z; is an element of W, and the following
axioms hold (boldface letters stand for v-tuples from W¥; in particular, x =
(0,21, 2Z2,...)):
(a) wox =w,
(b) zi0v =1y,
(c) wo(uov) = (wou)ov, the tuple uov € W* being defined componentwise
by (uov); =u;ov.

Note that (b) forces the elements z; to be mutually distinct if |[W| > 1, and
that the operation o actually turns the set W into a monoid: it easily follows
that wox =w,xow=w, wo(uov)=(wou)ov.

Now, given any Menger algebra, we may put X := {z; | 4 < v}. Then there
is a natural bijective correspondence between substitutions from S = WX
and elements of W¥. So, S becomes a monoid with £ the neutral element via

(a-B)z; = (uov);,
where v, = oz, and up = Sz for all k < v. The condition
u; = v; implies (wow); = (Vvow);,

the counterpart of (3.3), is fulfilled in W¥. Thus, S is a system of substitutions.
Clearly, the initial Menger algebra can be restored from this system. Also every
system of substitutions with a fixed well-ordering of variables gives rise to a
Menger algebra.

We are now going to show that freeoids form a category.

Definition 3.7. Assume that W and W’ are two freeoids. A freeoid morphism
from W to W/ is a mapping h € W'" such that

(a) for every z € X, h(z) = z, and,

(b) for all w € W and o € WX, h(a(w)) = f?&l(h(w)),

~/ s . @
where ~ stands for the extension operation in W’.

Note that, for w := Sz, the condition (b) can be rewritten as
for all o, € W and z € X, h((a-B)z) = (ha hj3)z:

by (3.1), h((a - B)z) = h(a(Bz)) and (ha - hB)z = }’L(vxl(h(ﬁx)). Then it is
easily seen that all freeoids together with all freeoid morphisms form a concrete
category F with respect to the forgetful functor F — I'-Set. The algebraic
freeoids constitute a full subcategory of 7. We now extend the construction
from Example 3.2 and relate the category W of relatively free algebras with F.

Suppose that (IC, |..|) and (K, |..|") are concrete categories (Example 3.5). A
functor ® from K to K’ is said to be concrete if |..| = |..|'®, i.e., if |K| = |®(K)|
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for every K-object K and A = ®(\) for every K-morphism A; see [1]. Therefore,
a concrete functor is completely determined by its object part.

Lemma 3.8. The transformation W — F(W) gives rise to a concrete functor
F:W - F.

Proof. It only remains to prove that every interpretation of a relatively free
algebra W into W’ is also a freeoid morphism F(W) — F(W’). Assume
that A is such an interpretation. Clearly, the condition (a) of Definition 3.7
is fulfilled. If w € W, then there is a derived operation o of W such that
w = o(x1, T2, ..., Tm) for some x1,Z2,...,%m € X; let o’ be a corresponding
w-derived operation of W’ provided by h. Now we can check also the other
condition (b) of the definition. For o € WX,

h(a@(w)) = h(a(o(z1, z2, ..., Zm))) = h(o(azi,azs,. .., azy))
= o (ha(z1), ha(za), . .., ha(zm)) = l?&l(o'(wl,xg, T

—
as & and ha are endomorphisms of W and W', respectively. Since h is an
interpretation, furthermore

ha (0 (z1, T2, - - ., Tm)) = he (0 (A(z1), B(®2), - . ., W(@m)))

= ha (h(o(z1,T2,...,Tm))) = ha (h(w)).

Together, h(a(w)) = E&,(h(w)). So, (b) is also fulfilled, and A is indeed a
freeoid morphism. a

4. Models of a freeoid

Let W := (W, E) be a freeoid over a I'-set X of variables. Recall that an
assignment in an arbitrary T-set Q is a mapping from Q%. Let us call an
extension set for Q any subset of @Y which contains just one extension @
of every assignment ¢ in Q). An extension set H is E-closed ift HE C H,
ie., pa € H for every assignment ¢ in @ and substitution . Namely, then
o = pa.

Definition 4.1. A model of W, or a W-model, for short, is a pair Q := (Q, H),

where H is an E-closed extension set for (. The mappings in H are called
extended assignments of Q.

Example 4.2. The pair M (L) := (L, Mori(W,L)) (see Example 3.5) is a
Wi (W)-model for every K-object L. In particular, if K is a variety generated
by an algebra W € W, then we come to models of F/(W).

Example 4.3. Let W be any algebra from )V, and let K be the class of
algebras Q of the same signature for which the pair M (Q) := (Q, Hom(W, Q))
is a model of F(W). Every algebra generated by W belongs to this class, and
the converse also holds provided X is essentially infinite: in fact, K is a variety



Freeoids and endomorphism monoids of relatively free algebras 51

and W is free in IC (for the one-sorted case, this is stated in Theorems 3 and
4 in Section 24 of [22]); hence, if X is essentially infinite, then W generates
just this variety. Note that M (W) = F(W).

The set H in a model Q may be considered as a right F-act. The set Ag of
all assignments in @ can also be turned into S-act (Ag,o) isomorphic to H,
where o is the operation Ag x S — Ag uniquely defined by

(poa)z:=p(azx). (4.1)
Then, for every w € W,
(F3a)w = G(@w). (4.2)

We denote this S-act by Q* and call it the assignment system of Q. Evidently,
it satisfies also the condition that for all & € S, 1,92 € Ag and z,y € X,

P17 = oy implies (p 0 1)z = (p ° a2)y.
Generally, by an system of assignments we shall mean any S-act (Ag, o) that

fulfills this condition. The subsequent theorem is proved like Theorem 3.3; in
particular,

pw = (po Pz, (&3

where z is any variable and J is any substitution such that w = gux.

Theorem 4.4. Every system of assignments is the assignment system of some
W-model.

The described correspondence between models of W and systems of assign-
ments is bijective, and we shall freely switch from a model to its assignment
system and back.

Example 4.5. In particular, every freeoid W := (W, E) is its own model,
and the assignment system W* coincides with (S, -). Moreover, it is the only
freeoid that can be a model of W. Indeed, suppose that W' := (W', E’) is a
freeoid. Then, in particular, E’ is a subset of W’ W' and contains the identity
map of W’. Now, if W’ is a model of W, then E’ C W’W, wherefrom W’/ = W,
and F'E C E', wherefrom E C E’; by the definition of a freeoid, then E’ = E.

We are now going to organize all W-models into a category.

Definition 4.6. Suppose that Q := (Q, H) and Q' := (Q’, H') are two models
of W. A homomorphism Q — Q' is a mapping A € Q'? such that \H C H’
(i.e., \¢g € H’ for every ¢ € H).

The subsequent proposition follows immediately from Definitions 4.6 and
4.1.

Proposition 4.7. For every W-model Q := (Q, H), the set of model homo-
morphisms W — Q coincides with H. In particular, E is the set of model
endomorphisms of W.
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Let Q and Q' be models as in Definition 4.6, and let (Ag, o) and (Agr, o) be
the respective assignment systems Q* and Q’*. With every A € Q'? associated
is a function A*: Ag — Ag defined by

(AN )z = A(pz). (4.4)

Lemma 4.8. The following assertions about a mapping A € Q'9 are equiva-
lent:

(a) A is a model homomorphism Q — Q,
(b) A\* is a homomorphism between the S-acts Q* and Q'™ i.e.,

M (poa)=(N¢)d a (4.5)
forallp € Ag anda € S,
(c) for every ¢ € Ag, 5\:9/ = \g.

Proof. (a) — (c). Suppose that Ap = 1;’ for some ¢ € Ag and ¢ € Ag. Then
vr = A\@pz) = A(pz) for every z, i.e., 1 = Ap.

(c) — (a). Obvious.

(c) — (b). Assume that ¢ € Ag and o € S. Then, in view of (4.1), (4.3)
d (4.4),

A (poa))z = A((po a)z) = A(@(az)) = (A§)(ax)
= (az) = (v o @)z = (\p) o' @)
(b) — (c). If w = ax, then

(9w = (%9 (az) = (A p)o’ a)e = (A (poa))z = A((poa)z) = A(Fw)
by virtue of (4.1), (4.5), (4.4) and (4.1). O

Clearly, the composition A’A of two model homomorphisms is also a homo-
morphism. Therefore, the W-models form a concrete category M (W) in which
W is a free object (by Proposition 4.7). Observe that (MA)*Xp = X (A\Xyp).
It follows that the constructions Q — Q* and A — A* constitute a functor
from the category M (W) into the category of all S-acts and their homomor-
phisms. The functor is faithful: if A and p are homomorphisms Q — Q' such
that Ao = pe for all ¢ € Ag, then, for every ¢ € @ and variable x such that

g = ¢z, we have A(q) = A(p(z)) = p(p(z)) = u(q)-

Theorem 4.9. Let M be the category of all model categories M(W) and con-
crete functors. Its dual category is isomorphic to the category F.

Proof. We already have the transformation M of freeoids into objects of M. It
is surjective by definition, and injective, as Example 4.5 implies. Now we move
to morphisms of F and associate with every freeoid morphism h: W — W’ a
concrete functor from the category M(W’) to M(W).

For any W/-model Q' := (Q, H'), the set H := H'h := {¢'h | p € Q*}
is an E-closed extension set for @ relatively to W = (W, E). Indeed, $'h
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is a mapping from Q"W which agrees with ¢ on X; let us denote it by &.
Furthermore, for every ¢ € Ag, € F'and w € W,

—_—/

Fa(w) = (F'h)(@w) = &' (hdw) = & (ha (hw)) = (¢ o ha Jhw

(see Definition 3.7(b) and (4.2)), wherefrom pa = (m’)h €H.

Therefore, the pair Q := (Q, H) is a W-model; we denote it by ﬁ(Q’). Next,
every model homomorphism A from M(W’) is also a model homomorphism
in M(W). To see why, suppose that Q' := (Q, H"), Q| := (Q1, H]), h(Q) =
(Q,H), E(Qﬁ) = (Q1, H1), and that X\ is a homomorphism Q' — Qf, ie.,
AH' C Hi{. If p € Ag, then A\p = A(@’h) = (A@’)h. By the choice of A,
AP = 9 for some ¥ € Ag,, and then $h € Hy. Thus \H C Hy, and X is
a homomorphism ﬁ(Q’ ) — E(Q’l) Evidently, we have constructed a concrete
functor M(h): M(W') — M(W) with the object part h — h.

The functor M is injective on morphisms. Indeed, suppose that W :=
(W,E) and W' := (W', D’) are two freeoids, and that there are homomor-
phisms A,h': W — W/, If h = E’, then, in particular, E'h = E’h’ and it
follows that »’ € E’h., i.e., K = &'h for some o« € WX, But for all z € X,
z = h'z = &’ hx = ax, wherefrom oo = £ and A’ = h, as needed.

Tt remains to show that M is also surjective on morphisms. Let W : (W, E)
and W := (W’, D’) again be two freeoids, and let T be a concrete functor from
MW’ to M(W). Then T(W') = (W', D), where D is an E-closed extension
set for W’ with respect to W, i.e., D = {Z | ¢ € WX}. In particular, D
contains an extension of € € XX; let us denote it by h. We claim that (i): h
is a freeoid morphism W — W/, and (ii): T = M(h).

Evidently, item (a) in Definition 3.7 holds for h. Further, suppose that
a € WX, Since ha is a substitution from WX, the extension A := har belongs
to D’ and is therefore a model endomorphism of W/ in M(W’) (Proposition
4.7). As the functor T is concrete, A is also an endomorphism of T(W’) in
M(W); by Lemma 4.8(c), then e = \h. Furthermore, for every z € X,
Aex = Az = hazx; hence, the assignments Ae and ha in W’ are equal, and
(in M(W)) h(aw) = (ha)w = (Ae)w = Ahw = %l(hw) for all w € W. This
proves item (b) of the definition, and (i) is verified.

As to (i), we should show that for every Q' := (Q,H’) € M(W’), we
have T(Q') = /}\L(QI) (see the first half of the proof for the definition of 7). Let
(Q,H) :=h(Q'), then H = {#'h | » € Q*}. Furthermore, let (Q, G) := T(Q);
we first note that H'D = G. Indeed, by Proposition 4.7, D is the set of model
homomorphisms from W to T(W’), and as T is concrete, H’ is the set of model
homomorphisms from T'(W’') to T(Q'); therefore H'D C G. On the other
hand, G C H'D, for the latter set contains an extension of every v € Q¥
for ¢ = hy'. Now, evidently, H C H'D; the reverse inclusion follows from

iy iy 7

—_—
the observation that if « € WX, then ¢’a’ = (p o’ o )h (see (4.2)). Therefore
T(Q') = h(Q’) indeed, and (ii) is verified. This completes the proof. O
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Remark 4.10. As demonstrated in the proof of the theorem, two freeoids are
equal if (and only if) their categories of models are equal. We do not consider
there the question of when two model categories are isomorphic. Furthermore,
two freeoids may be called Morita equivalent if their categories of models are
equivalent. We leave open here also the problem of characterizing Morita
equivalent freeoids. For algebraic freeoids, whose categories of models are
essentially varieties (see Theorem 5.10 in the next section), this problem (in the
one-sorted case) could be reduced to a similar problem for algebraic theories,
which was studied in [34].

Suppose that W is the freeoid of an algebra W from W. As we already
know (see Example 4.3), every algebra Q generated by W has an associated
W-model M(Q). Clearly, every algebra homomorphism in V(W) is also a
homomorphism between the respective models in M (W), and we thus arrive
at the following connection between categories V(W) and M (W) (it is further
specified in Theorem 5.8 below).

Proposition 4.11. The transformation Q — M (Q) gives rise to a concrete
functor M : V(W) — M(F(W)), which takes W into F(W).

5. Algebraic freeoids

We first extend to arbitrary freeoids the notion of a support for relatively
free algebras, introduced by B. Plotkin in the early 80-ies (see [31, Section
9.2]) and simplified by the present author in [6, 44, 45]. See also Section 2 in
[43] and Remark 5.6 below.

Definition 5.1. Let w be any element of a frecoid W. A subset X C X is
called a support of w, if

aw = w for every transformation o of X that agrees with € on K.  (5.1)

Example 5.2. In an algebra W from )V, an essentially non-empty subset K
of X is a support of an element w € W in F(W) if and only if w belongs to the
subalgebra of W generated by K (for one-sorted algebras, this is Theorem 2.1
in [44]). If W is absolutely free, i.e., is an algebra of terms, then K supports
w if and only if K contains all variables occurring in w.

Supports of elements are respected by freeoid morphisms.

Lemma 5.3. Suppose that h is a morphism from a freeoid W into W' and
that w is an arbitrary element of W. Then every support of w in W is also a
support of hw in W',

Proof. Assume that aw = w for a transformation « identical on some subset of
variables K; we should show that then also &’'(hw) = hw (here, " and =~/ mean
the extension operations in W and W/, respectively). As o € X%, item (a) of
Definition 3.7 ensures that & = ha. Now, by item (b), &/ (hw) = i’fc/yl(hw) =
h(@(w)) = hw, and the assertion of the lemma follows. O
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The following proposition is essentially a rewording of Lemma 2.2 in [43].
For the case |[I'| = 1, see Theorem 2.1 in [44].

Proposition 5.4. Let Q be any W-model, and let K be a support of w. If X
contains at least two variables of every sort, then, for any two assignments p1
and s from Ag,

p1w = paw whenever p1|K = pa| K. (5.2)

Under the assumption that K is essentially nonempty, (5.2) holds true also
when there is only one variable of some sort in X. Indeed, suppose that
assignments 1 and @9 in @ agree on K. By virtue of the assumption, we
can choose a transformation 8 of X identical on K and such that (X) C K.
Then Bw = %Ehe composite assignments p18 and 93 are equal, and, by
(4.2), 1w = ¢1Bw = Y1 8w = p20w = Yafw = Paw.

As W is itself a W-model, it is now easily seen that the set of all supports
of w is a filter on X: every superset of a support of w is a support, and the
intersection of two supports is a support again. Indeed, suppose that K and
L are supports of w and that a1|K N L = as|K N L for some substitutions oy
and o. Let 8 be any substitution such that ay|K = B|K and as|L = 5|L; by
(5.2), then &yw = fw = yw.

Lemma 5.5. Suppose that w is an element of a freeoid (W, E). A subset
K :={z1,22,...,%m} of X is a support of w if and only if there is an invariant
operation o on W such that w = o(Z1, T2, ..., Tm).

Proof. Sufficiency of the condition is obvious. To prove that it is necessary,
assume that K is indeed a support of w. Let o be the operation on W defined
by o(wi,wa, ..., Wny) = Bw, where 3 is a substitution which takes every z;
into w;. It follows from (5.2) (with Q := W) that the definition is correct.
Indeed, the identity may be rewritten as o(8z1, 8xa,...,8zm) = Ew, with g
arbitrary. By virtue of (3.2), then, for every substitution c,

alo(wi,ws, ..., Wpy)) = a(,[;w) = (CT-J,B)w = 0((&_-73)9:1, .. (Lm)l'm)
= o(a(Bz1),a(Bxa), ..., a(Bzm)) = o(Gwy, aws, . .., awy,),

i.e., the operation o is invariant. Finally, w = 2w = o(z1,%2, ..., Zm). O

Remark 5.6. A closely related condition was used by Sangalli in Section 1.1
of [38] to define the support of an element in his substitutional systems. He
admitted in this paper only substitutional systems in which all elements have
finite supports. In the earlier paper [37], supports in transformational systems
were defined by a condition like (5.2) (applied to W itself), and no finiteness
conditions were assumed.

Algebraic freeoids admit an intrinsic characteristic in terms of supports. An
element of a freeoid is said to be finitely dimensional if it has a finite support.
The freeoid itself is said to be locally finitely dimensional or just locally finite if
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each of its elements is finitely dimensional. (This meaning of the term ‘locally
finite’ differs from that known in general algebra and related to generating
subalgebras by finite sets, but is common in algebraic logic.) It follows from
Lemma 5.5 that a freeoid is locally finite if and only if each of its elements can
be presented in the form o(z1, zs,. .., 2, ) with the operation o invariant.

Theorem 5.7. A freeoid is algebraic if and only if it is locally finite.

Proof. First assume that W is the freeoid of a relatively free algebra W from
W. As X is a generating set of W, every w € W has a finite subset K of X
such that w belongs to the subalgebra of W generated by K (Example 5.2).
It is then easily seen that K is a support of w in F(W); so, the freeoid is
locally finite. Now assume that, conversely, W := (W, E) is a locally finite
freeoid. Let W be any algebra on W for which CI(W) = Inv(W). It follows
from Lemma 5.5 that X generates W. As E C End(W), the algebra W is
then free over X, and the inclusion actually turns into an equality. Therefore,
W is the freeoid of W. |

We now can supplement Lemma 3.8 and say more also about the functor
F: W — F. Let F* be the full subcategory of F consisting of the algebraic
freeoids.

Theorem 5.8. If X is essentially infinite, the categories W and F* are con-
cretely equivalent.

Proof. We first prove (without referring to the supposition on X) that the
functor F is full: every morphism F(W) — F(W') is also an interpretation of
W into W’. Assume that h is a morphism from a freeoid W := F(W) to W :=
F(W’); then, in particular, condition (a) of Definition 2.3 is fulfilled. Let o be
a primitive operation of W. Denote by w the element o(z1,Z2, ..., Zm) of W,
where x1, T, . .., Zm are any elements of X of appropriate sorts, and by w’, its
image h(w) in W’. As ois an invariant operation of W, the set {z1,22,...,%m}
is a support of w in W (Lemma 5.5); according to Lemma 5.3, it is also a
support of w’ in W/. By Lemma 5.5, then there is an invariant operation
o of W' such that w' = o'(zy,22,...,%m). Recall that o’ is a w-derived
operation of the algebra W’ (Example 3.2) and that extended substitutions
of W and W’ are endomorphisms of the respective algebras W and W’. For
all wi,wa, ..., w, €W and any substitution o of W which takes every z; into
w;, then aw = o(wy, wa, ..., Ws,) and

h(o(wi, wa, ..., wn)) = h(@(w)) = ﬁ&'(w’) = ifla’(o'(xl,mz, o s B )
= o' (ha(z1), ha(z2), . .., ha(zm)) = o' (hw1, hws, . . ., hwm).
Therefore, h also satisfies the other condition in Definition 2.3.
Now we need a functor G that acts in the opposite direction in an appro-

priate way. As every F*-object W is the freeoid of some algebra in W, we
may choose any of these algebras for G(W). Taking into account that £ is full
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(which was just proved), we thus arrive to a concrete functor G: F* — W.
Clearly, F'G is the identity functor on F*. Furthermore, both End(W) and
End(GF(W)) consist of the extended substitutions of F(W); according to
Corollary 2.2, then CIt (W) = CIT(GF(W)) for every W € W. As the al-
gebras W and GF (W) are comparable, the identity mapping on W becomes
an W-isomorphism between W and GF(W). Thus, the pair F,G yields the
equivalence of the two categories. ([l

Remark 5.9. This theorem may be regarded as a representation theorem
for locally finite freeoids and shows that, as far as finitary algebras are con-
sidered, we have achieved the aim set in the Introduction: they provide an
adequate signature-free abstraction of relatively free algebras, each of them
being considered up to full equivalence (cf. Example 3.2).

Proving a general representation theorem for arbitrary freeoids is likely to
be more involved. The experience of [18], where a representation theorem for
general polyadic algebras is stated, suggests that such a proof could require
repeated enlarging and restriction (“dilations” and “compressions”) of the set
of variables in use and comparison of freeoids with different variable sets X.
This might be the principal technical difficulty to overcome (in particular,
already when extending Proposition 2.1 to infinitary algebras). For this reason,
the general theorem is out of the scope of this paper.

We end with a result that may be considered as a representation theorem
for model categories of algebraic freeoids.

Theorem 5.10. Suppose that X is essentially infinite and that W is the freeoid
of a relatively free algebra W from W. Then the category M(W) is concretely
isomorphic to the variety generated by W.

Proof. We already have the concrete functor M: W — M(W) (Proposition
4.11). We should prove that it is bijective both on objects and morphisms.

To see that the functor is surjective on objects, given a W-model Q :=
(Q, H), we must turn the I'-set @ into an algebra Q generated by W. Such
a construction is carried out in the proof of Theorem 2.3 in [43]. Regrettably,
the first 13 lines of the relevant part (B) of that proof on p. 139 are misplaced
and should be moved to the top of the page. For reader’s convenience, we
shall describe the construction here in terms introduced above. Let us assume
that Q is the signature of W, and denote by & the primitive operation of W
corresponding to an operation symbol w € Q.

Every operation symbol w €  gives rise also to an operation o, on @
defined by

0u(q1,q2, -, qm) = QO(T1, T2, ..., Tm), (5.3)

where 1, Zs,..., %, are distinct variables of appropriate sorts, ¢ is an as-
signment in @ which takes each z; into ¢;, and @ is its extension in H. This
definition may be rewritten as

0, (pT1,PTa, .., PTm) = PD(T1, T2, . . -, Tm), (5.4)
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where ¢ may now be arbitrary. The definition is correct: by (5.2), o, does
not depend on the choice of the assignment ¢. Indeed, as o, is an invari-

ant operation of W, the set {z1,%3,...,Zm} is a support of &(z1,Z2,...,Zm)
(Lemma 5.5). It follows, furthermore, that the operation also does not depend
on choice of variables: if y1,¥a,...,Ym is another m-tuple of variables such

that ¢y; = g; for all i, then let o be a transformation of variables which sends
every z; into y;; then (p o a)z; = @(az;) = py; = @z, (see (4.1)), and

P0(Y1, Y2, - -+, Ym) = @@(Qz1, s, .. ., Q%) = Po(T1, T2, - - ., Tm)
= (poa)w(z1, T2, -, Tm) = PO(T1,Z2, .., Tm),

by virtue of (4.2) (and independence of o, on ¢ in (5.3)).

Thus, we have transformed the W-model Q into an -algebra Q with primi-
tive operations o,. Further, every extended assignment from H is a homomor-
phism W — Q. To prove this, suppose that (wy,ws,..., W) is an m-tuple
of elements of W to which & may be applied, and that « is a substitution
such that w; = axz; for appropriate distinct variables z;. Then, for arbitrary
assignment ¢ in @,

P0(wi,wa, - .., W) = Po(az1, Qz,. .., 0%m)
= pad(z1,T2, .-, Tm) = (poa)w(z1,Z2,. .., ZTm)

=0, ((p o)z, (poa)Ta,..., (o a)Tm) = o,(Pwi, pws, ..., oWn).

Therefore, £ is a homomorphism, indeed. We conclude that the algebra Q is
generated by W—see Example 4.3.

The transformation M is injective. To ascertain this, assume that Q and
Q' are different algebras from V(W) with a common underlaying set Q). Then
there is an operation symbol w in § and elements ¢1,¢2,...,qm of @ such
that 0,(q1,92,---,qm) # 0,(q1, G2, - .., dm), where o, and o, are the primitive
operations of Q and, respectively, Q' corresponding to w. A representation like
(5.3), and with the same ¢, can be obtained also for the element at the right
of this inequality: o/,(q1,42,---,qm) = @' (&(z1, %2, ..., ZTm)). It follows that @
and ¢’ do not agree on W(z1,Ta,. .., Tm); hence, Hom(W, Q) # Hom(W, Q')
and, further, M(Q) # M (Q’).

Furthermore, the functor M is full, i.e., also surjective on morphisms. In-
deed, if ) is a homomorphism from Q to another W-model Q’, then it is also
homomorphism between the respective algebras: by virtue of Lemma 4.8(c),

AOf-u(ql7q?n cee ,Qm) = )‘Ow(;P"El:prQ: e -:@xm)
~ A NIA
= APO(T1, T2, -, Tm) = Ap O(T1, T2,y -+, Trm,)
= O:)()\gﬂxl,AQ,C‘xg, w e 7)‘“me) = OLJ()‘QIa >\q27 i s -a)‘qm)v

where ¢ is an assignment in @ such that ¢; = z; for all ¢ with all variables
T1,T3,...,%Ly distinct.

The functor M, being concrete, is injective on morphisms; so we eventually
may conclude that it establishes isomorphism of the two categories. O
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We already know (see Example 3.2) that two comparable relatively free
algebras have the same freeoid if and only if they are fully equivalent. This
leads us to the following consequence of the above theorem.

Corollary 5.11. Comparable algebras from W generate concretely isomorphic
varieties if and only if they are fully equivalent.
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