Test Points in Self-Testing

Edgars DIEBELIS, Prof. Dr. Janis BICEVSKIS
Datorikas Institats DIVI, A.Kalniza str. 2-7, Riga, Latvia

Abstract. This paper is devoted to the implementation dftesting, which is one
of the smart technologies. Self-testing containe t@mponents: full set of test
cases and built-in testing mechanism (self-testirogle). The test cases have been
collected since project start and they have beed irsintegration, acceptance and
regression testing. The built-in self-testing mqulevides execution of test cases
and comparison of test results with saved standeatles in different
environments. This paper continues the approactcridesl in article An
Implementation of Self-Testing, expanding it withetconcept of a test point,
which allows flexible control of testing actionsurthermore, the paper describes
the first implementation of self-testing using tesints.

Keywords. Testing, Smart technologies, Self-testing.

Introduction

The self-testing is one of the features of smantitelogies [1]. The concept of smart
technologies proposes to equip software with sévdmailt-in self-regulating
mechanisms, which provide the designed softwarh séif-management features and
ability to react adequately to the changes in edleenvironment similarly to living
beings. The necessity of this feature is driven thg growing complexity of
information systems and the fact that users witlpsafound IT knowledge can hardly
use such complex systems. The concept of smarhaémyies besides a number of
significant features also includes external envinent testing [2, 3], intelligent version
updating [4], integration of the business modelhe software [5]. The concept of
smart technologies is aiming at similar goals as d¢hncept of autonomous systems
developed by IBM in 2001 [6, 7, 8]. Both concepits at raising software intellect by
adding a set of non-functional advantages - abiftyadapt to external situation, self-
renewing, self-optimizing and other advantages. el@x, features and implementation
mechanisms of both concepts differ significantliieTautonomous systems are built as
universal and independent from properties of aifipeystem. As a rule, they function
outside of a specific system and cooperate onethel bf application interface. Hence,
we may consider the autonomous systems being ni@eshvironmental properties
than specific systems. Whereas the features oftsew@mologies provide a scaffolding,
which is filled with functional possibilities of specific system, thus integrating the
implementation modules of smart technologies whid todules of a specific system.
Therefore, further development of both conceptagsly valuable.

The first results of practical implementation ofamtechnologies are available.
Intelligent version updating software was developad is used in practice in a number
of Latvian national-scale information systems, thegest of which, FIBU, manages
budget planning and performance control in morenth@0 government and local

government organisations with more than 2000 yggrs-irstly, external environment
testing [3] is used in FIBU, where the key problemthe management of operating
systems and software versions for the large nurobeerritorially distributed users.
Secondly, external environment testing is empldygthe Bank of Latvia in managing
operations of many systems developed independeiitiy use of smart technologies
has proved to be effective in both cases [9]. Thied tinstance of the use of smart
technologies is the integration of a business madel an application [5]. The
implementation is based on the concept of ModeldriArchitecture (MDA) [10], and
it is used in developing and maintaining severanoriented systems. The use of
smart technologies has been proven to be effeaticerding to the results obtained in
practical use. This study continues the researchthef applicability of smart
technologies in software testing.

Self-testing provides the software with a feataréest itself automatically prior to
operation; it is similar to how the computer itsteléts its readiness for operation when
it is turned on. By turning on the computer se#ftiigg is activated: automated tests are
run to check that the required components, like loisc, RAM, processor, video card,
sound card etc, are in proper working order. If ahyhe components is damaged or
unavailable, thus causing operation failure, ther usceives notification. The purpose
of self-testing is analogical to turning on the qarer: prior to using the system, it is
tested automatically that the system does not goetaors that hinder the use of the
system.

The paper is composed as follows: To explain theemse of the self-testing
approach, the first section repeats in brief tleagdon the self-testing method and deals
with its modes [11, 12]. Section 2 deals with tleaaept and implementation of test
point and Section 3 describes in brief the technimplementation of self-testing.

1. Method of Self-Testing

The main principles of self-testing are:
e Software is delivered together with the test casesd in automated self-

testing;

e Regression testing of full critical functionalityefore every release of a
version;

e Testing can be repeated in production, without ichpan the production
database.

As shown in [11, 12], self-testing contains two @amments:

e Test cases of system’s critical functionality toeck functions, which are
substantial in using the system;

e Built-in mechanism (software component) for autcedatsoftware testing
(regression testing) that provides automated ekwgpudf test cases and
comparing the test results with the standard values

The defining of critical functionality and prepaginests, as a rule, is a part of

requirement analysis and testing process. The mmgaéation of self-testing requires at
least partial inclusion of testing tools functiahalin the designed system. The
implementation of self-testing functionality resulin complementing the designed
system with self-testing functionality calls andilary of self-testing functions (.dll

file). Certainly, the implementation of self-tegfifieatures requires additional efforts

during the development of the system. However,atefforts are justified by many
advantages obtained in development and in long-teaimtenance of a high quality
system in particular.

The main feature of self-testing is ability to tés¢ software at any time in any
environment - development, test and productionrenments. While developing the
mechanism of self-testing the developers may ntgrehe information into production
database; however, they can be used in read-onlyemHdence, it is possible to
implement testing in test or production environm@ithout any impact on system use.
Of course, it is useful to complement the set efsavith recent system modifications
to ensure that testable critical functionality effgesting is covered.

1.1. Sdf-Testing Software

The self-testing software is partly integratedhe testable system, which has several
operating modes; one of them is self-testing modierwan automated execution of
testing (process of testing) is available to theruAfter testing, the user gets a testing
report that includes the total number of tests etezt; tests executed successfully, tests
failed and a detailed failure description. The opsi provided by self-testing software
are similar to the functionality of testing suppiols.

1.2. Phases of System Testing

In order to ensure development of high quality wafe, it is recommendable to
perform testing in three phases in different envinents [11]:

e Development environment - in this environment thestem has been
developed, errors are corrected and system paschenade;

e Test environment - this environment is used foegnation testing, error
corrections and improvements.;

e Production environment - this environment is usedtie system users.
Patches and improvements are set only after ohtaisuccessfully testing
results in development and test environments.

Testing phases are described in detail in theler8elf-Testing - New Approach to

Software Quality Assurance [11].

1.3. Modes of Self-Testing

As shown in [11, 13], the self-testing functionaliian be used in the following modes:
e Test storage mode. In this mode, new test casedediged or existing test
cases are edited/deleted. The system logs all segeimformation of reading-

writing and managing actions by recording them thitest storage file.

e Self-testing mode. In this mode, automated setfrigof the software is done
by automatically executing the stored test casest ihput data are read from
the test file.

e Use mode. In this mode, there are no testing déietivi- the user simply uses
the main functionality of the system.

e Demonstration mode. The demonstration mode canskd to demonstrate
system’s functionality. User can perform system destrations, by using
stored uses cases in storage files.

Test points are used in the test storage, selfiteand demonstration modes, and
they are described in detail in the following cleapt

2. Test Pointsand Their | mplementation

A test point is a command upon which system tesittgpns are executed. To be more
precise, a test point is a programming languagentamd in the software text, prior to
execution of which testing action commands areriade A test point ensures that
particular actions and field values are saved wétering tests and that the software
execution outcome is registered when tests areute@crepeatedly. By using test
points, it is possible to repeat the executionysfesm events.

As described in the sections above, the self-tgdtatures are introduced in the
tested system, namely - written by the test poimtsich can be introduced in the
system in at least two ways:

e By altering the system software’s source code. Wiereloping the system,
the developer implements in the software code tdsb points that register
system’s actions.

e The specialist who defines the business processnseh specifies the test
points in the business process. In this case, tisinéss processes and the
software must be compatible, and extra resourcesmioving the testing
actions to the software are required. For the tbeing, the authors do not
have knowledge of any instances of applicationhaf approach described
above in practice.

When initially developing the self-testing softwacencept, it was planned to
develop only test points that ensure the registnatif data storage in the database and
data selection from database events. It was impiottacheck whether when executing
repeatedly a database command (INSERT, UPDATA, SHLEprocedure or function
call etc), the result saved in the database octseldrom the database matches the data
storing or data selecting performed in the finsteti

While evolving the self-testing concept, the ideause the test point approach to
register all system events emerged. Thus, testpoagister not only data storing in
database events or data selection from databastsduat also other application events
(filling in fields in application form, calling apigation events etc). Such changes
ensure that user interface and business logicdeated as well; also, this approach
provided a possibility for users to use the systemthe demonstration mode.
Consequently, with comparatively low investmentss functionality of self-testing
was increased considerably.

2.1. Implementation of Test Points

To implement test points in the tested systems iteiquired to determine how the
system works, what is the structure and model ef developed system and what
information that characterises the test examplalghioe recorded when registering test
examples. It is necessary in order to:
e Be able to develop new or use the existing teshtpothat register the
information necessary in the test example filethantested system;

e Identify where exactly in the software code tesinfsoneed to be placed to
achieve that the critical functionality of the systis covered.
In the self-testing software there are implemerie=d points that add to the test
example scenario the respective test point typeodlffFigure 1. Adding Self-Testing
Test Point Objects to Test Example Scenario).

Test Points Test Example Scenario
Screen form test point - Screen form test point
object
Control test point | Control test point object
. « | SQL query test point
SQL query test point - object
Time of execution test > Time of execution test
point point object
>

Figure 1. Adding Self-Testing Test Point Objects to TesaiBple Scenario

Each test point has an additional class that coestall the required information
that is received by the test point. Test point cigjeare developed to make the work
related to the test example scenario, developiegstienario and its playback easier.
Currently the test point object classes specifiedhe figure below (Figure 2. UML
Class Diagram of Test Point Objects) are implengimehe self-testing software, and
they are used to register in the tested systenadtiens performed by the user or the
system.

TestableFunction

+Function
+FunctionParameters

v

TestableBase
TestableWaitPoint +1d TestableException
+Wait >f+Time K—————+Exception
+FormName
TestableCriterion TestableDialogResult TestableQuery
+Query +Result +Query
+Msg
TestableComparableField TestableForm Testabl Lﬁ Resul
+Field +CtorParameters TestableControl estableQueryResult
+FieldValue +TestControlPoints +Controlld +QueryData
+TestPoints +EventName
+Type

+SelectionType
+ControlsValue
+ControlsValues

Figure 2. UML Class Diagram of Test Point Objects

The self-testing software employs the followingtiteg actions:

e Opening and closing screen forms (TestableFormis st point registers in
the test example file screen opening and closinigres: The test point type
object contains the screen form name;

e Comparable value (TestableComparableField). Trhés p@int registers the
values of different variables, functions and caltioihs that are determined in
the system code and that the user does not redisgetly in the system. This
test point is necessary to be able to registercantpare the values calculated
in the system. The test point can be used wheappécation contains a field
whose value is calculated considering the valuestbér fields, values of
which are not saved in the database. Furthermloegiest point can be used in
the testing of external interfaces. The test ppiovides the registration of the
values read from the external interface or to bkveled to it in the test
example file. In the self-testing mode, operatidrthe external interface is
simulated by reading from or delivering to the emé& interface the data
registered in the test storage mode in the teshpbefile;

e Test execution criterion (TestableCriterion). Thést point ensures that test
criteria are stored. This test point controls wkethis possible to execute the
test (e.g., prior to debiting money from the acdpumnis checked that the
account is not closed and that there is money)irBif using test execution
criteria test points, it is possible to specify thgeria for the execution of the
stored test. In the system self-testing mode, disé éxecution criteria points

check whether the conditions specified in the peshts are fulfilled. If the
criterion is not fulfilled, the test has failed atite user can access a detailed
description of test execution, in which the readon non-execution is
specified.

e Form control (TestableControl). This test pointrégjuired to register any
events performed in the application, e.g. clickomgthe button Save or field
filling-in event.

e Dialog window (TestableDialogResult). This test ndofegisters in the test
example file the results returned by the dialogdein. If the user performs
actions in the dialogue window, they are registénettie test example file;

e Function (TestableFunction). This test point regsstin the test example file
the function call, function parameters and the ltegturned by the function.
Executing a test that contains a function test fpoina function call, the
parameters delivered to the function and the restiirned from the function
match the information registered during test sterag

e SQL query (TestableQuery). This test point is usedegister in the test file
the query sent to the database;

e SQL query result (TestableQueryResult). This tesintpregisters specific
values that can be selected with an SQL query hadadre compared in the
test execution mode with the values selected ingbestorage and registered
in the test file. The SQL query test point can lseduafter data have been
saved to compare the data saved in the databasedata saved when
registering the test and the data saved when peirigrthe test repeatedly;

e Time of execution (TestableWaitPoint). This tesinpensures the waiting for
the execution of time consuming system processes for executing further
actions;

e System error processing (TestableException). Téss$ point is required to
register any system errors that have occurred gusoftware operation or
playback. Test points responsible for the creatibobjects of this type are
added to places where software errors are processed

Every test point call adds in the software coderéspective test point type object
to the test example scenario (Figure 3. Test R@pdration Process). Unlike other test
points, the screen form control test point in tbst texample scenario can rewrite the
previous screen form control test point. If thei@ttto be registered in the test point
takes place in one control, e.g. in the test figdtlie ‘a’ and then value ‘b’ are entered
and they together create ‘ab’, then in the testgata scenario it is registered that value
‘ab’ has been entered in the test field.

In every test point function that registers in thst example file the information
required for the test example there is implememtetheck that identifies the mode in
which the system operates. If the system operatélei use or demonstration mode,
then the test point functions terminate their openaimmediately after calling. If the
system is used in the test storage or self-testiode, the test point functions in the test
example file register the information that chareses the test example.

Adding test point
Yes»| Data processing —m object to test
example scenario

Is the test
storage mode

No

Figure 3. Test Point Operation Process

To ensure conveniently manageable and usable maimte of test examples, they
will be registered and stored in XML files.

2.2. Using Test Pointsin Modes of Self-Testing

Test points are placed by the developers in théesyso achieve that the critical
functionality of the system is covered. Test poarts used as follows:

e Test storage mode. When the user creates a newhiesipecified information
in the test file and obtained in testing is registie in the test points
implemented in the system. Various types of infdramacan be registered in
test points, e.g. value of filled-in fields, cliclg a command button, selecting
a value from a list etc.;

e Self-testing mode. The software automatically exexuhe events registered
in the test files, replacing the events enteredihdwstorage with their selection
from the test file. The test points placed in thstem during execution of tests
create the same test file as in the test storaggem@hen the testing is
finished, the file created in the test storage misdmmpared with the test file
created in the self-testing mode. If the conteffithe files match, the test has
been successful; if they do not match, the tedtagfailed,;

e Demonstration mode. In the demonstration modetdbefiles that have been
created in the test storage mode and successfigueed in the self-testing
mode are used. In the demonstration mode, withdefaed time interval or
when the user executes commands from the testsfdg by step, the
functionality of the system can be demonstratech otteach new system
users and to demonstrate the system functionaligny potential its buyers.

2.3. Example of Test Point Use

To show how test points are used, a stock purctiassaction process is shown in the
next figure (Figure 4. Stock Purchase Transactimtéss). The registration of a stock
purchase transaction consists of the following nsééps:

Specifying the client;

Selecting the stock;

Specifying the number of stocks;

Saving the transaction.

Sellectlng e Selecting the SECHILE Saving the
client from number of .
. . stock transaction
dialog window stocks
Step 1 Step 2 Step 3 Step 4

Stock Purchase Transaction

Figure4. Stock Purchase Transaction Process

To implement self-testing in the stock purchasegaation process, the system
would have the following five test points, whichrieaus testing actions are written to:
1. Test pointDialog window registers the client selected in it in the testesje
file (Step 1).

2. Test pointForm control registers in the test storage file the stock $pecfor
the transaction (Step 2).

3. Test pointForm control registers in the test storage file the quantitgtotks
specified for the transaction (Step 3).

4. Test pointForm control registers in the test storage file the event wkilg
on the button Save (Step 4).

5. Test pointSQL query result registers in the test storage file the data saved

the database after clicking on the button Savep(&)e

Classification of test points is outlined in detaélow in this Section.

When a stock purchase transaction test case isteegfl, each of the points in the
test storage file registers information that isdute play back the test. When a stock
purchase transaction test is plaid back, the sstirtg software, step by step, reads
from and executes the actions registered in thefitesWhen the actions specified in
the test file are executed, a new test file is tectaWhen all the actions have been
executed, the test files are compared; they showddch if the tests have been
successful. If the files do not match, the usaahie to identify in the testing software
application the point (command) in the test filatthas been executed with errors.

3. Sdf-Testing Software

The self-testing software is part of the systerhdaleveloped. It means that there is no
need to install additional testing tools for systéesting at the system developers,
customers or users. System testing is done byetfieesting software that is partially
integrated in the tested system.
Key components of the self-testing software are:
e Test control block. Users use the test control lblmcperform various basic
operations related to test registration and plalybac
e Library of test actions. The library contains tegtifunctions that register in
the test file the testing actions performed;

e Test file (XML file). This file contains all the qaired information about the
registered test example.

3.1. Test Control Block

The first version of the test control block hasrbeeveloped. The test control block
has been developed with additional functionalitgl anproved with user interface.

The test control block consists of two modules.

e Test control module. The control module is respaesior the control of test
examples: it makes it possible to load test exasnpled delivers tests for
execution;

e Test playback module. The test playback moduleeispaonsible for test
playbacks and for notifying test execution results.

3.1.1. Test Control Module

The control module is a program with a user int=féhat ensures test management
and test execution and the comparing of resultpuf€i5. Test Control Module).

x

[Control module v0.8.1 i =lo

TestFilePath

DOpen Test

a0f38-dcSd-4...| D:\BIS\S elfT esti.
: 2cf05c32-561-4.. D:ABIS\SelfTesti.. Ready
4edJ09iE-7feB4.. DABIS\SellTesti Ready
5a25d833-30c4-.. DABIS\SelTesti Ready
BdEfald2-47ea-.. DABIS\SelTesti. Ready
9c533088-cd06- .. D:\BIS\SelfTesti FReady
33d1619e-a13e-.. D:\BIS\SelTesti. Ready
48ded7d6-49i-.. DABIS\SelTesti_ Ready

Run Test

L

W~ @ o = w oo

Abort Test

Pause Test

Resume

Pk

- e .)

Figure5. Test Control Module

The control module ensures simultaneous loading exstution of several test
examples. Also, the control module determines tleeeassion in which test examples
are executed. Simultaneous execution of test ex@mptovides the possibility to
simulate simultaneously actions of a number of siser the testing system. The
obtained data on the execution of test examples éeecution time) can be used to
analyse the system’s speed. Successive test exarptation can be used if it is
required to check several tests as one entire test.

The test control module provides the following ftioas:

e Delivering the test execution commands initiatedhie control module to the

test playback module;

e Management of test examples. Loading of test exasnphd delivering tests

for execution;

e Defining the configuration of the self-testing sedire:

0 Selecting the system operation mode (test storagh;testing, use,
demonstration);

0 Selecting the test mode. The user can specify whdtsts should be
executed in visible or invisible mode. The visib®ode is intended for
demonstrations; but if the user wants, they caloviotest execution step
by step. The invisible mode provides for fastet éa®cution;

o0 Feature that ensures the possibility in the testge mode to register in
the test example file all the data returned froendhtabase;

o0 Feature that ensures the possibility in the salfiig mode to use the data
registered in the test storage mode in the tesmpba file. This
functionality makes it possible to repeat the eestmple execution under
the same conditions that were in place when the wes stored. The
condition for the use of the feature — when thé égample is registered,
a feature that registers all the data returned filoendatabase in the test
example file must be selected.

Information on test execution. If the test failse tcontrol block will provide

the user with information on reasons for the faijur

Deleting tests and test files.

3.1.2. Test Playback Module

The test playback module is responsible for plaYitagk test examples. The module is
independent from the test control module. It ensurentinuous operation of the
control module also in the cases when an errorrsdaithe test playback module.

The test playback module is a console program, lwheceives as operation
parameters the test file and the program chanmeénd@he program channel is used to
ensure interactive playback of the test. Throughptogram channel, commands from
the control module are delivered to the test plaigbmodule. The test playback module
provides the following key functions:

Receiving commands from the control module;

Abort test;

Pause test. This function can be used to recorevatast or to suspend the
system during demonstration in order to tell théerested people on a

particular system functionality in detall;

Resume test. This operation is possible if beforthé Pause Test or Step
operation has been performed;

Step. This operation stops the automatic execwutfdhe test and ensures that
the test can be played back step by step (by t@st)pThis operation can be

used in both the demonstration and self-testingespd

Create new from existing point. This operation séging a new test example
based on an already stored test example. Wherogigsation is executed, a

new test example file is created; in its beginrangeference to the related test
example file and test points to be executed isrokemh

The result from the test playback module is retdrt@ the control module as a
string that contains several elements:

Test result: the test has been successful or fdiedrelated test file has not
been found or an error of the self-testing softyare
Path reference to the new test file, which wasterkduring test execution.

3.2. Library of Test Actions

The library contains the test action functions dégd herein. Testing action function
calls are implemented in the tested system. Testtiftns are assigned parameters that
characterise the test action. Testing functionsthenbasis of the received parameters,
make the respective records in the test file.

3.3. Test File

Test file (XML file). Test functions in XML file, sing a particular structure, register
the values that characterise the test case. The XMLstructure and example are
described in detail in the article An Implementataf Self-Testing [13].

4. Conclusions

In order to present advantages of self-testingséfietesting features are integrated in a
large and complex financial system. Although effodre ongoing, the following
conclusions can be drawn from the experience:

1. Introduction of a self-testing functionality is neoruseful in incremental
development model, especially gradually developetiesns and systems with
long-term maintenance and less useful in the lideaelopment model.

2. Self-testing significantly saves time required fepeated testing (regression)
of the existing functionality. This is critical fdarge systems, where minor
modifications can cause fatal errors and impadesy's usability.

3. Self-testing requires additional efforts to intdgraéhe functionality of self-
testing into software, to develop critical functédity tests and testing
procedures.

4. The introduction of self-testing functionality walulower maintenance costs
and ensure high quality of the system.

5. Self-testing does not replace traditional testifigsaftware; it modifies the
testing process by increasing significantly thesrof developer in software
testing.

6. Test points make test recording and automatic gim@ctumuch easier. Test
points ensure that tests can be recorded in a oemnteand easy-to-read
manner.

7. Test execution criteria test point determines tbsspbility to execute the test
using the available data set.

8. If test execution criteria test points are used; ot necessary to maintain the
data set which was used to register the test.

9. If test points are used, the user can, independéntin the developer, register
and then repeatedly execute test cases.

10. Test execution criteria test point provides a pubgi to execute tests in
random order.

11. The use of self-testing is simple, and system aperk should not be afraid
of using self-testing.

References

(1

(2

(3]

(4]

(5]

(6]

(7]

8l

19

[10]

[11]

[12]

[13]

Bicevska, Z., Blevskis, J.: Smart Technologies in Software Life lE€ymn: Minch, J., Abrahamsson, P.
(eds.) Product-Focused Software Process Improvergmntinternational Conference, PROFES 2007,
Riga, Latvia, July 2-4, 2007, LNCS, vol. 4589, @f2-272. Springer-Verlag, Berlin Heidelberg (2007).
Rauhvargers, K., Bicevskis, J.: Environment tifgs Enabled Software - a Step Towards Execution
Context Awareness. In: Hele-Mai Haav, Ahto Kaljal4g Databases and Information Systems,
Selected Papers from the 8th International Baltof€rence, IOS Press vol. 187, pp. 169-179 (2009).
Rauhvargers, K.: On the Implementation of a &4éata Driven Self Testing Model. In: Hruska, T.,
Madeyski, L., Ochodek, M. (eds.) Software EnginegiTechniques in Progress, Brno, Czech Republic
(2008).

Bicevska, Z., Bievskis, J.: Applying of smart technologies in saftev development: Automated
version updating. In: Scientific Papers Universdf Latvia, Computer Science and Information
Technologies, vol .733, ISSN 1407-2157, pp. 242208).

Ceripa-Berzina J.,Btevskis J., Kartiis G.: Information systems development based on viBaahain
Specific Language BiLingva. In: Preprint of the €¥edings of the 4th IFIP TC 2 Central and East
Europe Conference on Software Engineering TechsiqG&E-SET 2009, Krakow, Poland, Oktober
12-14, 2009, pp. 128-137.

Ganek, A. G., Corbi, T. A.: The dawning of taatonomic computing era. In: IBM Systems Journal,
vol. 42, no. 1, pp. 5-18 (2003).

Sterritt, R., Bustard, D.: Towards an autononziemputing environment. In: 14th International
Workshop on Database and Expert Systems ApplicaibEXA 2003), 2003. Proceedings, pp. 694 -
698 (2003).

Lightstone, S.: Foundations of Autonomic ConipgtDevelopment. In: Proceedings of the Fourth
IEEE international Workshop on Engineering of Awdoric and Autonomous Systems, pp. 163-171
(2007).

Bicevska, Z.: Applying Smart Technologies: Eyation of Effectiveness. In: Conference Proceedings
of the 2nd International Multi-Conference on Engirieg and Technological Innovation (IMETI 2009),
Orlando, Florida, USA, July 10-13, 2009.

J. Barzdins, A. Zarins, K. Cerans, M. GrasmsaAi. Kalnins, E. Rencis, L.Lace, R. Liepins, Ar&gs,
A.Zarins.: Domain Specific languages for Businesscss Managment: a Case Study Proceedings of
DSM’'09 Workshop of OOPSLA 2009, Orlando, USA.

Diebelis, E., Takeris, V., Bevskis, J.: Self-testing - new approach to softwarality assurance. In:
Proceedings of the 13th East-European Conferenéelwances in Databases and Information Systems
(ADBIS 2009), pp. 62-77. Riga, Latvia, September07-2009.

Bicevska, Z., Bievskis, J.: Applying Self-Testing: Advantages annhitations. In: Hele-Mai Haav,
Ahto Kalja (eds.) Databases and Information Syst&atected Papers from the 8th International Baltic
Conference, 10S Press vol. 187, pp. 192-202 (2009).

Diebelis, E., Bievskis, J.: An Implementation of Self-Testing. Rroceedings of the 9th International
Baltic Conference on Databases and Informatione®yst(Baltic DB&IS 2010), pp. 487-502. Riga,
Latvia, July 5-7, 2010.

