Practitioners View on Domain Specific
Business Process Modeling

Janis BICEVSKIS, Jana CERINA-BERZINA, Girts KARNIS] Lelde LACE,
Inga MEDVEDIS and Sergejs NESTEROVS
University of Latvia

Abstract. Practitioners view on modeling with Domain Specifitanguages
(DSLs) is presented in this paper. It is shown,t thalike general-purpose
modeling languages (UML [1], BPMN [2]), DSLs proeidneans for concise
representation of semantics of the particular ssin domain, enabling
development of consistent and expressive businessegs models. Resulting
models can be used not only as specificationgiforination systems, but also for
generation of implementation artifacts, creatingunentation, testing and for
other purposes. Thus one of the most principalsgofiModel Driven Architecture
(MDA [3]) — the development of model-based inforioatsystem — is achieved.

Keywords: Business Process Modeling, BPM, Domain SpecificgLeages, DSL,
Model Driven Architecture, MDA.

Introduction

A perfect information system, which is consisterithwall customer requirements,

reliable and flexible, still remains only a dreaon fT developers. Main obstacle in the
way to this dream is inability of customers, whordi know information technologies

in details, to define their requirements clearlydat® communicate them to the
developers. Traditionally, information systems hdogen developed in compliance
with some standardized documentation, for exampdeftware requirements

specifications, but, in practice, requirementshdéy are formulated in natural language,
tend to be inaccurate and ambiguous. The situatiomorsened by often changing
customer requirements. All this places softwareettgpers in unenviable situation —
they must develop software according to inaccumatechanging specifications.

One possible solution to the problem is to use @m& language to define
requirements and to make a model for the systeris d@dn eliminate ambiguity of
requirements, and can enable direct translatiospetification into application. Thus,
the problem of changeability of requirements becomesolvable — changes can be
introduced into model, and then application camal®matically generated.

However, despite decades-long efforts, these pmublstill are not completely
solved. Traditional CASE technologies have giverlyopartial results (see, for
example, Oracle Designer [4]). Fierce competitiodT market demands information
systems of exceptional quality, and support froaditional CASE technologies is not
sufficient to provide adequate user interface, highability, maintainability,
performance... Flexibility against changing reqoiests is still limited. For example, if
requirements are changed, and these changes chanmpresented in the formal

specification (as specification language is nofisieht), they must be incorporated
directly into the source-code of the system, andcdse of automatically generated
source-code serious problems can arise. CASE #&relsalso quite conservative and
slow to catch up the fast development of the pnognang technologies. As a result,
only a fraction of applications can be generatedfspecifications.

IT experts are still looking for new ideas. Ondtw# recent developments is Model
Driven Architecture (MDA [3, 5]). In order to makapplication development more
flexible, this approach splits the process into steps. First, the platform-independent
model (PIM) is made in some general-purpose or dospecific modeling language,
for example, UML. Second, PIM is translated to atfplrm-specific model PSM, thus
obtaining an executable application. This sepamnatalows for more flexible
generation of applications and development of @sendly information systems.
MDA approach evolves very fast, but some challersgesalso at a glance.

General-purpose modeling languages, including Ubften used to make PIMs,
are difficult to grasp for non-IT professionalse tfuture users of information systems.
Even if they read and accept the models, their tataleding is not deep enough, and
they undervalue consequences of decisions behase thhodels. Code, generated from
the PSMs, still does not produce usable and reliabftware. Information systems are
not flexible, and it is hard to achieve compliamdgéh the models. If changes are made
directly in the generated code, consequent re-génarcan void them.

Trying to follow the path of MDA often ends with UMspecifications, that is just
one of the sources of information for developerthefsoftware. Only in some projects
UML models are directly translated into softwar@])[

Facing these problems in the practice again anthagad having advanced tool-
building platform ([7]) at hand, we tried to solMBem building domain-specific
business process modeling tools, according toal@sfing principles:

1. Tools must be comprehendible to non-IT specialtstsause modeling will be

done mostly by domain professionals.

2. Specific requirements of business domain and obrinétion system
development must be taken into account.

3. Modeling of real-life situations in the businesshmdon must be possible, as
well as ensuring and showing to users that infoionasystems treat these
situations correctly.

We have made a graphical domain-specific languab&h, we hope, can easily
be understood by non-IT professionals. This languagdomain-specific: first, it can
be used only for modeling of business processes, setond, it can be used only in
specific organizations. The language, called ProMedextended subset of BPMN
(Section 1). Language deals mostly with behaviasgects and do not try to cover
entire enterprise architecture as for example AMelte ([8]) do. Key feature of
ProMod is that semantics of graphical primitivesddeeply specific for organizations
where it is intended to be used. Business procesdeimis a set of diagrams,
interconnected with tree-like structures of entegrdata. Unlike many general-
purpose modeling tools ensuring only syntacticatratiness of models, ProMod
provides tools for checking semantic consistencgd anompleteness with domain-
specific rules — this kind of validation is impdssi in a general-purpose language.

Narrow usage domain of ProMod raises a questiomnudrtization of efforts, i.e.
whether the benefits gained are worth the time ammhey spent developing the
language. Using transformation driven architectiordouild DSL tools can solve this
problem. We used metamodel-based graphical toddibgi platform GrTP and it

enabled us to create both graphical editor andist@mey checker in a reasonably short
time. This paper deals mostly with ProMod DSL - @atailed discussion of tool-
building platform GrTP see [7], [9] and [10].

The paper is organized as follows. Section 1 castdiescription of our business
domain and main features of ProMod DSL. Sectios 2 brief introduction to tool-
building platform GrTP. Section 3 discusses curreséage and ideas about future
development of ProMod DSL.

1. Features of the Domain-specific M odeling L anguage

General-purpose modeling languages offer a fixéasprimitives: objects, attributes,
connectors etc., with predefined semantics, thahagbe extended, or can be extended
in some limited predefined manner (as, for examgtereotypes and profiles in UML
[11], [12] or styling of graphics and option to aalgl attributes in BPMN [2], [13]).
Such notation is suitable for modeling in genestill much of the domain-specific
information remains outside the models. In the darspecific languages we are
looking for ways to extend the set of modeling ptives with ones, specific to the
particular business domain ([14]).

1.1. Modeling Domain: State Social Insurance Agency

The domain, where we are looking for specific caisgerepetitive patterns and clichés
of business organization to enrich the modelinggleage, is Latvian State Social
Insurance Agency (SSIA) — a government institutipmviding pensions, benefits,
allowances etc. Like in many government institusioall activities in SSIA are strictly
prescribed by legislation and local instructiongjt, bunlike most government
institutions, SSIA is a client-oriented enterprisés main function is to service clients.
Servicing clients in a vast majority of cases meprmcessing documents: a client
claims for some social service and provides appaitgoidocuments, these documents
go thru a workflow, and in the end approval or cén letter is sent to the client.

The domain of social security is sensitive spheré.atvia and it is a target of
frequent political decisions and new regulationsuténg in frequent changes of
information systems.

SSIA has recognized need for the management ohdéssiprocesses. Many of the
business processes have already been defined hity ramnotated IDEFO ([15])
diagrams. Currently SSIA is planning to include ibass process models into the
instructions for the stuff and to use them as dwmdepart of the requirement
specifications for the information systems. In th@me time, as the numbers of
diagrams is constantly growing, and the diagranes independent VISIO files, it
becomes harder and harder to keep them consistent.

1.2. Overview of Language ProMod

ProMod is based on a subset of BPMN and keepsadte finequently used graphical
symbols: activities, events, sequence and mesdages,fdata objects etc. These
symbols sometimes have specific semantics for SBbk.example, occurrence of an
event means, that a person or an organization twaght a package of documents —
events are also color-coded to show whether thigynate within SSIA or come from

another institution. Message and sequence flowsyawcarry documents and are
marked as significant (bold arrows) or insignifiteand so on.

Graphical symbols have rich set of attributes. Vigtj for example, in addition to
traditional attributes (name, textual descriptiparformer...) has also domain-specific
attributes (regulations defining it, document teatg$ involved, customer services
fulfilled...) and modeling process attributes (acemge status, error flags, version...).

A model in ProMod is a set of diagrams representinginess processes (Figure
1). There are three types of diagrams (all behal/aecording to UML taxonomy):

1. Business process diagrams are used to describeéebasiprocesses for

employees of the organization. They are simpleeasy to read.

2. Information system diagrams are also used for m®auodeling, but are
intended to describe the process in a way, suitébtedevelopment of
information systems. For further differentiationtween these two types of
diagrams see Section 1.6.

3. Customer service diagrams provide description eftihsiness processes from
the viewpoint of services provided to the customesge Section 1.5.

Besides these diagrams, structured lists are aljmpthe model, representing:

1. Structure of organization,

2. Regulations and local instructions defining theiheiss processes,

3. Information artifacts — documents and pieces afrimiation,

4. Services provided to customers.

These lists are not only convenient way to entdues of attributes — they by

themselves carry essential data, establish commettétween various fragments of
model and are used for consistency checking armttiap.

Diagramms

processes Structured lists

Requirements for
information systems

j‘> ‘ Regulations and instructions ‘
U | Information artefacts |
Customer ‘
services

Figure 1. Diagrams and structured lists

Structure of organization \

Customer services \

1.3. Refinement of Business Process Models with Enterprise Information

Information stored in the structured lists is nekdet only for modeling of business
processes — in fact it is the basic enterprisermdtion. In most organizations this
information can be found in some information systebut unfortunately these systems
have not been built with business process modétimgind. Traditional modeling tools
often are incapable to connect to these data basdsobtain the data. Models,
therefore, remain isolated from the real world, aifid for example, enterprise
information is changed, it is easy to forget torgf@the models accordingly.

In domain-specific modeling tools it is naturalpmvide means for data exchange
with enterprise information systems. ProMod prosidbese means, giving so the
following advantages:

— Enterprise information can easier be maintaineidhfiormation systems specially
designed for it — there the information is connddteanother data, quality can be
checked and responsibility for maintenance canssgaed.

— Information is not duplicated, if modeling tool&ésit from information systems.

— Business models are closely connected to reabfitbe organization, and the risk
for them to become outdated and inadequate is emall

— If needed, it is possible to integrate businessgss models into information
systems, to show step-by-step progress of thenostaf business process.

— ltis possible to analyze business processes itexbaf enterprise data, showing,
for example, which other regulations and which stepbusiness processes will
be affected, if some part of regulation is chanfjbdt, by the way, is especially
important in SSIA, because of frequent and volyntdmanges in regulations).

In addition it is possible to interconnect differellagrams and graphical symbols
and to make new types of diagrams according theadtespecific logic. Customer
service diagrams, for example, consists of actionb®ls, defined in other diagrams,
and joined together, because they are needed fdicylar customer service (as
mentioned in Section 1.2, customer services aregb@nterprise data).

1.4. Domain-specific Consistency Rules for Business Processes

Important aspect of modeling is consistency of te@anodels. According to the scope
consistency can be:

1. In the level of element, for example, whether alindatory attributes have

been entered.

2. Inthe level of diagram, for example, whether déamghegins with an event.

3. In the level of model, for example, whether allereihced sub-processes are

defined somewhere.

Above mentioned are universal consistency rulesjrb®roMod, rules, reflecting
specificity of SSIA are more essential. As the mgaral of business processes is to
process customer documents, it must be checkedharall documents, provided by
customer, are used in some step. It must be cheelesther set of documents from
event starting the business process match to siicafments used in decomposition of
its first step. It must be checked, whether alpsti all business processes are needed
for some customer services, and so on.

As enterprise data is linked to the model, it isgible to check, whether performer
of the step still exists in SSIA, whether orgarimaal structure of SSIA have not been
changed, whether regulations, defining businessgs® have not been expired... As
the possibilities of domain-specific consistencyeakting seem to be unlimited,
ProMod provides means for easily adding new rules.

In ProMod consistency checking is not performedrdycreation or modification
of the diagrams — consistency check is a sepactienaand inconsistent models can
be stored in the system and kept for a while. &bisroach gives some benefits:

1. Itis possible to start from rough sketches madénbyrance professionals of

SSIA, work with them and in the end turn them ictmsistent models.

2. This approach is more suitable for non-IT profesals, because they tend to

concentrate on the main ideas and think, that stevsty details are boring.

1.5. Business Processes and Customer Services. Two Views on the Same Model

At the very first steps of the business processetiog, when trying to identify and
name business processes, there are two essedifédiyent options. First, we can look
at the organization from management’s perspectidectassify processes according to
the way they are performed. Second, we can talsppetive of customers and classify
processes according to services or products thegraducing.

Management's perspective seems more natural, antdden chosen in SSIA. We
believe that it will be the case in most governmaatitutions. If one reads statutes of
SSIA, the first higher level business processesoaréously the functions mentioned
there: grant social insurance services, providesuaitaions, register socially insured
persons, etc. (see ProMod business process diagrafigure 2.a). Customer’s
perspective would lead to business processes detat¢he customer services: grant
retirement pension (including consultations, regighin and everything else), grant
disability pension or grant childbirth benefit.

If, following the management’s perspective, we perf top-down decomposition
of high-level abstract business processes; wehsgartany steps are independent of the
customer services they provide. For example, stBeseive documents”, “Register
documents” and “Send resolution” (Figure 2.b) dneost the same whether request for
retirement pension or disability pension is beimgcgessed. Differences in processing
various customer services show up only in somess{&ure 2.c) and mostly in
deeper level of decomposition.

Essential drawback in taking management's perspgedsi that in the resulting
models customer services are not clearly repredentbey are “dissolved” in detailed
lover-level diagrams. Customer, for example, isaglsvinterested in one service at a
time and business process diagrams are not hétphiin.

Calculate length Receive
of service documents
Grant social Receive
rant socia
insurance docnene Retiremant Register
services \L pension documents
Register Yes
Register documents Check Calculate length
insured \L retirement age of service
persons Check
satement Disability Check
Provide i pension retirement age
consultations Send Yes
=T 21 Check health .
o Send resolution
certificate
¥
. b. Refinement of X d. Customer service
a. Business c. Refinement of

»Grant social insurance
services”

diagramm ,Grant

processes - .,
retirement pension

»Check entitlement”

Figure 2. Business processes and customer services

To resolve this contradiction between managementts customer’s perspectives,
in ProMod we have introduced special type of diaggacalled Customer Service

Diagrams. These diagrams are made for every sepriméded, and contain all steps
from various business process diagrams, neededotadp that service (Figure 2.d).
This is a distilled value chain for one particutarstomer service. These diagrams do
not contain any new information they are just dedént views to business process
diagrams, and in our editor they are made semiraatioally. Customer Service
Diagrams bear some resemblance to use-cases amaucdcation diagrams in UML.

1.6. Modeling for Humans and Modeling for Information Systems

The MDA approach encourages automatic translatfdmusiness process models into
implementation artifacts (database objects or e=adbei code). In the situation when
both restructuring of the business operations @awldpment of an information system
are the goals of the business process modelingtétmpting to assume, that the same
set models can be used for both purposes. This peems even stronger, because the
same modeling language can be used to pursuitdu#tts. However models, that can
be easily read by employees, lack accuracy andl detaded for development of
information systems, but models, suitable for depaient of information systems, are
much too detailed and boring, to be read by emgsy&he difference is not only in
the degree of elaboration: style, graphic reprediemt, cultural biases and even human
ambitions must be taken into account.

We faced all these challenges in SSIA, where basidévisions were responsible
for business processes, but development of infoomatystems were split into separate
department and partially outsourced. For this neabere are two visually different
diagram types in ProMod: one intended for employaed other — for development of
information systems (Figure 3).

Diagrams for employees have limited set of graghsganbols; they are intended
to specify sequence of steps, rather than detigid; and, in order not to disturb
employees of business divisions, they look mucke ligreviously used IDEFO
specifications. Level of detail is acceptable, riblwledgeable insurance professionals
have no difficulties to follow the business progessng them.

BPP1-1.1.1 BPP1-1.1.2 BPP1-1.1.3 ' BPP1-1.2,

Sanem un vizuali Registré ienakosos Parbauda » Regist&datus !
parbauda visus ™ dokumentus tiestbas uz ' sociali apdrosinatas
iesniegtos dokumentus (lietvediba) pakalpojumu . personas konta .

Informaécijas
pieprasijums

¢ Juridiskais 7} <35
idepartaments;

1) 151-1.3.3.4.3
Registré informaciajs
pieprasijlumu

lenakosie
dokumenti

/"Sadarbibas "\ </4>

181-1.3.3.4.3
Vai var sniegt konsultaciju
nodalas ietvaros

&> (31 151-1.3.3.4.3
—— ™ Parsita pieprasijumu
citai nodalai

1S1-1.3.3.4.3
Vaipieprasta ierobez otas
pieejamibas informacija

181-1.3.3.4.3)
Identificé klientu un
nosaka tiesibas

Sagatavo atbildi

Figure 3. Diagrams for employees and for development ofrinfgion system (real-life example)

Diagrams for development of information systemsehaicher set of graphical
symbols. Level of detail is higher — professionaformation system designers must
have no difficulties to design information systeging these diagrams.

Both types of diagrams are elaborated by top-doemohposition, and higher
level information system diagrams in most casessat®rdinated to the lower-level
business diagrams.

1.7. Using Modelsto Create Documentation

Essential part of the software to be created isuch@ntation. In most cases
documentation is a set of textual documents or filedp. If some model of the system
operation is described, then the model itself mshas a picture inside the document —
just a visual extra. If afterwards model of opematis changed, then the textual
description is modified and the picture is repladgddually models are referred to in
many documents: requirements specifications, dedagtription, user guides etc. In
practice it often happens, that some changes dlectedl in one document, but
forgotten in other, yielding to discrepancies betwearious documents and the system
itself.

We propose that models of the system must be usédeaprimary place to store
information about the system, and that the docuatiemt, at least partially, must be
generated from the models. This ensures conformahagstem, its model and its
documentation.

We propose the following scenario for developmédrihe system:

— Client defines his requirements in a form, convenhi¢o him: as textual
documents, sketches of models, formats of requigpdrts and so on.

— System analysts create a model of the system ciamgaboth formal description
(diagrams in the domain-specific language and ftimea attributes) and
informal description (including requirements givesy client: documents,
sketches, report formats...). The presence of infordescriptions enables
automatic generation of the requirements specifinadocument, containing both
formal models and requirements of the client. Sudocument is comprehensible
to the client, even if pure models are not.

— Due to the rich informal part of requirement spieaiions, client quickly grasps
the essence of the formal models and learns tothead. When client has gained
some knowledge about the models, he can even begiwe his requirements in
form of models (and in our practice this is oftéw tcase). The proportion of
formal models grows, but informal descriptions leept for better understanding.

— In software design phase models are further eladdrand design-specific
information is added. The result is complete desigydel, from which design
documentation can be generated (or at least magt of

— Models of the design phase are used by softwarelalgers, ensuring that the
same information is used by programmers, desigrststem analysts and the
client. Models can be used to generate applicatiand can be interpreted by
application during execution.

— Models contain valuable information for user guides. If properly extended,
they can be used to generate user guides autothatiea least partially),
ensuring that user documentation will not be owdaby several software
versions.

— If errors in system must be corrected, models dr@nged accordingly, and
documentation is regenerated.

— Change request are supplied by a client as formatlets or as informal
descriptions and goes thru the above described flwark and generation of
consistent documentation is ensured.

According to this methodology the same set of n®dglused in all stages of
software lifecycle. Of course these are not exatliy same models: initially they
contain only information provided by customer, atién they are enriched and
elaborated and transformed. The consequent usagmookls thru the lifecycle
dramatically reduce error rate when compared to afsgaguely connected set of
documents for requirement specification, design asdr guides. The situation if
further improved, if the models are used duringcexien of applications.

Our approach is model-centric — the model is theregartifact used in all stages
of software lifecycle, and in every stage the madeviewed from slightly different
viewpoint and enriched with specific information.

2. Transformation-Driven Architecture and Tool Building Platform Gr TP

Nowadays, when appropriate tool-building platforame available, it would be unusual
to make domain-specific tools from scratch. Thamfave are using a tool-building
platform which is developed in Institute of Mathdioa and Computer Science of
University of Latvia, and is called GrTP [7, 9, 1The universal functionality, which
is common in many domain-specific tools, is impleteel as part of the platform.
Convenient interfaces are provided for adding fiestuneeded for specific tools. Using
the tool-building platform, the first version ofettdomain-specific tool can be created
in a short time and with reasonable effort. It taen be flexibly adapted to the needs
of customers.

The recent version of GITP is based on principliethe Transformation-Driven
Architecture (TDA [7]). In this section, the keyimeiples of the TDA and GrTP as
well as their applications in implementation of BSire discussed.

2.1. Transformation-Driven Architecture

The Transformation-Driven Architecture is a metamlduhsed approach for system (in
particular, tool) building, where the system metdsioconsists of one or more
interface metamodels served by the correspondimgjines (called, the interface
engines). There is also the Core Metamodel (fixeith the corresponding Head
Engine.

Every engine is responsible for providing some Bgefunctionality to the end-
user (for example, a possibility to work with gragath diagrams). Every engine is
working only within the boundaries of its corresdomg metamodel. That kind of
independence allows one to develop and test engieparately thus improving the
quality of software. Engines can work together bseaof their need to support so
called “Events — Command” interconnection mechanidefined by the Head engine.
Events provide information about actions of therusdich are stored as instances of
the metamodel of the particular engine. Commandsige information about changes
in metamodel and requested actions.

Graph Diagram - Graph Diagram MM_ Dialog MM Dialog
Engine [SraphDiagramC [[sreho [Ciegiver] [Giieac Engine
~ — ! Multi User
: Model + __Engine_,
Head ransformations
Engine

Repository

Figure 4. Transformation-driven architecture framework filleith some interfaces

Since every engine works only within the boundaokigs metamodel, some tools
for connecting these metamodels are needed. Moatetformations are used for this
purpose. Moreover, using of metamodel transformatig the second basic principle
of TDA. Transformations are processing events ecedily engines. They accomplish
changes in metamodel and data and create commaatiswill subsequently be
executed by engines. For the execution of transftioms to be successful, it is often
needed to add new classes and associations toetfaenadel.

It is also possible to connect external engineschviither do not have interface
metamodel, or stores only partial data in theirametdel. These engines are called by
model transformations using one-way calls.

2.2. TDA-based Tool Building Platform GrTP

Using the TDA approach, we have developed a comd¢ostl building platform called
the GrTP by taking the TDA framework and fillingviith several interfaces. Besides
the core interface, two basic interfaces have b@mreloped and plugged into the
platform in the case of GrTP:

— The graph diagram interface is perhaps the magrfate from the end user’s
point of view. It allows user to view models vislyah a form of graph diagrams.
The graph diagram engine [7] embodies advancedchgilaawing and layouting
algorithms [16] as well as effective internal digr representation structures
allowing one to handle the visualization taskscigfitly even for large diagrams.

— The property dialog interface allows user to comivate with the repository
using visual dialog windows.

When building domain-specific modeling language $31A, it was necessary to
create two external engines, which do not use evem commands, but are called by
means of model transformations:

— Multi-user engine is based on information of projead graph diagrams and
ensures that many users can work together wittséime model (one common
model on the server and separate local modelsiffiereht users). Only one user
is allowed to edit a diagram at any given momentiltMiser engine uses its
metamodel to save information about correspondehserver and local models.

— Microsoft Word engine is completely external module generates Word
documents according to data of the metamodel Biypgahodel transformations.
The final step is to develop a specific tool withlie GrTP. This is being done by
providing model transformations responding to useated events. In order to reduce
the work of writing transformations needed for saznacrete tool, we introduce a tool
definition metamodel (TDMM) with a correspondingtexsion mechanism. We use a
universal transformation to interpret the TDMM aitd extension thus obtaining
concrete tools working in such an interpreting mode

2.3. Tool Definition Metamodel

First of all, let us explain the way of coding mtdimm domain specific languages. The
main idea is depicted in Figure 5. The containmérerarchy Tool —
GraphDiagramType — ElementType — CompartmentType (via base link) forms the
backbone of TDMM. Every tool can serve several grdiagram types. Every graph
diagram type contains several element types (inst@nfElementType), each of them
being either a box type (e.g., &ation in the activity diagram), or line type (e.g., a
Flow). Every element type has an ordered collectioiCahpartmentType instances
attached via its base link. These instances foeish of types of compartments of the
diagram elements of this type. At runtime, eachualiselement (diagrams, nodes,
edges, compartments) is attached to exactly oreihgtance.

The extension mechanism is a set of precisely ddfiextension points through
which one can specify transformations to be calledarious cases. One example of a
possible extension could be an “elementCreated”’ensidbn providing the
transformation to be called when some new elemeast been created in a graph
diagram. Tools are being represented by instantdseoclDMM by interpreting them
at runtime.

Therefore, to build a concrete tool actually meamsgenerate the appropriate
instance of the TDMM and to write model transforimas$ for extension points. In such
a way, the standard part of any tool is includedtba tool definition metamodel
meaning that no transformation needs to be writtethat part.

Graph Diagram Metamodel
!—Eﬁ' GraphDiagramType » |GraphDiagramStyie
0.1| GraphDiagram [o1 name:String] layouthMode:Integer

refinement | caption :String - S -
— refinementType *
4
i 1 ElementStyle
Element 01 lineColorInteger
I | ——
1 ElementType 01
- nameSiing |
.—\
end
1 T S Ereoe ieser |
1 [start startShape: Integer
1 |start width: Integer middleShape: Integer
® 1] height: Integer endShape: Integer
bkgColor: Integer | | lineType: Integer
NodeT Yo g
Node \ | Edge | ‘ ype | EdgeType shape: Integer thickness: Integer
. CompartmentType|~

Compartment [- = (¢
valuesmna | name:Strin, ompar tyle [+
valueSiing -~ ---=- === L < 0.1 fontSize: Integer
fontColor: Integer

Figure5. The way of coding models

3. Some Applications of Domain-specific models

Business process modeling is not an end in itsaffocdels are built to make high-
quality and convenient information systems. Sevigjtiof social security and frequent
changes in regulations (see Section 1.1) requigh hiliability, flexibility and
maintainability of software. Traditional method sdftware developments have been
used for years and have not yielded desired resuksg specifications in natural
language, it was impossible to achieve needed acguand unambiguity. We have
proposed modeling with domain-specific graphicalgiaage ProMod as a solution.
Applications of the modeling that are the most ntge SSIA are described below.

Availability of models to the wide spectrum of users. Concise description of
business processes in graphical diagrams can ik assénstructions for employees
providing customer services and as informationcf@nts, showing what will be done
in SSIA, in order to serve their requests. The lbest to spread the models is to make
them available on the internet.

ProMod can export diagrams, corresponding inforamafrom structured lists and
descriptive documents to Web pages. Thought natyediagram is suitable for every
reader, and models with varying level of detaild amodels from different perspectives
must be built — for example in-depth descriptiondmployees of SSIA and simplified
version for customers.

Job descriptions for SSIA employees. Job responsibilities for many SSIA
employees in fact are defined by activities inblsiness process models — in ProMod
Customer Service Diagrams are especially desigoeshow this. Business process
diagrams must be used in job descriptions to miaémtmore concise and easy to read
compared to textual instructions. We have condustedey, which shows ([6]), that
90% of employees in government institutions prefiephical descriptions to textual.
We believe that job descriptions for most of thd/A8mployees will be covered by
Customer Service Diagrams.

Software requirement specifications. Contradiction between inaccurate and
changeable requirement specifications, definedatnmal language, and need for high-
quality information systems is well-known and hasady been discussed in this paper.
We believe that domain specific business modeliegpécially, using ProMod
Information System Diagrams) will largely improvieustion in SSIA.

Conversion from models to applications. We believe that approach: “Less
technical programming, more concise specificatipasid development of information
systems without technical programming can becomssipte in the nearest future.
Modeling is the first and mandatory stage in thiscess. In order to use information
from business models in applications (no matteretivr they are generated from
models or coded manually), it is necessary to fearthis information automatically or
manually from repository of the modeling tool ingpplication database. Manual
transferring involves re-entering information abobjects and their connections, and
linking this information to the application datahi$ is a monotone and quite error-
prone job. Transferring information with automatedls would be more efficient. This
kind of transformation can be implemented with minesources, if the modeling tool
provides application programming interface to asdesrepository. So application can
work according to models created in graphical laggy but its quality (usability,
reliability, security, performance etc.) remaindependent of capacity of some
hypothetic generator to generate a high-qualitylieaions.

This approach has been tested in a number of mesizenprojects [6], where
information systems are less complex than in S®ASSIA this is a next step to be
taken. This approach has proved noticeable vigb#ihd attitude of users towards the
graphical models as requirement specifications amdcore of user guides was
surprisingly positive. Users considered graphidagchams as highly comprehensible
and soon gave up reading thick and boring maniéalsittedly this approach asks for
further development, but we see this as a realigdig to develop user-friendly, flexible
and reliable information systems.

Formal model as testing model. In software testing the model is often
emphasized, according to which testing of the sydtegins already in requirements
specification phase by accumulating test caseprfmving compliance of software and
specifications. If the formal MDA model can be bully system analysts from use
cases, the use cases must contain information detedéest, whether the resulting
system operates correctly. Every use case descsdmpsence of action during some
operation, and naturally these actions are usetk&ting of software, developed from
these models. This approach is popular in practice.

Though admittedly the testing based on single @se< can be insufficient for
high software quality. Essentially higher quality testing can be achieved using
model-driven testing approach. In theory of testthg control flow graph is well-
known: actions are vertices, but transitions argesdOne usage of the system is one
path thru the graph. Testing of the program is $aitbe complete, if all transitions
(edges) are traversed during some test case (@nt€rl).

This approach is suitable also for business preseaad other behavioral models.
The system can be considered as sufficiently tesftatl possible sequences of actions
(according to the model of the system) are tegisdesting according to C1 can be too
laborious, testing sometimes is restricted to wses accumulated during requirement
specification phase, but this is clearly much weagproach.

4, Conclusions

The following conclusions can be made from our exmee with creating domain
specific language ProMod and with business progesteling in SSIA:

— Business process modeling with domain-specific Uaigg is preferable,
compared to modeling with general-purpose language.

— Domain specific models have wide application: tleayp be used as core of job
descriptions and requirement specification, asaaf information for automatic
generation of applications, as testing model fodetalriven testing.

— With tool building platform GrTP domain-specificniguages and supporting
tools: graphical editor, consistency checker andehto-application information
transfer utility, can be created in short time aiith modest resources.

— Business process modeling with consistency checka very short timeframe
allows to identify contradictions and bottleneckgmcesses descriptions

— Move to model-driven architecture profoundly chanmgaformation system
development technology. If an information systens leen developed with
traditional methods, serious modifications and emars resources can be needed.

Practical experience in business processes modétingarge and complex
government institution SSIA, confirms feasibilitynda advantages of model-driven
development of information systems.

Acknowledgments

This research is partly supported by European $baiad.

References

UML, http://www.uml.org.

BPMN, http://www.bpmn.org.

MDA Guide Version 1.0.1. OMG, http://www.omg.figcs/omg/03-06-01.pdf.

Oracle Designer, http://www.oracle.com/technglpgpoducts/designer/documentation.html

Flore, F.: MDA: The Proof is in Automating Trdmsnations between Models. OptimalJ White Paper.

http://www.dsic.upv.es/~einsfran/mda/modeltransiations. pdf

Cerina-Berzina, J., Bicevskis, J., Karnitis, IBformation systems development based on visuahdo

Specific Language BiLingva. In: Preprint of the &¥edings of the 4th IFIP TC 2 Central and East

Europe Conference on Software Engineering TechsiqDEE-SET 2009, Krakow, pp. 128-137. (2009)

7. Barzdins, J., Cerans, K., Kozlovics, S., Renéis, Zarins, A.: A Graph Diagram Engine for the
Transformation-Driven Architecture. In: Proceedingé the 1UI'09 Workshop on Model Driven
Development of Advanced User Interfaces, pp. 292hibel Island, USA (2009)

8. Lankhorst, M., et al.: Enterprise Architecture \Work: Modelling, Communication and Analysis.
Springer (2009)

9. Barzdins, J., Zarins, A., Cerans, K., Grasmahis, Kalnins, A., Rencis, E., Lace, L., Liepins,,R.
Sprogis, A., Zarins, A.: Domain Specific languaf@sBusiness Process Management: a Case Study. In:
Proceedings of DSM'09 Workshop of OOPSLA 2009, dta, USA (2009)

10. Barzdins, J., Kozlovics, S., Rencis, E.: ThanBformation-Driven Architecture. In: Proceedindgs o
DSM’'08 Workshop of OOPSLA 2008, pp. 60—63, NasleyilUSA (2008)

11. Larman, C.: Applying UML and Patterns: An Ituztion to Object-Oriented Analysis and Design and
Iterative Development. Prentice Hall (2004)

12. Weiklens, T.: Systems Engineering with SysMlarlyan-Kaufman OMG Press (2007)

13. White, S.A., Miers, D., Fischer, L.: BPMN Mot and Reference Guide. Future Strategies InQ§R0

14. Lan Cao, Balasubramaniam Ramesh, Matti RogeiDdmain-Specific Models Easier to Maintain Than
UML Models? In: IEEE Software, vol. 26, no. 4, 19--21 (2009)

15. ICAM Architecture Part 1l - Volume IV - Functio Modeling Manual (IDEFO).
http://handle.dtic.mil/100.2/ADB0624

16. Freivalds, K., Kikusts, P.: Optimum Layout Asljment Supporting Ordering Constraints in GraphreLik

Diagram Drawing. In: Proceedings of The Latvian d@ay of Sciences, Section B, vol. 55, No. 1, pp.

43-51, Riga (2001)

apwNE

o

