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Abstract Since Grover’s seminal work, quantum search has been studied in great
detail. In the usual search problem, we have a collection of n items x1, . . . , xn and
we would like to find i : xi = 1. We consider a new variant of this problem in which
evaluating xi for different i may take a different number of time steps.

Let ti be the number of time steps required to evaluate xi . If the numbers
ti are known in advance, we give an algorithm that solves the problem in

O(

√
t2
1 + t2

2 + . . . + t2
n) steps. This is optimal, as we also show a matching lower

bound. The case, when ti are not known in advance, can be solved with a poly-
logarithmic overhead. We also give an application of our new search algorithm to
computing read-once functions.

Keywords Quantum search · Quantum algorithms

1 Introduction

Grover’s quantum search algorithm [12] is one of two most important quantum algo-
rithms. It allows to search a collection of n items in O(

√
n) quantum steps. This gives

a quadratic speedup over the exhaustive search for a variety of search problems [2].
An implicit assumption is that any two items can be examined in the same number

of time steps. This is not necessarily true when Grover’s algorithm is applied to a
specific search problem. It might be the case that some possible solutions to the search
problem can be checked faster than others.
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Let ti be the number of time steps required to check the ith solution. Classically,
searching for an item i : xi = 1 requires time �(t1 + . . . + tn). A naive application
of Grover’s search would use O(

√
n) steps, with the maximum possible query time

tmax = maxi ti in each step. This gives an O(
√

ntmax) time quantum algorithm.
In this paper, we give a better quantum algorithm. We consider two settings:

1. The times ti are known in advance and can be used to design the algorithm;
2. The times ti are not known in advance. The algorithm learns ti only if it runs the

computation for checking the ith item for ti (or more) steps.

For the first setting, we give a quantum algorithm that searches in time O(
√

T )

where T = t2
1 + . . . + t2

n . For the second, more general setting, we give an
O(

√
T log2 T log2 logT ) time quantum algorithm. We show a lower bound of

�(
√

T ) for the first and, hence, also the second setting.
To illustrate the usefulness of our search algorithm, we show an application to

computing read-once Boolean functions. A Boolean formula (consisting of AND, OR
and NOT operations) f (x1, . . . , xN) is read-once if each of the variables x1, . . . , xN

appears at most once in f . We show that any read-once Boolean formula of depth d

can be computed using O(
√

N logd−1 N) queries. The resulting algorithm is weaker
than the recent breakthrough work of [4, 11, 17] but is also much simpler than the
algorithms in [4, 11, 17].

This is the first paper to construct quantum algorithms for a model in which queries
to different xi take different time. A similar model, however, has been studied in the
context of quantum lower bounds by Høyer et al. [14].

2 Model

Our model is a generalization of the usual quantum query model. We model a situ-
ation when the variable xi is computed by a query algorithm Ai which is initialized
in the state |0〉 and, after ti steps, outputs the final state |xi〉|ψi〉 for some unknown
|ψi〉. (For simplicity, we restrict ourselves to the case when Ai always outputs the
correct xi .) In the first ti − 1 steps, Ai can be in arbitrary intermediate states.

Our goal is to find i : xi = 1. (We sometimes refer to i : xi = 1 as marked items
and i : xi = 0 as unmarked.) Our search algorithm A can run the query algorithms
Ai for some number of steps t , with Ai outputting xi if ti ≤ t or “the computation
is not complete” if ti > t . The computational cost is the amount of time that is spent
running the query algorithms Ai . Any transformation that does not involve Ai is free.

For completeness, we include a more formal definition of our model in the Ap-
pendix A. Our search algorithms, however, can be understood with just the informal
description in the previous two paragraphs.

Known vs. Unknown Times We consider two variants of this model. In the “known
times” model, the times t1, . . . , tn are known in advance and can be used to design
the search algorithm. In the “unknown times” model, t1, . . . , tn are unknown to the
designer of the search algorithm.
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Terminology We use the following terms:

• Query algorithm: the algorithm Ai that computes xi .
• Search algorithm: the algorithm that searches for i : xi = 1, using calls to query

algorithms.

3 Methods and Subroutines

We use the well-known methods of amplitude amplification and amplitude estima-
tion.

3.1 Amplitude Amplification

Amplitude amplification [7] is a generalization of Grover’s quantum search algo-
rithm. Let

sinα|1〉|ψ1〉 + cosα|0〉|ψ0〉 (1)

be the final state of a quantum algorithm A that outputs 1 with probability sin2 α = δ.
We would like to increase the probability of the algorithm outputting 1. Brassard et
al. [7] showed that, by repeating A and A−1 2m + 1 times, it is possible to generate
the final state

sin(2m + 1)α|1〉|ψ1〉 + cos(2m + 1)α|0〉|ψ0〉. (2)

In particular, taking m = O( 1√
δ
) achieves a constant probability of answer 1.

We use a result by Aaronson and Ambainis [1] who gave a tighter analysis of the
same algorithm:

Lemma 1 [1] Let A be a quantum algorithm that outputs a correct answer and a
witness with probability1 δ ≤ ε where ε is known. Furthermore, let

m ≤ π

4 arcsin
√

ε
− 1

2
. (3)

Then, there is an algorithm A′ which uses 2m + 1 calls to A and A−1 and outputs a
correct answer and a witness with probability

δnew ≥
(

1 − (2m + 1)2

3
δ

)
(2m + 1)2δ. (4)

The distinction between this lemma and the standard amplitude amplification is
as follows. The standard amplitude amplification increases the probability from δ to
�(1) in 2m + 1 = O( 1√

δ
) repetitions. In other words, 2m + 1 repetitions increase

the success probability �((2m+1)2) times. Lemma 1 achieves an increase of almost

1Result in [1] requires the probability to be exactly ε but the proof works without changes if the probability
is less than the given ε.
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(2m + 1)2 times, without the big-� factor. This is useful if we have an algorithm
with k levels of amplitude amplification nested one inside another. Then, with the
usual amplitude amplification, a big-� constant of c would result in a ck factor in the
running time. Using Lemma 1 avoids that.

We also need another fact about amplitude amplification.

Claim 1 Let δ and δ′ be such that δ ≤ ε and δ′ ≤ ε and let m satisfy the constraint (3).
Let p(δ) be the success probability obtained by applying the procedure of Lemma 1
to an algorithm with success probability δ. If δ′ ≤ δ ≤ cδ′ for c ≥ 1, then

p(δ′) ≤ p(δ) ≤ cp(δ′).

Proof In Appendix B. �

3.2 Amplitude Estimation

The second result that we use is a version of quantum amplitude estimation.

Theorem 1 [7] There is a procedure Est-Amp(A,M) which, given a quantum algo-
rithm A and a number M , outputs an estimate ε̃ of the probability ε that A outputs
1 and, with probability at least 8

π2 , we have

|ε − ε̃| ≤ 2π

√
min(ε(1 − ε), ε̃(1 − ε̃))

M
+ π2

M2
.

The algorithm uses M evaluations of A.

We are interested in a slightly different type of error bound. We would like to have
|ε − ε̃| ≤ cε̃ for some small constant c > 0.

Theorem 2 There is a procedure Estimate(A, c,p, k) which, given a constant c,
0 < c ≤ 1 and a quantum algorithm A (with the promise that the probability ε that
the algorithm A outputs 1 is either 0 or at least a given value p) outputs an estimate
ε̃ of the probability ε such that, with probability at least 1 − 1

2k , we have

(i) |ε − ε̃| < cε̃ if ε ≥ p;
(ii) ε̃ = 0 if ε = 0.

The procedure Estimate(A, c,p, k) uses the expected number of

�

(
k

(
1 + log log

1

p

)√
1

max(ε,p)

)

evaluations of A.

Proof In Appendix B. �
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4 Search Algorithm: Known Running Times

For this case, we have the following result, with a matching lower bound (Theorem 8
in Sect. 7).

Theorem 3 A collection of n items with times t1, . . . , tn can be searched in time

O

(√
t2
1 + t2

2 + . . . + t2
n

)
.

4.1 Slightly Weaker Result, with a Simpler Proof

We first show a weaker version of Theorem 3.

Theorem 4 A collection of n items with times t1, . . . , tn can be searched in time

O

(
clog∗ n

√
t2
1 + t2

2 + . . . + t2
n

)

for some constant c.

Proof Let tmax = maxi ti . First, our algorithm sequentially queries all items i with
small ti (that is, ti ≤ tmax

n
). The total query time for that is at most

n
tmax

n
= tmax ≤

√
t2
1 + t2

2 + . . . + t2
n .

Then, the algorithm subdivides the remaining items (ti > t
n

) into groups so that all
items in one group have similar times ti (e.g. tmax

2 ≤ ti ≤ tmax for some tmax ). We can
perform the standard Grover search in a group in time s = O(

√
ltmax) where l is the

size of the group. We then observe that

s2 = O(lt2
max) = O

(∑
i

t2
i

)
,

with the summation over all items i in the same group. By summing over all groups,
we get

∑
j

s2
j = O

(
n∑

i=1

t2
i

)
,

where j on the left ranges over all groups.
Let k be the number of the groups that we have. If we have a search algorithm that

searches k items in time

O

(√
s2

1 + . . . + s2
k

)
,
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we can then substitute the search algorithms for searching the k groups instead of the
query algorithms for k items and obtain a search algorithm for n items that runs in
time

O

(√
t2
1 + . . . + t2

n

)
.

Since we have tmax

n
≤ ti ≤ tmax for the items that were not queried at the beginning

of the algorithm, k ≤ logn + 1. Thus, we have reduced search on n items to search
on k ≤ logn + 1 items. We then apply the same strategy recursively to reduce search
on k items to search on logk + 1 items and so on, until the number of items becomes
less than some constant C. Then, we query all items sequentially.

Reducing the number of items to less than C takes log∗ n levels of recursion. The
total running time is

O

(
clog∗ n

√
t2
1 + t2

2 + . . . + t2
n

)
,

because each reduction from n items to k = logn + 1 items increases the big-O con-
stant by a constant factor. �

The clog∗ n factor can be avoided, by a more sophisticated implementation of the
same idea, which we describe in the next subsections.

4.2 General Case: Preliminaries and Overview

We first restrict to the case when there is exactly one marked item. The general case
can be reduced to this case with a constant factor overhead, by running the algorithm
on all n elements, a random set of n

2 , a random set of n
4 , etc. As shown in [1], there

is a constant probability that at least one of those sets contains exactly one marked
item. The expected running time increases by at most a constant factor, because of
the following lemma.

Lemma 2 Let S be a uniformly random set of n
2j elements of {1,2, . . . , n}. Then,

E

⎡
⎣

√∑
i∈S

t2
i

⎤
⎦ ≤ 1

2j/2

√ ∑
i∈{1,...,n}

t2
i .

Proof By concavity of the square root function,

E

⎡
⎣

√∑
i∈S

t2
i

⎤
⎦ ≤

√√√√E

[∑
i∈S

t2
i

]
= 1

2j/2

√ ∑
i∈{1,...,n}

t2
i .

�

Therefore, the reduction from the general case to one marked item case increases
the bound on the query time by a factor of at most

1 + 1

21/2
+ 1

2
+ . . . <

1

1 − 1√
2

.
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Second, we introduce a generalized search problem in which the algorithm Ai for
the marked i returns the correct answer with a probability at least pi , instead of a
certainty. More formally,

• if xi = 0, the final state of Ai is of the form |0〉|ψ0〉.
• if xi = 1, the final state of Ai is of the form α|1〉|ψ1〉 + √

1 − α2|0〉|ψ0〉, where
pi ≤ |α|2 ≤ d · pi , for some constant d > 1.

The probabilities p1, . . . , pn and the constant d are known to us when we design the
algorithm, just as the times t1, . . . , tn. (Knowing both the success probability and the
running time may look quite artificial. However, we only use the “known success
probability” model to design an algorithm for the case when all Ai return the correct
answer with certainty.) We prove that

Theorem 5 The generalized search problem can be solved using O(
√

T ) query steps
where

T = t2
1

p1
+ t2

2

p2
+ . . . + t2

n

pn

. (5)

Our main theorem now follows as the particular case p1 = . . . = pn = 1.

4.3 Proof of Theorem 5

The algorithm for the generalized search problem is described as Algorithm 1. We
now prove that this algorithm achieves the bound of Theorem 5. To improve the
readability, proofs of more technical lemmas are postponed to the next subsection.

We start with lemma bounding the amplification step.

Lemma 3 If A′
i is obtained from Ai by amplification in step 1 of the pre-processing

part of Algorithm 1, then:

(i) The success probability of A′
i is between p′

i and d · p′
i , where p′

i satisfies (1 −
1

3 logn
) 1

9 logn
≤ p′

i .
(ii)

(t ′i )2

p′
i

≤
(

1 + O

(
1

logn

))
(ti)

2

pi

.

Proof Postponed to Sect. 4.4. �

This lemma essentially means that we can use
(t ′i )2

p′
i

instead of (ti )
2

pi
in expressions

such as (5).
Next, we bound the time to run the quick algorithms. To achieve the success prob-

ability of �(1), we need to amplify A′
i with O(1/

√
p′

i ) repetitions. Therefore, the
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Algorithm 1 Search algorithm for known query times

Input: Query algorithms A1, . . . , An, running times t1, . . . , tn and estimates
p1, . . . , pn, d .
Pre-processing:

1. Define A′
i = Ai if pi ≥ 1

9 logn
. Otherwise, let m be the smallest number for

which (2m + 1)2pi ≥ 1
9 logn

. Define A′
i as the algorithm obtained from Ai by

amplitude amplification (Lemma 1) with 2m + 1 calls to Ai and (Ai )
−1.

2. Let t ′i = (2m + 1)ti be the number of query steps of A′
i and let p′

i be the success
probability that A′

i would have if the success probability of Ai is exactly pi .

3. Let T0 be the maximum of
t ′i√
p′

i

. We call A′
i quick if

t ′i√
p′

i

≤ T0
n logn

and slow

otherwise.
4. Let Tmin and pmin be the minimums of t ′i and p′

i among all slow algorithms. Par-
tition the intervals [Tmin, T0] and [pmin,1] into subintervals of the form [T ′, T ′′]
and [P ′,P ′′] with T ′′ ≤ (1 + 1

logn
)T ′ and P ′′ ≤ (1 + 1

logn
)P ′.

5. Let ST ′,T ′′,P ′,P ′′ be the set of all i with T ′ < t ′i ≤ T ′′ and P ′ < p′
i ≤ P ′′. Define

BT ′,T ′′,P ′,P ′′ as the algorithm that randomly chooses i ∈ ST ′,T ′′,P ′,P ′′ and then
runs A′

i .

Search algorithm:

1. Search among the quick A′
i by running each of them, amplified to the success

probability �(1).
2. Search among the slow A′

i in one of the following ways:
a) If the number of algorithms BT ′,T ′′,P ′,P ′′ is less than a fixed constant C, run

each of them, amplified to the success probability �(1).
b) Otherwise, call the algorithm recursively with BT ′,T ′′,P ′,P ′′ as the query al-

gorithms Ai . Use T ′ as ti , P ′
|ST ′,T ′′,P ′,P ′′ | as pi and d(1 + 1

logn
) as d .

number of query steps for checking one such A′
i is

O

⎛
⎝ t ′i√

p′
i

⎞
⎠ = O

(
T0

n logn

)
.

The number of query steps for checking all such A′
i is at most the number of such

(A′
i )’s times O(

T0
n logn

) which is of the order at most

T0

logn
≤ 1

logn

√
T 2

0 ≤ 1

logn

√
(t ′1)2

p′
1

+ . . . + (t ′n)2

p′
n

.

For slow algorithms, we have

Lemma 4 There are k = O(log3 n log logn) pairs of intervals ([P ′,P ′′], [T ′, T ′′]).
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Proof Postponed to Sect. 4.4. �

Thus, recursively calling Algorithm reduces the number of items to be searched
from n to k = O(log3 n log logn). After O(log∗ n) levels of recursion, the number
of items is reduced to a constant. Next, we bound the effect of the recursion on the
running time.

We enumerate the pairs of intervals ([T ′, T ′′], [P ′,P ′′]) by numbers 1, . . . , k. Let
[T ′

j , T
′′
j ] and [P ′

j ,P
′′
j ] be the time and probability intervals from the j th pair and let

Bj = BT ′
j ,T ′′

j ,P ′
j ,P ′′

j
and Sj = ST ′

j ,T ′′
j ,P ′

j ,P ′′
j

.

Let sj = maxi∈Sj
t ′i be the number of query steps performed by Bj . Then, sj ≤ T ′′

j .

If one of A′
i , i ∈ Sj outputs 1, the success probability of Bj is 1

|Sj | (the probability of

choosing the right i ∈ Sj ) times the success probability of A′
i . The success probability

of A′
i is in the interval [p′

i , dp
′
i] and we have p′

i ∈ [P ′
j ,P

′′
j ] ⊆ [P ′

j , (1 + 1
logn

)P ′
j ].

Therefore, the success probability of Bj is in the interval [qj , d(1+ 1
logn

)qj ] where

qj = P ′
j

|Sj | . This means that the values of pj and d in step 2b of Algorithm 1 are correct.

We now relate sj and qj to t ′j and p′
j :

(sj )
2

qj

≤ |Sj |
(T ′′

j )2

P ′
j

≤
(

1 + O

(
1

logn

))
|Sj |

(T ′
j )

2

P ′
j

≤
(

1 + O

(
1

logn

)) ∑
i∈Sj

(t ′i )2

p′
i

.

By summing over all j ,

s2
1

q1
+ . . . + s2

k

qk

≤
(

1 + O

(
1

logn

))(
(t ′1)2

p′
1

+ . . . + (t ′n)2

p′
n

)
.

Thus, one level of recursion increase the sum (5) by a factor of 1 + O( 1
logn

) and

O(log∗ n) levels of recursion increase it by a factor of (1+O( 1
logn

))log∗ n = 1+o(1).
Let s1, . . . , sk and q1, . . ., qk be the times and success probabilities for the final

k ≤ C algorithms. In step 1, we amplify the success probability of each of them to
�(1). This gives us query algorithms with running times s′

i = O(
si√
qi

) and success

probabilities p′
i = �(1). We then search them sequentially, in time

C max s′
i = O(max s′

i ) = O

(√
(s′

1)
2 + . . . + (s′

n)
2

)
= O

⎛
⎝

√
s2

1

q1
+ . . . + s2

n

qn

⎞
⎠ .

4.4 Proofs of Lemmas

Proof of Lemma 3 (i) Let p′
i be the success probability that amplitude amplification

gives for A′
i if the success probability of Ai is exactly pi . By Claim 1, if the success
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probability of Ai is in the interval [pi, d ·pi], then the success probability of A′
i is in

the interval [p′
i , d · p′

i].
It remains to lower-bound p′

i . We have

(2m + 1)2pi ≤ (2m + 1)2

(2m − 1)2
(2m − 1)2pi < 9

1

9 logn
= 1

logn
, (6)

with the last inequality following from m ≥ 2 and (2m − 1)2pi < 1
9 logn

(which fol-
lows from the definition of m). Therefore, by Lemma 1,

p′
i ≥

(
1 − (2m + 1)2

3
pi

)
(2m + 1)2pi ≥

(
1 − 1

3 logn

)
1

9 logn
.

(ii) As noted above, we have

p′
i

pi

≥
(

1 − 1

3 logn

)
(2m + 1)2.

Together with t ′i = (2m + 1)ti , this implies part (ii). �

Proof of Lemma 4 By Lemma 3, we have (1 − 1
3 logn

) 1
9 logn

≤ p′
i . We also have

p′
i ≤ 1. The interval [(1 − 1

3 logn
) 1

9 logn
,1] can be partitioned into O(logn log logn)

intervals [P ′,P ′′] with P ′′ ≤ (1 + 1
logn

)P ′.
Running times t ′i for the amplified algorithms are bounded from above by

T0

√
p′

i ≤ T0 (because T0 = maxi
t ′i√
p′

i

). From below, we have

t ′i ≥ T0

n logn

√
p′

i ≥ (1 − o(1))
T0

n log3/2 n
.

The interval [(1 − o(1))
T0

n log3/2 n
, T0] can be partitioned into O(log2 n) intervals

[T ′, T ′′] with T ′′ ≤ (1 + 1
logn

)T ′.
Together, we have O(log3 n log logn) pairs of intervals ([P ′,P ′′], [T ′, T ′′]). �

5 Application: Read-once Functions

A Boolean function f (x1, . . . , xN) that depends on all variables x1, . . . , xN is read-
once if it has a Boolean formula (consisting of ANDs, ORs and NOTs) in which every
variable appears exactly once. A read-once function can be represented by a tree in
which every leaf contains xi or NOT xi and every internal vertex contains AND or
OR.

Barnum and Saks [5] have shown that, for any read-once f , �(
√

N) queries are
necessary to compute f in the quantum query model. Høyer, Mosca and de Wolf
[13] have constructed an O(

√
N) query quantum algorithm for balanced AND-OR

trees of constant depth (improving over an earlier O(
√

N logd−1 N) query algorithm
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by [9]). In a very recent breakthrough work, [4, 11] showed how to evaluate any
AND-OR tree of depth d in O(

√
Nd) queries.

A simple application of our result from the previous section gives a quantum al-
gorithm for evaluating depth-d AND-OR trees. The algorithm is weaker than the one
in [4, 11] but is also much simpler.

Theorem 6 Any read-once function f (x1, . . . , xN) of depth d can be computed by a
quantum algorithm that uses O(

√
N logd−1 N) queries.

Proof By induction. The base case, d = 1 is just the OR (or AND) function which
can be computed with O(

√
N) queries using Grover’s search to search for i : xi = 1

(or i : xi = 0).
For the inductive case, assume that f is represented by a depth-d tree with OR at

the root. (The case when the root contains AND is similar.) Let n be the number of
vertices on the level 1 (that is, the number of children of the root vertex) and ti be the
number of vertices in the subtree rooted in the ith level-1 vertex. By re-ordering the
variables, we can assume that

f (x1, . . . , xN) =
n∨

i=1

fi(xt1+...+ti−1+1, . . . , xt1+...+ti ).

To compute f , we have to determine if there exists i ∈ {1, . . . , n} for which
fi = 1. By the inductive assumption, there is an algorithm that computes fi us-
ing O(

√
ti logd−2 ti ) = O(

√
ti logd−2 N) queries. We repeat this algorithm O(logN)

times to increase the probability of correct answer to at least 1 − 1
N2 . Let Ai be the

resulting algorithm and Ti = O(
√

ti logd−1 N) be the number of queries in Ai .
By Theorem 3, a collection of n items with query times T1, . . . , Tn can be searched

using

O

(√
T 2

1 + T 2
2 + . . . + T 2

n

)
= O(logd−1 N)

√
t1 + t2 + . . . + tn

= O(
√

N logd−1 N)

query steps. Substituting A1, . . . , An instead of the query algorithms gives an
O(

√
N logd−1 N) algorithm for f .

A minor issue is that Theorem 3 assumes that query algorithms A1, . . . , An al-
ways output the correct answer, while our A1, . . . , An may be incorrect with a small
probability.

To resolve this issue, let A′
1, . . . , A′

n be the “ideal versions” of A1, . . . , An. If the
final state of Ai is

α|a〉|ψa〉 +
√

1 − α2|1 − a〉|ψ1−a〉, (7)

where a is the correct answer (the value of fi ), then A′
i is a unitary mapping |0〉 to

|a〉|ψa〉.
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While A′
i ’s may not be easy to construct, they conform to the definition of a query

algorithm in Appendix A. Therefore, if A′
i were used as query algorithms, the algo-

rithm of Theorem 3 would output the correct answer with a constant probability (e.g.,
at least 2/3).

Since each Ai outputs the correct answer with probability at least 1 − 1
N2 , replac-

ing Ai by A′
i in one time step changes the state of the search algorithm by at most

O( 1
N

) (in the l2 norm). Replacing Ai by A′
i in every time step changes the state by

at most

O

(√
N logd−1 N

N

)
= O

(
logd−1 N√

N

)

in l2 norm. Therefore, the success probability of our search algorithm that uses the
actual A1, . . . , An as query algorithms will still be 2

3 − o(1). �

Since this paper appeared as a preprint, a faster algorithm has been found [4],
using quantum-walk based breakthrough techniques of Farhi et al. [11].

The construction of Theorem 6 is however, substantially simpler than the quan-
tum walk approach of [4]. Therefore, we have included it, to demonstrate a possible
application of our variable-time search algorithm.

6 Search Algorithm: Unknown Running Times

6.1 Overview

In some applications, it may be the case that the times ti are not known in advance.
We can also solve this case, with a polylogarithmic overhead.

Theorem 7 Let ε > 0. There is an algorithm that searches collection of n items with
unknown times t1, . . . , tn and, with probability at least 1 − ε, stops after

O
(
T log2 T log2 logT

)

steps, where T =
√

t2
1 + t2

2 + . . . + t2
n .

Proof Again, we assume that there is exactly one marked item. (The reduction from
the general case to the one marked item case is similar to one in the proof of Theo-
rem 3.)

Let St be the set of items such that xi = 1 or ti ≥ 2t and let nt = |St |. Our main
procedure, Algorithm 2, defines a sequence of algorithms B1, . . ., Bl . The algorithm
Bj , with some success probability, outputs a bit 1 and, conditional on output bit 1, it
also outputs a uniformly random index i ∈ Sj .

The algorithm Bj is defined as follows. We first define B′
j as the algorithm that

runs Bj−1 and, if the output bit of Bj−1 is 1, takes the index i output by Bj−1 and tests
if i ∈ Sj by running the query to i for 2j steps. Bj is just the algorithm B′

j amplified to



798 Theory Comput Syst (2010) 47: 786–807

Algorithm 2 Search algorithm for unknown t1, . . . , tn

1. Set j = 0. Define B0 as the algorithm that just outputs 1 and a uniformly random
i ∈ {1, . . . , n}.

2. Repeat:
(a) Use the algorithm Bj (amplified to a success probability of 1 − o(1)) to

generate a sample of a uniformly random element i ∈ Sj . Run 2j+1 steps of
the query procedure on i. If xi = 1, output i and stop.

(b) Define a new search algorithm B′
j+1, as follows. B′

j+1 runs Bj once and,

if the output bit is 1, takes the output index i and runs 2j+1 steps of the
checking procedure on i. If the result is xi = 0, B′

j+1 outputs 0. Otherwise,
it outputs 1 and the same index i.

(c) Let p = Estimate(B′
j+1, c,

1
n
,2 log(D(j + 1))). If p = 0, output “no

i : xi = 0”.
(d) If p ≥ 1

9 logn
, let Bj+1 be B′

j+1.

(e) If p < 1
9 logn

, let Bj+1 be the algorithm obtained by amplifying B′
j+1 2m+1

times, where m is the smallest number for which 1
9 logn

≤ (2m + 1)2p.
(f) Let j = j + 1.

a success probability of �( 1
logn

). (We avoid amplification to a success probability of
�(1) because amplitude amplification to �(1) probability is less efficient and would
result in a worse overall running time.)

The full algorithm is given as Algorithm 2.

Lemma 5 Assume that the constant D in steps (a) and (c) satisfies D ≥ π√
3ε

. Then,
with probability 1 − ε, the estimates p are accurate within an multiplicative factor of
(1 + c).

Proof The probability of error for Estimate is at most 1
D2(j+1)2 . By summing over

all j , the probability of error for some j is at most

1

D2

∞∑
i=1

1

i2
= 1

D2

π2

6
,

which can be made less than ε
2 by choosing D ≥ π√

3ε
. �

We now bound the running time of Algorithm 2, assuming that the estimates p are
correct. The first step is to bound the running time of the algorithms Bj .

Lemma 6 The running time of Bj is

O

⎛
⎝j

√
logn

√
t2
1 + t2

2 + . . . + t2
n

nj

⎞
⎠ .
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Proof Postponed until Sect. 6.2. �

We now bound the overall running time. To generate a sample from Sj , one needs
O(

√
logn) invocations of Bj (because the success probability of Bj is of the or-

der �( 1
logn

)). Therefore, we need O(
√

logn log j) invocations to generate O(log j)

samples in step 2a. By Lemma 6, that can be done in time

O

⎛
⎝j log j logn

√
t2
1 + t2

2 + . . . + t2
n

nj

⎞
⎠ .

For each of those samples, we run the checking procedure with 2j+1 steps. That takes
at most twice the time required by Bj (because Bj includes the checking procedure
with 2j steps). Therefore, the time for the 2j+1 checking procedure is of the same
order or less than the time to generate the samples.

Second, the success probability estimated in the last step is of order
pj nj+1

nj
=

�(
nj+1

nj logn
). By Theorem 2, it can be estimated with

O

(
log j log logn

√
nj logn

nj+1

)

invocations of Bj , each of which runs in time described by Lemma 6.
Thus, the overall number of steps in one loop of Algorithm 2 is of order at most

√
t2
1 + t2

2 + . . . + t2
n

(
j log j logn√

nj

+ j log j logn log logn√
nj+1

)
.

Since nj ≥ 1 and nj+1 ≥ 1, this is of order

O

(√
t2
1 + t2

2 + . . . + t2
nj log j logn log logn

)
.

Let tmax be the maximum of t1, . . . , tn. Then, the maximum value of j is at most
�log(tmax + 1)�. Therefore, the number of steps used by the Algorithm 2 is

O

(√
t2
1 + t2

2 + . . . + t2
n logn log logn log tmax log log tmax

)
.

The theorem now follows from n ≤ T and tmax ≤ √
T , where T = t2

1 + t2
2 + . . .+ t2

n . �

6.2 Proof of Lemma 6

Let pj be the success probability of Bj and p′
j be the success probability of B′

j . Let
rk,l be the number of times step (e) is performed, for j ∈ {k, k + 1, . . . , l − 1}. (When
k = l, we define rk,k = 0.)
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Lemma 7 The number of query steps used by Bj is at most

j∑
j ′=1

(
1 + C

logn

)rj ′−1,j

√
pjnj ′−1

pj ′−1nj

2j ′
(8)

for some constant C.

The intuition behind this expression is as follows. The terms of the sum (8) de-
scribe the number of query steps coming from the checking procedures of B′

j ′ , for

j ′ = 1,2, . . . , j . 2j ′
is the number of steps used by the checking procedure of B′

j ′ .

The coefficient in the front of 2j ′
is an upper bound on the number of times that B′

j ′
is repeated during the algorithm Bj .

Proof By induction on j .
Base case: j = 0. B0 uses 0 query steps.
Inductive case: We first consider the running time of B′

j+1. It can be decomposed

into two parts: the running time of Bj and the running time of the 2j+1-step checking
procedure. The running time of Bj is described by (8). We have p′

j+1 = pj nj+1
nj

.
Therefore, we can rewrite (8) as

j∑
j ′=1

(
1 + C

logn

)rj ′−1,j

√
p′

j+1nj ′−1

pj ′−1nj+1
2j ′

.

The time for the checking procedure is just 2j+1 which is equal to
p′

j+1nj

pj nj+1
2j+1 (since

p′
j+1nj

pj nj+1
= 1). Therefore, the running time of B′

j+1 is

j+1∑
j ′=1

(
1 + C

logn

)rj ′−1,j

√
p′

j+1nj ′−1

pj ′−1nj+1
2j ′

(9)

where we have used rj,j = 0 to include the checking time as the j ′ = j + 1 term in
the sum. If step (d) is performed, then Bj+1 = B′

j+1, pj+1 = p′
j+1, rj ′,j = rj ′,j+1

and the expression (9) is the same as (8) with j + 1 instead of j .
If the step 2e is performed, the running time of Bj+1 is (2m+1) times the running

time of B′
j+1. The success probability is

pj+1 ≥
(

1 − (2m + 1)2

3
p′

j+1

)
(2m + 1)2p′

j+1.

Similarly to (6) in the proof of Lemma 3, we have (2m + 1)2p′
j+1 ≤ 1

logn
, which

implies

pj+1 ≥
(

1 − 1

3 logn

)
(2m + 1)2p′

j+1.
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Therefore,

2m + 1 ≤
(

1 + C

logn

)√
pj+1

p′
j+1

(10)

for some constant C. Multiplying (9) by 2m + 1 and applying (10) completes the
induction step. �

Lemma 8 For all j, j ′(j < j ′), rj,j ′ = O(logn).

Proof We consider the ratio qj = pj

nj
. We have q1 = 1

n
and qj ≤ 1 for all j (since

pj ≤ 1 and nj ≥ 1).

Next, we relate qj and qj+1. We have
p′

j+1
nj+1

= pj

nj
. If step 2d is applied, pj+1 =

p′
j+1 and qj+1 = p′

j+1
nj+1

= qj . If step 2e is applied,

pj+1 ≥ (2m + 1)2
(

1 − 1

3 logn

)
p′

j+1 ≥ 9

(
1 − 1

3 logn

)
p′

j+1.

Therefore, qj+1 ≥ 9(1 − 1
3 logn

)qj . This means that qj ′ ≥ (9 − 3
logn

)
rj,j ′ qj . Together

with qj ′ ≤ 1 and qj ≥ q1 ≥ 1
n

, this implies rj,j ′ = O(logn). �

We can now complete the proof of Lemma 6.

Proof of Lemma 6 We look at each of the components of the sum (8) separately.
Consider a term

(
1 + C

logn

)rj ′,j
√

pjnj ′−1

pj ′−1nj

2j ′
. (11)

Because of Lemma 8, the first multiplier is bounded from above by a con-
stant. Since pj ′−1 ≥ 1−o(1)

9 logn
(similarly to Lemma 3), we can upperbound (11) by

O(
√

logn
nj ′−1
nj

2j ′
).

By the assumption at the beginning of the proof of Theorem 7, there is at most one
marked item. All unmarked i ∈ Sj ′−1 must have ti ≥ 2j ′−1. Since |Sj ′−1| = nj ′−1,
this means that there are at least nj ′−1 − 1 indices i with ti ≥ 2j ′−1, Hence,

t2
1 + t2

2 + . . . + t2
n ≥ (nj ′−1 − 1)(2j ′−1)2 = �(nj ′−122j ′

).

Therefore, each term in (11) is at most

O

⎛
⎝√

logn

√
t2
1 + t2

2 + . . . + t2
n

nj

⎞
⎠ .

The lemma follows by summing over all j terms in (8). �
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7 Search Lower Bound

Theorem 8 For any positive integers t1, . . . , tn, searching a collection of n items with

query times t1, . . . , tn requires �(

√
t2
1 + t2

2 + . . . + t2
n) query steps.

Proof Let t ′i be the maximum integer such that �π
4

√
t ′i� + 1 ≤ ti (with t ′i = 1 if the

maximum integer is 0). Let m = t ′1 + . . . + t ′n. We consider the following problem:
UNIQUE-OR. We are given x1, . . . , xm ∈ {0,1} as the input, with the promise

that there is either 0 or 1 element j : xj = 1. We have to determine whether there are
0 elements j : xj = 1 or 1 element j : xj = 1.

By the standard lower bound on quantum search, solving UNIQUE-OR in the stan-
dard query model (where every query takes 1 step) requires �(

√
m) quantum queries.

The next lemma shows that variable-item search is at least as hard as UNIQUE-OR:

Lemma 9 Assume that there is a search algorithm A for searching a collection of n

items with query times t1, . . . , tn, in the known-query-time model. Let t be the number
of query steps used by A. Then, there is an algorithm A′ that solves UNIQUE-OR in
the standard query model with t queries.

Proof To design A′, we subdivide the inputs x1, . . . , xm into n groups S1, . . . , Sn,
with t ′1, . . . , t ′n elements, respectively. Let yi = 1 if there exists j ∈ Si with xj = 1.
Since there is either 0 or 1 element j : xj = 1, we know that there is either 0 or 1
element i : yi = 1. We have

Claim 2 There is an algorithm that implements the transformation |i〉 → |i〉|yi〉|ψi〉
for some states |ψi〉, using ti queries.

Proof To simplify the notation, we assume that the group Si consists of variables
x1, . . . , xt ′i . If t ′i = 1, then yi = x1 and we can just query x1. This produces the re-
quired transformation |i〉 → |i〉|yi〉.

For the t ′i > 1 case, we have to search t ′i items x1, . . . , xt ′i for an item j : xj = 1,
if we are promised that there is either 0 or 1 such item. There is a modification

of Grover’s algorithm which succeeds with probability 1, using at most �π
4

√
t ′i�

queries [7].
The result of Grover’s algorithm is:

• the state |j 〉, where j is the index for which xj = 1, if such j exists;

• the superposition 1√
t ′i

∑t ′i
j=1 |j 〉, otherwise.

With one more query (which queries the index j ), we can determine the value yi = xj

(which is 1 in the first case and 0 in the second case). �

Let A be the given search algorithm for n items with query times t1, . . . , tn. Then,
we can substitute the algorithm of Claim 2 instead of the queries yi . This gives us the
required algorithm A′ for UNIQUE-OR. �
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To complete the proof, we need to show that

√
m = �(

√
t2
1 + . . . + t2

n).

By definition of t ′i , we have

ti ≤
⌈

π

4

√
t ′i
⌉

+ 2 ≤ π

4

√
t ′i + 3.

This means that t ′i ≥ 16
π2 (ti − 3)2. If ti ≥ 4, then ti − 3 ≥ ti

4 and t ′i ≥ 1
π2 t2

i . If ti ≤ 3,

then t ′i ≥ 1 ≥ 1
9 t2

i ≥ 1
π2 t2

i . Therefore,

√
m =

√
t ′1 + . . . + t ′n ≥

√
1

π2
(t2

1 + . . . + t2
n) = 1

π

√
t2
1 + . . . + t2

n . �

8 Conclusion

In this paper, we gave a quantum algorithm for the generalization of Grover’s search
in which checking different items requires different times. Our algorithm is optimal
for the case when times ti are known in advance and nearly optimal (within a poly-
logarithmic factor) for the general case. We also gave an application of our algorithm
to computing read-once Boolean functions. It is likely that our algorithms will find
other applications.

While we have mostly resolved the complexity of search in this setting, the com-
plexity of other problems has not been studied at all. Of particular interest are prob-
lems which are frequently used as subroutines in other quantum algorithms (for such
problems, there is a higher chance that the variable-time query version will be useful).
Besides the usual quantum search, the two most common quantum subroutines are
quantum counting [6] and k-item search (a version of search in which one has to find
k different i for which xi = 1). Element distinctness [3, 10] has also been used as a
subroutine, to design quantum algorithms for the triangle problem [16] and verifying
matrix identities [8, 15].

Acknowledgements I would like to thank Robert Špalek and Ronald de Wolf for the discussion that
lead to this paper and several anonymous referees for useful comments.

Appendix A: Formal Definition of Our Model

To define our model formally, let A(j)
i be the j th step of Ai . Then,

Ai = A(ti )
i A(ti−1)

i . . . A(1)
i .

We define A(t)
i = I for t > ti . We regard the state space of Ai as consisting of two reg-

isters, one of which stores the answer (c ∈ {0,1,2}, with 2 representing a computation
that has not been completed) and the other register, x, stores any other information.
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The state space of a search algorithm is spanned by basis states of the form
|i, t, tr , c, x, z〉 where i ∈ {1, . . . , n}, t, tr ∈ {0,1, . . . , T } (with T being the number
of the query steps in the algorithm), c ∈ {0,1,2} and x and z range over arbitrary
finite sets. i represents the index being queried, t represents the number of the time
step in which the query for xi started and tr is the number of time steps for which A
will run the query algorithm Ai . c is the output register of Ai and x holds interme-
diate data of Ai . Both of those registers should be initialized to |0〉 at the beginning
of every computation of a new xi . z contains any data that is not a part of the current
query.

We define a quantum query algorithm A as a tuple (U0, . . . ,UT ) of unitary trans-
formations that do not depend on x1, . . . , xn. The actual sequence of transformations
that is applied is

U0,Q1,U1,Q2, . . . ,UT −1,QT ,UT ,

where Qj are queries which are defined below. This sequence of transformations is
applied to a fixed starting state |ψstart 〉, which consists of basis states |i,0,0, c, x, z〉.

Queries Qj are defined in a following way. If j ≤ t + tr , we apply A
(j−t)
i to |c〉

and |x〉 registers. Otherwise, we apply I . We call the resulting sequence of queries
Q1,Q2, . . . generated by transformations A

j
i . We call Q1, Q2 a valid sequence of

queries corresponding to x1, . . . , xn if it is generated by A
j
i satisfying the following

constraints:

1. For t < ti , At
iA

t−1
i . . .A1

i |0〉 is of the form |2〉|ψ〉 for some |ψ〉.
2. For t = ti , At

iA
t−1
i . . .A1

i |0〉 is of the form |xi〉|ψ〉 for some |ψ〉.
A search algorithm (U0, . . . ,UT ) with the starting state |ψstart 〉 computes a func-

tion f (x1, . . . , xn) if, for every x1, . . . , xn ∈ {0,1} and every valid query sequence
Q1, . . . ,QT corresponding to x1, . . . , xn, the probability of obtaining f (x1, . . . , xn)

when measuring the first qubit of

UT QT UT −1 . . .U1QT U0|ψstart 〉
is at least 2/3.

Appendix B: Proofs of Claims from Sect. 3

Proof of Claim 1 Because of (1), (2),

p(δ) = sin2((2m + 1) arcsin
√

δ).

Let γ = arcsin
√

δ and γ ′ = arcsin
√

δ′. Then, we have to prove that sin2 γ ′ ≤
sin2 γ ≤ c sin2 γ ′ implies sin2(2m + 1)γ ′ ≤ sin2(2m + 1)γ ≤ c sin2(2m + 1)γ ′.

Because of δ ≤ ε and δ′ ≤ ε, we have
√

δ ≤ √
ε and

√
δ′ ≤ √

ε. Together with
(3), that means that (2m + 1) arcsin

√
δ ≤ π

2 and (2m + 1) arcsin
√

δ′ ≤ π
2 . Since

sin is an increasing function on [0, π
2 ], sin2 γ ′ ≤ sin2 γ implies sin2(2m + 1)γ ′ ≤

sin2(2m + 1)γ .
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Algorithm 3 Procedure Estimate

1. Let M = 2;
2. Repeat:

(a) Let ε̃ be the estimate output by repeated Est-Amp(A,M).

(b) If 2π

√
ε̃(1−ε̃)

M
+ π2

M2 ≤ cε̃, stop and output ε̃ as the estimate.
(c) M = 2 ∗ M .
until M > Mmax where Mmax = 16π

c
√

(1−p)p
.

To prove the other inequality, it suffices to show that

sin(2m + 1)γ

sin(2m + 1)γ ′ ≤ sinγ

sinγ ′

whenever γ ′ ≤ γ . Equivalently, it suffices to prove

sinx siny ≤ sinx′ siny′ (12)

where x = (2m + 1)γ , y = γ ′, x′ = (2m + 1)γ ′, y′ = γ . Because of γ > γ ′, x is
always the largest of x, y, x′, y′. For the same reason, y is always the smallest of x,
y, x′, y′. Also, xy = (2m + 1)γ γ ′ = x′y′.

We make the substitution x = eu, y = et , x′ = eu′
, y′ = et ′ . Then, (12) becomes

sin eu sin et ≤ sin eu′
sin et ′ (13)

if u, t, u′, t ′ satisfy u+ t = u′+ t ′ and u, t are the largest and the smallest of u, t, u′, t ′.
Equation (13), in turn, is implied by the concavity of the function f (x) = ln sin ex .

The concavity of f (x) can be verified by computing its second derivative,

f ′′(x) = ex cos ex

sin ex
− e2x

sin2 ex
= exsin ex cos ex − exsin2 ex.

For f (x) to be concave, we need f ′′(x) < 0 which is equivalent to sin ex cos ex −
ex < 0. Replacing y = ex , we see that this is equivalent to siny cosy = sin 2y

2 ≤ 2y
2 =

y which is true for all positive y. �

Proof of Theorem 2 We can increase the success probability of Est-Amp(A,M) to
at least 1 − 1

2k logMmax
(where Mmax = 8π

c
√

(1−c)p
), by repeating the algorithm t =

O((1 + log log 1
p
)k) times and taking the median of the results.

The procedure Estimate calls the repeated Est-Amp at most logMmax times.
Since each call of Est-Amp produces the correct answer with probability at least
1 − 1

2k logMmax
, the probability that all calls to Est-Amp produce correct results is

at least 1 − 1
2k . In this case, Estimate is always correct, because by Theorem 1, the

error |ε̃ − ε| is at most
2π

√
ε̃(1−ε̃)

M
+ π2

M2 and Estimate only stops when this quantity
becomes less than cε̃. It remains to bound the number of times Estimate calls A.
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If M ≥ 8π

c
√

(1−ε)ε
, then, by Theorem 1, |ε̃ − ε| is at most

2π
√

(1 − ε)ε

M
+ 2

π2

M2
≤ c

√
ε(1 − ε)

4
+ c2ε(1 − ε)

32
≤ 0.3ε, (14)

with the last inequality following from c ≤ 1. Therefore,

2π
√

(1 − ε̃)ε̃

M
+ 2

π2

M2
≤ 2π

√
1.3(1 − ε)ε

M
+ 2

π2

M2
≤ c

√
1.3ε(1 − ε)

4
+ c2ε(1 − ε)

32

≤ 0.32cε ≤ cε̃,

with the first inequality following from ε̃ ≤ ε + 0.3ε and the last inequality following
from ε̃ ≤ ε − 0.3ε.

Therefore, the quantity of (14) is less than or equal to cε̃. Hence, if M ≥ 8π

c
√

(1−ε)ε
,

then the condition in step 2b is satisfied and the algorithm stops. Since M is doubled
in every iteration, the final value of M is M0 < 16π

c
√

(1−ε)ε
. The algorithm A is repeated

M0t + M0t

2
+ M0t

4
+ . . . < 2M0t <

32π

c
√

(1 − ε)ε
t

times.
If ε ≥ p, the algorithm must stop with M being at most 16π

c
√

(1−p)p
. If that does not

happen, we can conclude that ε = 0. The number of repetitions of A in this case is at
most 32π

c
√

(1−p)p
t . �
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