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Abstract
Quantum finite automata (QFAs) are quantum counterparts of the usual finite automata. 1-
way QFAs recognize the same languages as conventional finite automata but can be exponentially
more space-efficient.

In this talk, we describe the main results about quantum finite automata and some possible areas
for future work. In particular, we will discuss:

• the languages for which QFAs can be smaller than conventional finite automata;

• the models of QFAs that are between 1-way and 2-way QFAs;

• the connections between QFAs and quantum Markov chains.

1. Introduction

Quantum computing combines quantum mechanics with computer science, by defining quantum
mechanical counterparts of the usual models of computation (e.g., Boolean circuits, Turing
machines or finite automata). The resulting models are typically more powerful than their
conventional (or classical) counterparts, because quantum mechanics allows to implement a
broader range of operations. For example, factoring is thought to be hard for conventional
algorithms but quantum algorithms can factor large numbers in polynomial time [19]. Also,
quantum algorithms can be exponentially faster than any classical algorithm for oracle problems
[20].

Combining quantum mechanics with finite automata gives quantum finite automata (QFAs),
first introduced by Moore and Crutchfield [16] and Kondacs and Watrous [13]. Both 1-way
and 2-way quantum automata have been studied. For 1-way QFAs, all languages recognized
by them are regular (and, if a sufficiently general model of QFAs is considered, all regular
languages can be recognized by QFAs [18, 7, 15]) but QFAs can have exponentially less states
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than classical automata recognizing the same language. 2-way QFAs can recognize non-regular
languages.

In this talk, we survey 3 research directions about QFAs:

1. Space efficiency of QFAs.

QFAs can be exponentially smaller than any classical automaton recognizing the same
language. This was first shown by Ambainis and Freivalds [2] who discovered that:

• The language
Ln = {ai|i is divisible by n}

can be recognized by a QFA with O(log n) states.

• If n is a prime then any probabilistic 1-way finite automaton for Ln has at least n
states.

The construction of QFAs recognizing Ln was subsequently simplified by [3].

More generally, QFAs have advantage over classical automata for any periodic language
in one letter alphabet. Let L be a language with a period n (i.e. ai ∈ L if and only if
ai+n ∈ L). Then, L can be recognized by a QFA with O(

√
n) states [14]. If l1-norm of

the Fourier transform of the characteristic function of L is small, a QFA with a smaller
number of states can be constructed [6]. O(log n) state QFA for Ln of [2, 3] becomes a
particular case of this construction.

These results provide a very good understanding of the complexity of QFAs for languages
in one letter alphabet. It would be interesting to come up with more examples of languages
in larger alphabets where QFAs have advantage over classical automata.

For promise problems (where the automaton has to accept words in L, reject words in
L′ and can behave arbitrarily on words not in L ∪ L′), the gap between the number of
states in QFAs and probabilistic automata can be unbounded. There exists a sequence of
promise problems Pn such that Pn can be solved by a 2-state QFA but requires at least
n states for classical automata [21].

For language recognition, QFAs can always be simulated by DFAs with an exponential
(or slightly more than exponential) increase in the number of states. The exact increase
depends on whether a QFA operates on pure quantum states or mixed quantum states.
A pure-state QFA with m states can be simulated by a cm state DFA [2]. Thus, the gap
between QFAs and classical automata that is achieved for Ln is optimal.

A mixed-state QFA with m states can be simulated by a cm
2

state DFA [5]. It is open
whether there exists a language for which such gap between the QFAs and DFAs can be
achieved.

2. Between 1-way QFAs and 2-way QFAs.

2-way QFAs have been studied since Kondacs and Watrous [13] who showed that the
non-regular language L = {ambm} can be recognized by a 2-way QFA in linear time. In
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contrast, 2-way DFAs cannot recognize L (because L is non-regular) and 2-way proba-
bilistic finite automata can recognize L only in exponential time [9, 8].

2-way QFAs of [13] allow the automaton to be in a quantum state that consists of different
locations on the input tape. It has been argued that such an automaton is not truly finite
[2], since it maintains a quantum state of size O(m) where m is the length of the input
word.

This concern has lead to defining QCFAs, a model of automata in which the movements
of automaton’s head are classical but its internal state is quantum [4]. The quantum
state of such automaton is always finite-dimensional. QCFAs still have advantage over
the classical automata, being able to recognize L = {ambm} in polynomial time and
palyndromes in exponential time [4]. More generally, QCFAs can recognize any language
in the class S=

Q [22]. (S=
Q is the class of languages L for which there exists a probabilistic

automaton M with rational transition amplitudes such that x ∈ L if and only if M
accepts x with probability exactly 1/2.)

It remains an open problem to characterize the class of languages recognizable by QCFAs.
There are also no results proving that concrete languages L are not recognizable by
QCFAs. For example, can we show that L = {anbn2} or L = {anb2n} is not recognizable
by QFAs?

3. QFAs and quantum Markov chains.

When analyzing probabilistic and quantum automata, it is often useful to consider the
behaviour of an automaton on words xn for large n. For 1-way automata, the automaton
is then equivalent to a Markov chain, with reading the word x being one step of the
automaton. In the impossibility results about QFAs, several lemmas are natural quantum
counterparts of well known Markov chain results. The first result of this type is

Lemma 1. [2, Lemma 1] Let x be a word. Let M be a 1-way QFA in the Kondacs-
Watrous model and let H be the state space of M . Then, H = H1 ⊕ H2 where H1,H2

have the following properties:

(a) All states in H1 are non-halting states and reading x in a state |ψ〉 ∈ H1 leads to a
state |ψ′〉 ∈ H1.

(b) Let pn be the probability of M entering a halting state if it starts in |ψ〉 ∈ H2 and
reads xn. If n→∞, then pn → 1.

The corresponding Markov chain result is as follows [12]. For a classical Markov chain,
its states can be partitioned into a set of recurrent states R and a set of transient states
T . If a Markov chain starts in a recurrent state q, it returns to q with probability 1. For
transient states q, the probability of returning to q after n steps tends to 0, as n tends to
infinity.

The Lemma above is a counterpart of this result in a different mathematical setting. The
subspace H1 corresponds to the set of recurrent states R. The subspace H2 corresponds
to the set of transient states.



4 A. Ambainis

Some other results exploring the parallels between QFAs and Markov chains can be found
in [1] and [10] but there is no systematic theory of quantum Markov chains yet. Developing
such a theory is an important direction for future work.
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