Quantum Property Testing for
Bounded-Degree Graphs

Andris Ambainis', Andrew M. Childs?, and Yi-Kai Liu®

! Faculty of Computing, University of Latvia.
Email: ambainis@lu.1lv
2 Department of Combinatorics & Optimization and
Institute for Quantum Computing, University of Waterloo.
Email: amchilds@uwaterloo.ca
3 Department of Computer Science, University of California, Berkeley.
Email: yikailiu@eecs.berkeley.edu

Abstract. We study quantum algorithms for testing bipartiteness and
expansion of bounded-degree graphs. We give quantum algorithms that
solve these problems in time O(N'/?), beating the 22(v/N) classical lower
bound. For testing expansion, we also prove an 2(N/#) quantum query
lower bound, thus ruling out the possibility of an exponential quantum
speedup. Our quantum algorithms follow from a combination of classical
property testing techniques due to Goldreich and Ron, derandomization,
and the quantum algorithm for element distinctness. The quantum lower
bound is obtained by the polynomial method, using novel algebraic tech-
niques and combinatorial analysis to accommodate the graph structure.

1 Introduction

In property testing, one is asked to distinguish between objects that satisfy a
property P and objects that are far from satisfying P. The goal is to design
algorithms that test properties in sublinear or even constant time, without read-
ing the entire input—a task that is nontrivial even for properties that can be
computed in polynomial time. This is motivated by the practical question of how
to extract meaningful information from massive data sets that are too large to
fit in a single computer’s memory and can only be handled in small pieces.
Testing properties of graphs is an interesting special case.* Many graph prop-
erties, such as connectivity and planarity, can be tested in constant time, inde-
pendent of the number of vertices N [19, 22]. However, some graph properties are
much harder to test. For bounded-degree graphs in the adjacency-list represen-
tation, the best classical algorithms for testing bipartiteness [20] and expansion
[21, 16, 25, 29] use O(v/N) queries.” In fact, this is nearly optimal, as there are
2(vV/N) query lower bounds for both problems [22]. As a natural extension, we

4 Here, the graph can be specified by an adjacency matrix (suitable for dense graphs)
or by a collection of adjacency lists (for bounded-degree graphs).
5 We use tilde notation to suppress logarithmic factors.

consider whether these problems can be solved more efficiently using quantum
queries.

There has been some previous work on quantum property testing. In particu-
lar, there are examples of exponential separations between quantum and classical
property testing [12], and there are quantum algorithms for testing juntas [9],
solvability of black-box groups [24], uniformity and orthogonality of distributions
[13, 14], and certain properties related to the Fourier transform [2, 14]. However,
aside from concurrent work on testing graph isomorphism [14], we are not aware
of previous work on quantum algorithms for testing properties of graphs.®

Here, we give quantum algorithms for testing bipartiteness and expansion
of bounded-degree graphs in time only O(Nl/?’)7 beating the 2(v/N) classical
lower bounds [22]. Moreover, we prove that any quantum algorithm for testing
expansion must use fZ(N 1/ 4) queries, showing that quantum computers cannot
achieve a superpolynomial speedup for this problem.

Why might quantum computers offer an advantage for testing bipartiteness
and expansion? The classical algorithms for these problems use random walks
to explore the graph, so one might hope to do better by using quantum walks,
which are a powerful tool for searching graphs [32]. In fact, our algorithms use
quantum walks indirectly. The classical algorithm for testing bipartiteness is
based on checking whether a pair of short random walks form an odd-length cycle
in the graph, thereby certifying non-bipartiteness [20]. The algorithm for testing
expansion looks for collisions between the endpoints of short random walks, with
a large number of collisions indicating that the walk is not rapidly mixing [21].
In both cases, the property is tested by looking for collisions among a set of
O(\/N) items. By using the quantum walk algorithm for element distinctness
[7, 27] to look for these collisions, we can solve the problem using O(N'/3)
quantum queries. In addition, we show that the above classical algorithms can
be derandomized, using O(log N)-wise independent bits. This yields quantum
algorithms that run in time O(N/3).

While we have shown a polynomial quantum speedup, one may ask whether
an exponential speedup is possible. Quantum computers can give at most a
polynomial speedup for total functions [10], but this limitation does not apply
to property testing (and indeed, examples of exponential speedup are known
[12]). On the other hand, superpolynomial speedup is impossible for symmetric
functions [3], even in the case of partial functions such as those arising in property
testing. It is an interesting question whether exponential speedups are possible
for testing graph properties, which may have significantly less symmetry.

Here we prove that testing expansion requires Q(N 1/ 1) quantum queries,
thus ruling out the possibility of an exponential speedup. We use the polyno-
mial method [10]—specifically, a technique of Aaronson based on reduction to
a bivariate polynomial [1]. We define a distribution over N-vertex graphs with

% Quantum speedups are known for deciding certain graph properties, without the
promise that the graph either has the property or is far from having it [17, 26, 15].
This turns out to be a fairly different setting, and the results there are not directly
comparable to ours.

¢ connected components (and with another parameter M = N), such that each
component is an expander with high probability. With £ = 1 component, such
graphs are almost surely expanders, whereas graphs with ¢ > 2 components
are very far from expanders. Our main technical contribution is to show that
the acceptance probability of any T-query quantum algorithm, when presented
with this distribution, is well-approximated by a bivariate polynomial in M
and ¢ of degree O(T logT). This requires a somewhat involved calculation of a
closed-form expression for the acceptance probability as a function of M and ¢,
using algebraic techniques and the combinatorics of partitions. Then it follows
by known results on polynomial approximation that 2(N 1/4 /log N) queries are
necessary to test expansion.

This proof may be of independent interest since there are very few techniques
available to prove quantum lower bounds for property testing. In particular, the
standard quantum adversary method [6] is subject to a “property testing bar-
rier” [23]. Furthermore, graph structure makes it difficult to apply the polyno-
mial method, so our lower bound for testing expansion requires substantial new
machinery. These techniques may be applicable to other problems with graph
structure. Note also that our approach is an alternative to the classical lower
bounds for testing bipartiteness and expansion [22].

We are only aware of a few previous lower bounds for quantum property
testing: the result that not all languages can be tested efficiently [12] (which
is nonconstructive, using a counting argument), and lower bounds for testing
orthogonality and uniformity of distributions [13, 14] and for testing graph iso-
morphism [14] (which follow by reduction from the collision problem).

Despite this progress, there remain many unanswered questions about quan-
tum testing of graph properties. So far, we have been unable to prove a supercon-
stant lower bound for testing bipartiteness. More generally, is there any graph
property testing problem that admits an exponential quantum speedup?

In the remainder of this section, we define the model of quantum property
testing. We use the adjacency-list model for graphs with bounded (i.e., constant)
degree d. A graph G = (V, E) is represented by a function fg: V x{1,...,d} —
V U {*}, where fg(v,i) returns the i*® neighbor of v in G, or x if v has fewer
than ¢ neighbors. A quantum computer is provided with a unitary black box that
reversibly computes fg as |v,i,2) — |v,4,2® fg(v,1)). The query complexity of
an algorithm is the number of calls it makes to the black box for fg.

We say that G is e-far from satisfying a property P if one must change at
least end edges of G in order to satisfy P. We say that an algorithm e-tests P if
it accepts graphs that satisfy P with probability at least 2/3, and rejects graphs
that are e-far from satisfying P with probability at least 2/3. (More generally,
we may consider algorithms that determine whether a graph satisfies P or is
e-far from satisfying a related property P’.)

We say that a graph G is an a-ezpander if for every U C V with |U| < |V]/2,
we have |0(U)| > a|U|, where 9(U) is the set of vertices in V' — U adjacent to
at least one vertex of U.

2 Quantum Algorithms for Bipartiteness and Expansion

First, recall the classical algorithm for testing bipartiteness [20]. This algorithm
performs T = ©(1/e) repetitions, where during each repetition it chooses a

random starting vertex s, then does K = v/N poly (18X random walks from s,

€

each of length L = poly(@)7 and looks for “collisions” where two walks from
s reach the same vertex v, one after an even number steps, the other after an
odd number of steps.

We derandomize each of the T repetitions separately. Each repetition uses
n = O(KLlogd) bits of randomness. We claim that it suffices to use k-wise
independent random bits for some k = O(Llogd). To see this, consider the
analysis given in [20]. Lemma 4.5 of [20] states sufficient conditions for the al-
gorithm to find an odd cycle, and hence reject, with high probability. The proof
considers the random variable X =)", < Mijs where 7;; is a Boolean random
variable that indicates whether walk ¢ collides with walk j while having different
parity. The probability that X = 0 is upper bounded using Chebyshev’s inequal-
ity together with bounds on E[X] and Var[X]. Note that E[X] and Var[X] are
linear and quadratic in the 7;;, respectively, so they only depend on sets of at
most O(Llogd) random bits. Thus they are unchanged by substituting k-wise
independent random bits for some k = O(Llogd). This reduces the number of
random bits required by the algorithm to O(klogn) = O(poly(%)).

We then combine this derandomized classical algorithm with Ambainis’ quan-
tum algorithm for element distinctness [7, 27, 35]. (For details, see the full version
of this paper [8].) This shows

Theorem 1. There is a quantum algorithm that always returns “true” when
G is bipartite, returns “false” with constant probability when G is e-far from
bipartite, and runs in time O(N'/3 poly(@)).

Using similar ideas, we can also give an O(N 1 3)-time quantum algorithm
for testing expansion. We start with the classical algorithm of [21], derandomize
it using k-wise independent random variables, and apply the quantum algorithm
for element distinctness. There is a slight complication, because we need to count
collisions, not just detect them. However, the number of collisions is small—
roughly O(N?#) where p is chosen to be a small constant—so we can count the
collisions using brute force. See [8] for details.

3 Quantum Lower Bound for Testing Expansion

3.1 Overview
We now turn to lower bounds for testing expansion. Specifically, we prove

Theorem 2. Any quantum algorithm for testing expansion of bounded-degree
graphs must use 2(N'/*/log N) queries.

Proof. We consider random graphs G on N vertices, sampled from the following
distribution Pps; (where M > N and [divides M):

1. We start by constructing a random graph G’ on M vertices, as follows: First,
we partition the vertices into [sets V1, ..., V;, with each set V; containing M /1
vertices. Then, on each set V;, we create a random subgraph by randomly
choosing ¢ perfect matchings on V; and taking their union. (Here ¢ is some
sufficiently large constant.)

2. We then construct G as follows: First, we pick a subset of vertices vy, ...,vn
from G’. To pick v, we choose one of the sets V1, ..., V} uniformly at random,
call it Vj, and we let v; be a random vertex from Vj. For each subsequent
vertex v;, we again select a set V; uniformly at random, and choose v; uni-
formly at random among those vertices of V; that were not chosen in the
previous steps. Then we let G be the induced subgraph of G’ on v, ..., vy.

The process above fails if we try to choose more than M/l vertices from
the same V;. However, the probability of that happening is small—on average,
N/I vertices are chosen in each V;. We choose M = (1 + O(N~%1))N. Then
a straightforward application of Chernoff bounds implies that the process fails
with probability at most e=2(N"") For more detail, see Section C.1 in [8].

Note that the resulting graph G has degree at most c. The reason for choosing
G as a subgraph of G’ (rather than constructing G directly) is that this leads
to simpler formulas for the probabilities of certain events, e.g., the probability
that vertices v1, vo and wvs all belong to the same component of G is 1/l2. This
seems essential for our use of the polynomial method.

If [= 1, then this process generates an expander with high probability. It is
well known [31, 28] that the graph on M vertices generated by taking ¢ perfect
matchings is an expander with high probability. In Section C.2 in [8], we show
that the subgraph that we choose is also an expander. (Informally, the main
reason is that only a @(N~1/4) fraction of the vertices of G’ are not included in
G. This allows us to carry out the proof of [31, 28] without substantial changes.)

If | = 2, then this process generates a disconnected graph with two con-
nected components, each of size roughly N/2. Such a graph is very far from any
expander graph—specifically, for any o/, it is at least about (o’/2d)-far from an
o’-expander of maximum degree d.

Therefore, if a quantum algorithm tests expansion, it must accept a random
graph generated according to Pas1 with probability at least 2/3, and a random
graph generated according to Pas2 with probability at most 1/3. (Graphs drawn
from Pps; with [> 2 must also be accepted with probability at most 1/3,
although this fact is not used in the analysis.)

The strategy of the proof is as follows. We show that for any quantum al-
gorithm run on a random graph from the distribution Py, the acceptance
probability of the algorithm can be approximated by a bivariate polynomial in
M and [, where the number of queries used by the algorithm corresponds to the
degree of this polynomial. (This is our main technical contribution.) We then
lower bound the degree of this polynomial.

In more detail, we will prove the following lemma (see Section 3.2):

Lemma 1. Let A be a quantum algorithm using T queries. The acceptance prob-
ability of A (for the probability distribution Pyry) is approximated (up to an addi-
tive error of eiQ(NO'SS)) by a fraction gg%:f)) , where f(M,1) and g(M,1) are poly-
nomials of degree O(T logT) and g(M,1) is a product of factors (M — (2k — 1)I)
for ke {1,...,T}, with (M — (2k — 1)) occurring at most 2T /k times.

Now choose a = 1+6(N~%1) such that aN is even. We say that a pair (M, 1)
is 8-good if M € [aN — 6%/ aN + 6%/?],1 < §, and [divides M.

We then approximate the fraction § El\ﬂjllg (from Lemma 1) by (QNJ;;%

For each term M — (2k — 1)l, we first replace it by M and then by aN. The first

. e (2k—1)1 2kl ,—2kl/N
step introduces multiplicative error of 1 — =5~ >1—- 5 ~ e /N For all

e~ 2Kl /NY2T [k —

terms together, the error introduced in this step is at most Hle(
e AT YN I T = O(N'*/log N) and | = O(N'/?), the multiplicative error is
1—o(1).

The second approximation step introduces multiplicative error of

(%)O(TlogT) ~ (e(MfaN)/aN)O(TlogT) < (653/2/aN)O(TlogT).

If 6 = O(N'Y?) and T = O(N'/*/log N), this can be upper bounded by 1 + €
for arbitrarily small ¢ > 0, by appropriately choosing the big-O constant in
T = O(NY*/log N).

Next, we prove a second lemma, which lower bounds the degree of a bivariate
polynomial:

Lemma 2. Let f(M,l) be a polynomial such that |f(aN,1) — f(aN,2)| > € for
some fized € > 0 and, for any 5-good (M,1), |f(M,l)| < 1. Then the degree of
F(M,1) is 2(\/5).

The proof of this lemma follows the collision lower bounds of Aaronson and Shi
[1, 33] and is included in Section C.3 in [8] for completeness.

We now set 6 = O(N'/?) and apply Lemma 2 to % This is a
polynomial in M and /¢, because the denominator is a constant. With M = aV,
its values at [= 1 and [= 2 are bounded away from each other by at least
1/3 since the algorithm works. Its values at d-good pairs (M, [) have magnitude
at most 1 because the acceptance probability of the algorithm is in [0, 1], so
|2(a]\{)(de%| < 1+ 0(1). Thus we find that the degree of f(M,[) must be

Q(N/4). Tt follows that T = 2(N'/*/log N) queries are necessary.

3.2 Proof of Lemma 1

Here we assume that the process generating a graph G from the probability
distribution Pps; does not fail. (The effect of this process possibly failing is
considered in Section C.1 in [8].) The acceptance probability of A is a polynomial
P4 of degree at most 27 in Boolean variables . j, where @, . ; = 1 iff (u,v)
is an edge in the j** matching.

P4 is a weighted sum of monomials. It suffices to show that the expectation
of every such monomial has the rational form described in Lemma 1. If this
is shown, then E[P4] is a sum of such fractions: E[P4] = % gzg%g +
-+-. We put these fractions over a common denominator, obtaining E[P4] =
gé%:g where g(M,1) = lem(g1 (M, 1), g2(M,1),...). In this common denominator,
(M — (2k — 1)) occurs at most 27'/k times. Therefore, the degree of g(M,1) is
at most 27 ZiZI% = O(T'logT). Similarly, the degree of f(M,[) is at most
O(TlogT) + degg(M,l) = O(TlogT).

Now consider a particular monomial P = Xy, 1, j; Tus,vs.ds * * * Tug,vg,je> WHeTre
d = deg P. Let Gp be the graph with edges (u1,v1),..., (uq,vq) (i-e., with the
edges relevant to P) where the edge (uq,v,) comes from the j' matching. Let
C1,...,Ck be the connected components of Gp. For each component Cj, let X;
be the event that every edge (uq,v,) in C; (viewed as a subgraph of Gp) is
present in the random graph G as part of the j** matching. We have to find an

expression for the expectation

E[P] = Pr[X; N Xon ... N X4l

We first consider Pr[X;]. Let v; be the number of vertices in C;, and for each
matching j, let d; ; be the number of variables z,, ; in P that have u,v € C;
and label j. Note that

dipntdig+-+dic>vi—1 (1)

because a connected graph with v; vertices must have at least v; — 1 edges. We
have

1 c dij 1 1 c di l
Pr[Xi] = lvlifl H H M/l _ (2j/_ 1) = Jvi—1 H H m (2)

j=1j'=1 j=1j'=1

Here {~(*i=1 is the probability that all v; vertices are put into the same set V;
(for some 1 < j < I) (which is a necessary condition for having edges among

d;j 1
them), and [[72) 57—y
the j** matching are present. (For the first edge (u,v) in the j*" matching, the

probability that it is present is ﬁ, since u is equally likely to be matched

is the probability that d; ; particular edges from

with any of M/l vertices in V; except for u itself; for the second edge (u',?v’)
in the j* matching, the probability that it is present is ﬁ, since v/ can be
matched with any of M/l vertices except u, v, u’; and so on. Note that without
loss of generality, we can assume that the edges in P from the j* matching are
distinct. If P contains the same edge twice from the same matching, then we
can remove one of the duplicates without changing the value of P.)

We can rewrite (2) as Pr[X;] = = H§:1 Rg, ;, where we define

d I

Ry = H m (3)

=1

We now extend this to deal with multiple components C; at once, i.e., we want
to evaluate Pr[[(),cg X;], where S C {1,...,k}. Let Es be the event that the
vertices in (J;cg Cs (i.e., in any of the components indicated by S) are all put
into one set Vj. Then Pr[,c¢ Xi|Es] = [[7_, Ry, . d. ;- The event Eg happens
with probability 1~ (Xies v)+1 since the total number of vertices in |J, o C; is
2 ics Ui

Let L = (S1,...,S5) be a partition of {1,2,...,k}. We call Sy,...,S; classes
of the partition L. We say that S € L if S is one of Si,...,S;. Let |L| = t.
We say that L is a refinement of L’ (denoted L < L’) if L can be obtained
from L’ by splitting some of the classes of L’ into two or more parts. We write
L<LifL<L or L=L.WhenL <L, let cp s be the number of sequences
L=1Ly< Ly <---<Lj =L with sequences of even length j counting as +1
and sequences of odd length j counting as —1. We define ¢z, ;v = 1 when L = L'.
We have the following partition identity, which will be useful later; the proof is
given in Section C.4 in [8].

i€S

Proposition 1 Suppose L" < L. Then ;.. pnepi<pcr, =0.

We define the expressions

fL(M’l) = H HRZieS di,; (4)

SeL j=1

fL(M,1) = Z e, fr (M, 1). (5)

L': L'<L

We can now evaluate Pr[X; N X5 N ... N Xj] as follows. For any partition
L of {1,2,...,k}, let Er be the event (g, Es. Let E} be the event that Ef,
happens but no Ey, with L < L’ happens (i.e., L is the least refined partition
that describes the event). Then

PriX1 N XaN...N X =Y Pr(Ep]fL(M,1).
L

By inclusion-exclusion, Pr[E}] = >";,. ;< cr,r Pr[Er/]. Now substitute into
the previous equation, reorder the sums, and use the definition of f} (M,1):

PrXiNXoN...NX] =Y Pr(Ey] > cppfu(M1) =Y PrlEL]f;(M,1).
L’ L: L<LL’ L

Note that Pr[EL] = [[gc; Pr[Es] = [Iser, Im(Zies v)+1 = |=(Ziy v)+ILI Thus
we have
PrXy N Xo M. N Xy = Y 1= i vd*IEl gy (g, 1), (6)
L
We have now written Pr[X; N XoN...NX}] as a sum of rational functions of
M and l. We can combine these into a single fraction g g%f; .
that this fraction has the properties claimed in Lemma 1.

It remains to show

First, we claim that the denominator g(M, 1) contains at most 27'/k factors
of M — (2k — 1)I. Observe that each fr(M,l) is a fraction whose denominator
consists of factors M — (2k — 1)I. The number of factors in the denominator is
equal to the number of variables in the monomial P, which is at most 27. By
the form of (3), for each M — (2k — 1)! in the denominator, we also have M —1,
M =3I, ..., M — (2k — 3)l in the denominator. Therefore, if we have ¢ factors of
M — (2k — 1)l in the denominator, then the total degree of the denominator is
at least tk. Since tk < 2T, we have ¢ < 2T'/k. This statement holds for fr(M,1)
for every L. Thus, when we sum the fr(M,1) to obtain first f7 (M,!) and then
Pr[X;NX3N...NX}], and put all the terms over a common denominator g(M, 1),
this statement also holds for g(M,1).

In Pr[X1NX2N...NX%], when we sum the f7 (M,1) in (6), we also have factors
of 1(Zi=1v)=ILl in the denominator. Proposition 2 shows that these factors are
cancelled out by corresponding factors in the numerator.

Proposition 2 f;(M,l1) is equal to a fraction whose denominator is a product
of factors (M — (2k — 1)l) and whose numerator is divisible by (i v =Ll

When we combine the different f7(M,1) in (6) into a single fraction 55%53,
we see that f and g have the desired form. Also note that f and g have degree
O(TlogT), by repeating the same argument used earlier to combine the differ-
ent monomials P. This completes the proof of Lemma 1; it remains to show
Proposition 2.

Proof (of Proposition 2). Note that Ry contains an obvious factor of I4. We
define

d
Ry 1
R/ = — = _—
¢ }_:[1 M —(2§' — 1)

and we redefine fr(M,1) and f}(M,1) (equations (4) and (5)) using R/, instead
of Ry. This removes a factor of I¢ from the numerator of R, and a factor of
1245 %3 from the numerator of fr(M,1). By equation (1), this factor is at least
[(Z:vi)=k Therefore, it remains to show that the numerator of the redefined
fr(M,1) is divisible by 1F~ I,

Recall that f7(M,1) is a sum of terms fr/(M,1) for all L' < L. Let us write
each term as fr (M, 1) = 1/ [[pcx (M — ki), where K(L') is a multiset. We
put these terms over a common denominator Sr(M,l) = [[;cpr) (M — ki),
where B(L) 2 K(L') for all L’ < L. Then we have

aL/(M,Z)
(M) =2 (ML) = [] M — ki),
fut : (M, 1) v) kEB(L)—K(L’)()

1 (M)
o = CLLD ' (M,1) = s ap (M, 1).
fi() Br(M,1) ar() . :zL’:gLCL ror()

Let m = |B(L)|. Also, let 1 = | K (L')| = Ygep Y5y S dig = Yy Yooy di,
which is independent of L. Let m’ = |[B(L) — K(L')| = m — m, which depends
on L but not on L.

We want to show that o/ (M,1) is divisible by [*~1*l. First, we multiply
out each term ay.(M,1) to get ap/(M,1) = Zﬁo ei(B(L) — K(L"))M™ ~i(=1)¢,
where e; is the i elementary symmetric polynomial (i.e., e;(B(L) — K(L'))
is the sum of all products of ¢ variables chosen without replacement from the
multiset B(L) — K(L')). We can then write o (M, 1) as

QL (M) =300 M™ =D, = Y cppe(B(L) — K(L)).
1=0 L': L'<L

It suffices to show that, for all 0 < ¢ < k — |L| — 1, the coeflicient 6, ; is 0.
Note that if L is the finest possible partition L, then |L| = k and the above
claim is vacuous, so we can assume that L, < L. Also note that 6.9 = 0 by
Proposition 1 with L"” = L,, so it suffices to consider ¢ > 0.

For any set of variables E and any a > 0, define the power-sum polynomial

T,(E) =) cp k. We can write e;(B(L) — K(L')) in terms of power sums:
ei(B(L)— K(L')) = Ay L[To(B(L) — K(L): a=0,1,2,...,1],

where A; 1, is a polynomial function of the power sums T, (B(L) — K (L)) of total
degree ¢ in the variables k € B(L) — K(L’). Note that the polynomial A4; j, only
depends on the size of the set B(L) — K(L'), hence it only depends on L, and
not on L. To simplify things, we can write T,(B(L) — K(L')) = T,(B(L)) —
To(K (L)) and absorb the T,(B(L)) term into the polynomial A;; to get a
new polynomial /L',L. Then we have e;(B(L) — K(L')) = /L’L[TQ(K(L’)): a =
0,1,2,...,i], and

Ori= Y. copdin[Ta(K(L)):a=0,1,2,...,i]

L': L'<L

It suffices to show that, for all 0 < ¢ < k — |L| — 1, the above sum vanishes
term-by-term, i.e., for all sequences {a;} such that a; > 0 and > ;a; < i, we

have
S v [[Ta (K(L)) =0. (7)
L': L'<L j

We have T, (K (L") = > g E;Zl T.({1,3,5,...,2(3;cgdij) —1}), by the
definition of K(L’). Note that, for any integer s, T,({1,3,5,...,2s — 1}) =
T.({1,2,3,...,2s}) — 2°T,({1,2,3,...,s}), and by Faulhaber’s formula, this
equals a polynomial Q,(s) of degree a + 1, with rational coefficients and no
constant term. We have T, (K (L')) = Y gcr >5—1 Qa(Xics dij)- Let qaa (=
1,...,a+ 1) be the coefficients of @),. Then we can rewrite this as

a+1

To(K(L')) = Z da,05a (L"), where S, (L") = Z Z(Z dm)a.
a=1

SeL’ j=1 €S

It suffices to show that the sum in equation (7) vanishes term-by-term, i.e.,
for all 0 < ¢ < k—|L| — 1 and for all sequences {a;} such that a; > 1 and

Zj(aj —1) <4, we have

Z CL/VLHSQJ.(L/) =0.
J

L' L'<L

This final claim is shown in Section C.5 in [8]. This completes the proof of
Proposition 2.

Acknowledgments. We thank the anonymous referees for several helpful com-
ments. AA was supported by ESF project 1DP/1.1.1.2.0/09/APIA/VIAA /044,
FP7 Marie Curie Grant PIRG02-GA-2007-224886 and FP7 FET-Open project
QCS. AMC and YKL acknowledge the hospitality of the Kavli Institute for
Theoretical Physics, where this research was supported in part by the National
Science Foundation under Grant No. PHY05-51164. AMC received support from
MITACS, NSERC, QuantumWorks, and the US ARO/DTO. YKL received sup-
port from an NSF postdoctoral fellowship and ARO/NSA. This work was done
in part while YKL was at the Institute for Quantum Information at Caltech.

References

[1] S. Aaronson. Quantum lower bound for the collision problem. In STOC, pages
635-642. 2002.
[2] S. Aaronson. BQP and the polynomial hierarchy. In STOC, pages 141-150. 2010.
[3] S. Aaronson and A. Ambainis. The need for structure in quantum speedups. In
Innovations in Computer Science, pages 338-352. 2011.
[4] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. of Algorithms 7 (4):567-583, 1986.
[5] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of al-
most k-wise independent random variables. Random Structures and Algorithms
3 (3):289-304, 1992.
[6] A. Ambainis. Quantum lower bounds by quantum arguments. J. of Computer and
System Sciences 64 (4):750-767, 2002.
[7] A. Ambainis. Quantum walk algorithm for element distinctness. STAM J. on Com-
puting 37 (1):210-239, 2007.
[8] A. Ambainis, A.M. Childs and Y.-K. Liu, Quantum property testing for bounded-
degree graphs, arXiv:1012.3174, 2010.
[9] A. Atici and R. Servedio. Quantum algorithms for learning and testing juntas.
Quantum Information Processing 6 (5):323-348, 2007.
[10] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower
bounds by polynomials. J. of the ACM 48 (4):778-797, 2001.
[11] H. Buhrman, C. Durr, M. Heiligman, P. Hoyer, F. Magniez, M. Santha, and R.
de Wolf. Quantum algorithms for element distinctness. STAM J. on Computing
34 (6):1324-1330, 2005.
[12] H. Buhrman, L. Fortnow, I. Newman, and H. Rohrig. Quantum property testing.
SIAM J. on Computing 37 (5):1387-1400, 2008.

13)
[14]
[15]
[16]
17)
18]
[19]
20]
21]
22)
23]
[24]
25)
[26]
27)
28]
[29]
30]
31)
32]
33
[34]

[35]

S. Bravyi, A. W. Harrow, and A. Hassidim. Quantum algorithms for testing prop-
erties of distributions. In STACS, pages 131-142, 2010.

S. Chakraborty, E. Fischer, A. Matsliah, and R. de Wolf. New results on quantum
property testing. In FSTTCS, pages 145-156. 2010.

A. M. Childs and R. Kothari. Quantum query complexity of minor-closed graph
properties. To appear in STACS. 2011.

A. Czumaj and C. Sohler. Testing expansion in bounded-degree graphs. In FOCS,
pages 570-578. 2007.

C. Durr, M. Heiligman, P. Hoyer, and M. Mhalla. Quantum query complexity of
some graph problems. SIAM J. on Computing 35 (6):1310-1328, 2006.

O. Goldreich. Randomized Methods in Computation, 2001. Lecture notes available
at http://www.wisdom.weizmann.ac.il/~oded/rnd.html, Lecture 2.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. J. of the ACM 45 (4):653-750, 1998.

O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree
graphs. Combinatorica 19 (3):335-373, 1999.

O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs, 2000.
ECCC report TR00-020.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorith-
mica 32 (2):302-343, 2002.

P. Hoyer, T. Lee, and R. Spalek. Negative weights make adversaries stronger. In
STOC, pages 526-535. 2007.

Y. Inui and F. L. Gall. Quantum property testing of group solvability. In LATIN,
pages 772-783. 2008.

S. Kale and C. Seshadhri. Testing expansion in bounded-degree graphs, 2007.
ECCC report TRO7-076.

F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle
problem. STAM J. on Computing 37 (2):413-424, 2007.

F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. In
STOC, pages 575-584. 2007.

R. Motwani and P. Raghavan. Randomized Algorithms, 1995. Cambridge Univer-
sity Press.

A. Nachmias and A. Shapira. Testing the expansion of a graph. Information and
Computation 208:309-314, 2010.

R. Paturi. On the degree of polynomials that approximate symmetric Boolean
functions (preliminary version). In STOC, pages 468-474. 1992.

M. Pinsker. On the complexity of a concentrator. In Proceedings of the 7th In-
ternational Teletraffic Conference, pages 318/1-318/4. 1973.

M. Santha. Quantum walk based search algorithms. In Theory and Applications
of Models of Computation, pages 31-46. 2008.

Y. Shi. Quantum lower bounds for the collision and the element distinctness prob-
lems. In FOCS, pages 513-519. 2002.

D. R. Simon. On the power of quantum computation. STAM J. on Computing 26
(5):1474-1483, 1997.

M. Szegedy. Quantum speed-up of Markov chain based algorithms. In FOCS,
pages 32-41. 2004.

	Quantum Property Testing for Bounded-Degree Graphs

