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Abstract. Non-local games are studied in quantum information because
they provide a simple way for proving the difference between the classical
world and the quantum world. A non-local game is a cooperative game
played by 2 or more players against a referee. The players cannot com-
municate but may share common random bits or a common quantum
state. A referee sends an input xi to the ith player who then responds
by sending an answer ai to the referee. The players win if the answers ai

satisfy a condition that may depend on the inputs xi.
Typically, non-local games are studied in a framework where the referee
picks the inputs from a known probability distribution. We initiate the
study of non-local games in a worst-case scenario when the referee’s
probability distribution is unknown and study several non-local games
in this scenario.

1 Overview

Quantum mechanics is strikingly different from classical physics. In the area
of information processing, this difference can be seen through quantum algo-
rithms which can be exponentially faster than conventional algorithms [18, 16]
and through quantum cryptography which offers degree of security that is im-
possible classically [7].

Another way of seeing the difference between quantum mechanics and the
classical world is through non-local games. An example of non-local game is the
CHSH (Clauser-Horne-Shimonyi-Holt) game [11]. This is a game played by two
parties against a referee. The two parties cannot communicate but can share
common randomness or common quantum state that is prepared before the
beginning of the game. The referee prepares two uniformly random bits x, y and
gives one of them to each of two parties. The parties reply by sending bits a and
b to the referee. They win if a ⊕ b = x ∧ y. The maximum winning probability
that can be achieved is 0.75 classically and 1

2 + 1
2
√
2

= 0.85... quantumly.
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Other non-local games can be obtained by changing the winning conditions,
replacing bits x, y with x, y ∈ {1, . . . ,m} or changing the number of parties.
The common feature is that all non-local games involve parties that cannot
communicate but can share common random bits or a common quantum state.

There are several reasons why non-local games are interesting. First, CHSH
game provides a very simple example to test validity of quantum mechanics. If
we have implemented the referee and the two players by devices so that there
is no communication possible between A and B and we observe the winning
probability of 0.85..., there is no classical explanation possible. Second, non-local
games have been used in device-independent cryptography [1, 17].

Non-local games are typically analyzed with the referee acting according to
some probability distribution. E. g., for the CHSH game, the referee chooses each
of possible pairs of bits (0, 0), (0, 1), (1, 0), (1, 1) as (x, y) with equal probabilities
1/4. This is quite natural if we think of the CHSH game as an experiment for
testing the validity of quantum mechanics. Then, we can implement the device
for the referee so that it uses the appropriate probability distribution.

On the other hand, most of theoretical computer science is based on the
worst-case analysis of algorithms, including areas such as quantum communica-
tion complexity [20] and distributed computing [13] (which are both related to
non-local games). Because of that, we think that it is also interesting to study
non-local games in a worst case setting, when the players have to achieve winning
probability at least p for every possible combination of input data (x, y)1.

In this paper, we start a study of non-local games in the worst-case frame-
work. We start with several simple observations (section 3). First, the maximum
gap between quantum and classical winning probability in the worst-case sce-
nario is at most the maximum gap for a fixed probability distribution. Second,
many of the non-local games that achieve the biggest gaps for a fixed probability
distribution (such as CHSH game for 2-player XOR games or Mermin-Ardehali
game [15, 5] for n-player XOR games) also achieve the same gap in the worst-case
scenario, due to natural symmetries present in those games.

Then, in section 4, we look at examples of non-local games for which the
worst case is different from the average case under the most natural probability
distribution, with two goals. First, we show natural examples of non-local games
for which the worst-case behaviour is not a straightforward consequence of the
average-case behaviour under the uniform distribution.

Second, at the same time, we develop methods for analyzing non-local games
in the worst case. For non-local games under a fixed probability distribution,
computing the best winning probability is at least NP-hard [14] in the general
case but there are efficient algorithms for fairly broad special cases (such as
2-player XOR games [12]). Those algorithms crucially rely on the fact that non-
local games are studied under a fixed probability distribution on inputs (x, y).
This allows to reduce the maximum winning probability to a simple expression

1 Also, when we give talks about non-local games to computer scientists who are not
familiar with quantum computing, we often get a question: why don’t you consider
the worst case setting?



whose maximum can be computed by a polynomial time algorithm. (For exam-
ple, for 2-player XOR games, this is done via semidefinite programming [12].)

These methods no longer work in the worst case scenario, where we have to
develop new methods on case-by-case basis - for games that would have been
easy to analyze with previous methods if the probability distribution was fixed.

2 Technical preliminaries

We will study non-local games of the following kind [12] in both classical and
quantum settings. There are n cooperating players A1, A2, . . . , An trying to
maximize the game value (see below), and there is a referee. Before the game the
players may share a common source of correlated random data: in the classical
case, a common random variable R taking values in a finite set R, and in the
quantum case, an entangled n-part quantum state |ψ〉 ∈ A1⊗ . . .⊗An (where Ai
is a finite-dimensional subspace corresponding to the part of the state available
to Ai). During the game the players cannot communicate between themselves.

Each of the players (Ai) has a finite set of possible input data: Xi. At the start
of the game the referee randomly picks values (x1, . . . , xn) = x ∈ X1 × . . .×Xn

according to some probability distribution π, and sends each of the players his
input (i. e. Ai receives xi).

Each of the players then must send the referee a response ai which may
depend on the input and the common random data source. In this paper we will
consider only binary games, that is games where the responses are simply bits:
ai ∈ {0, 1}. We denote (a1, . . . , an) by a.

The referee checks whether the players have won by some predicate (known
to all parties) depending on the players’ inputs and outputs: V (a | x). For
convenience in formulas, we will suppose that V takes value 1 when it is true
and −1 when it is false. A binary game whose outcome depends only on the
XOR of the players’ responses: V (a | x) = V ′(

⊕n
i=1 ai | x), is called an XOR

game. A game whose outcome does not change after any permutation γ of the
players (i. e. V (γ(a) | γ(x)) = V (a | x) for any γ) is called a symmetric game.

The value ω of a non-local gameG for given players’ strategies is the difference
between the probability that the players win and the probability that they lose:

ω(G) = Pr[V (a | x) = 1]− Pr[V (a | x) = −1] ∈ [−1, 1].

The probability that the players win can then be expressed by the game value
in this way: Pr[V (a | x) = 1] = 1

2 + 1
2ω(G).

In the classical case, the players’ strategy is the random variable R and a
set of functions ai : Xi ×R → {0, 1} determining the responses. The maximal
classical game value achievable by the players for a given distribution π is thus:

ωπc (G) = sup
R,a

∑
r,x

π(x) Pr[R = r]V (a1(x1, r), . . . , an(xn, r) | x).

However, the use of random variable here is redundant, since in the expression
it provides a convex combination of deterministic strategy game values, thus the



maximum is achieved by some deterministic strategy (with ai : Xi → {0, 1}):

ωπc (G) = max
a

∑
x

π(x)V (a1(x1), . . . , an(xn) | x).

In this paper we investigate the case when the players do not know the
probability distribution π used by the referee, and must maximize the game value
for the worst distribution the referee could choose, given the strategy picked by
the players. We will call it the worst-case game value. The maximal classical
worst-case game value ωc achievable by the players is given by the formula

ωc(G) = sup
R,a

min
π

∑
r,x

π(x) Pr[R = r]V (a1(x1, r), . . . , an(xn, r) | x).

Note that in the worst-case approach the optimal strategy cannot be a deter-
ministic one, unless there is a deterministic strategy winning on all inputs: if
there is an input on which the strategy loses, then the referee can supply it with
certainty, and the players always lose. Clearly, ωc(G) ≤ ωπc (G) for any π.

In the most of the studied examples π has been the uniform distribution. We
will call it the average case and denote its maximum game value by ωuni

c (G).
In the quantum case, the players’ strategy is the state |ψ〉 and the measure-

ments that the players pick depending on the received inputs and perform on
their parts of |ψ〉 to determine their responses. Mathematically, the measure-
ment performed by Ai after receiving input xi is a pair of positive semidefinite

dimAi-dimensional matrices M
0|xi
i , M

1|xi
i with M

0|xi
i + M

1|xi
i = I where I is

the identity matrix. We denote the collection of all measurements by M.
The maximum quantum game value for a fixed distribution π is

ωπq (G) = sup
|ψ〉,M

∑
x,a

π(x)〈ψ|
n⊗
i=1

M
ai|xi
i |ψ〉V (a | x),

and the maximum quantum worst-case game value is

ωq(G) = sup
|ψ〉,M

min
π

∑
x,a

π(x)〈ψ|
n⊗
i=1

M
ai|xi
i |ψ〉V (a | x).

Since the shared entangled state can be used to simulate a random variable,
ωq(G) ≥ ωc(G) and for any π: ωπq (G) ≥ ωπc (G).

In the case of two player games (n = 2) we will use notation A,B for the
players, X,Y for the input sets, x, y for the inputs, a, b for the responses.

3 Games with worst case equivalent to average case

3.1 Maximum quantum-classical gap

The advantage of quantum strategies is usually measured by the ratio
ωπq (G)

ωπc (G)

(or
ωq(G)
ωc(G) in the worst-case setting) between the quantum value ωπq (G) and the



classical value ωπc (G). Finding non-local games with maximum
ωπq (G)

ωπc (G) has been

an object of much research (e.g. [9, 8]).

We show that the maximum advantage in the worst-case scenario is never
bigger than for the best choice of a fixed probability distribution.

Theorem 1 For any game G,

ωq(G)

ωc(G)
≤ max

π

ωπq (G)

ωπc (G)
.

Proof. By Yao’s principle [21], ωc(G) is equal to the minimum of ωπc (G) over all
probability distributions π. Let π be the probability distribution that achieves
this minimum. Then, ωπq (G) ≥ ωq(G) (since knowing π can only make it easier

to win in a non-local game) and, hence,
ωπq (G)

ωπc (G) ≥
ωq(G)
ωc(G) . ut

For many natural games, maxπ
ωπq (G)

ωπc (G) is achieved by π = uni and, often,

there is a straightforward symmetry argument that shows that ωunic = ωc or
ωuniq = ωq. Then, the uniform distribution on inputs is equivalent to the worst
case. We show two examples of that in the next two subsections.

3.2 CHSH game

The CHSH game [11, 12] is a canonical example of a 2-player non-local game
with a quantum advantage. It is a two player XOR game with X = Y = {0, 1},
V (a, b | x, y) = a⊕ b ≡ x∧ y, and π the uniform distribution. It is easy to check
that no deterministic strategy can win on all inputs, but the strategy a(x) = 0,
b(y) = 0 wins on 3 inputs out of 4, so [12]: ωuni

c (CHSH) = 0.75− 0.25 = 0.5.

Moreover, since out of the four strategies S1: a(x) = 0, b(y) = 0; S2: a(x) = x,
b(y) = 0; S3: a(x) = 0, b(y) = y; S4: a(x) = x, b(y) = ¬y each one loses on
a different input, and wins on the 3 other ones, we have for any predetermined
π: ωπc (CHSH) = 1 − 2 minx,y π(x, y) ≥ 0.5. Indeed, one can pick the strategy
losing on the input with the minimal value of π.

Theorem 2 ωc(CHSH) = 0.5; ωq(CHSH) = 1/
√

2.

Proof. If the players use a random variable R to pick one of the strategies S1, S2,
S3, S4 mentioned above with equal probability (i. e. 0.25), then for any input x, y
they will have a winning strategy with probability 0.75. Thus ωc(CHSH) ≥ 0.5.
On the other hand, ωc(CHSH) ≤ ωuni

c (CHSH) = 0.5.

[12] shows that the winning probability in the quantum case is 1
2 + 1

2
√
2

giving

ωuni
q (CHSH) = 1/

√
2. Moreover, the used strategy achieves this value on every

input x, y, therefore it gives also the worst-case value: ωq(CHSH) = 1/
√

2. ut



3.3 Mermin-Ardehali game

Mermin-Ardehali (MA) game is an n-player XOR game that achieves the biggest
quantum advantage among XOR games with 2 questions to each player (X1 =
. . . = Xn = {0, 1}). This game corresponds to Mermin-Ardehali n-partite Bell
inequality [15, 5].

The winning condition for MA game is: a1 ⊕ . . . ⊕ an = 0 if (x1 + . . . +
xn) mod 4 ∈ {0, 1} and a1 ⊕ . . .⊕ an = 1 if (x1 + . . .+ xn) mod 4 ∈ {2, 3}.

For the uniform distribution on the inputs, we have ωuniq (MA) = 1√
2

and

ωunic (MA) = 1

2d
n
2
−1e classically [15, 5, 4]. As shown by Werner and Wolf [19], no

XOR game has a bigger quantum advantage.

Theorem 3 [19] No n-party XOR game G with binary inputs xi (with any input

distribution π) achieves
ωπq (G)

ωπc (G) > 2
n−1
2 .

This makes the worst-case analysis of Mermin-Ardehali game for even n quite
straightforward. For the quantum case, the maximal game value 1√

2
is given by a

quantum strategy which achieves the corresponding winning probability 1
2 + 1

2
√
2

on every input [15, 5, 4], thus

Theorem 4 For all n: ωq(MA) = 1/
√

2.

For the classical case, Theorems 1 and 3 together imply
ωq(MA)
ωc(MA) ≤ 2

n−1
2 and

ωc(MA) ≥ 1
2n/2

. Thus,

1

2n/2
≤ ωc(MA) ≤ ωunic (MA) ≤ 1

2d
n−1
2 e

.

For even n, the upper and lower bounds coincide, implying

Theorem 5 For even n: ωc(MA) = 2−
n
2 .

Other examples. Other examples of well known non-local games with
ωunic = ωc and ωuniq = ωq are the Odd Cycle game of [12] and the Magic
Square game of [6, 12]. Again, the natural symmetries present in these games
which make the worst case equivalent to the average case.

4 Games with worst case different from average case

The goals of this section are:

– to present natural examples of non-local games for which the worst-case
scenario is different from the average case;

– to develop methods for analyzing quantum games in the worst-case scenario
(which is substantially more difficult than in the average case).



4.1 EQUAL-EQUAL game

We define EQUAL-EQUAL (EEm) as a two-player XOR game with X = Y =

{1, . . . ,m} and V (a, b | x, y)
def
= (x = y) ≡ (a = b).

This is a natural variation of the Odd-Cycle game of [12]. For m = 3, the
Odd-Cycle game can be viewed as a game in which the players try to prove to
the referee that they have 3 bits a1, a2, a3 ∈ {0, 1} which all have different values.

This can be generalized to larger m in two ways. The first generalization is
the Odd-Cycle game [12] in which the players attempt to prove to the referee
that an m-cycle (for m odd) is 2-colorable. The second generalization is a game
in which the players attempt to prove that they have m bits a1, . . . , am ∈ {0, 1}
which all have different values. This is our EQUAL-EQUAL game.

Theorem 6 For even m: ωc(EEm) = m
3m−4 , and for odd m: ωc(EEm) = m+1

3m−1 .

Proof. In the full version of paper [3]. ut

Theorem 7 For evenm: ωq(EEm) = m
3m−4 , and for oddm: m+1

3m−1 ≤ ωq(EEm) ≤
m2+1

(3m−1)(m−1) .

Proof. The lower bounds follow from ωq(EEm) ≥ ωc(EEm). For the upper
bounds, let πα,β denote the probability distribution defined by πα,β(i, i) = α for
any i and πα,β(i, j) = β for any distinct i, j. Then, ωq(EEm) ≤ ωπα,βq (EEm).

For the two-player XOR games where on every input exactly one of the cases
a ⊕ b = 0 and a ⊕ b = 1 is winning, it is useful to introduce the matrix V with
Vxy = V (0, 0 | x, y), and to observe that V (a, b | x, y) = (−1)a(−1)bVxy. Thus,
for any distribution π

ωπq (EEm) = sup
|ψ〉,M

∑
x,y,a,b

π(x, y)〈ψ|Ma|x
1 ⊗M b|y

2 |ψ〉(−1)a(−1)bVxy,

and by the Tsirelson’s theorem [10] this game value is equal to

sup
d

max
ui:‖ui‖=1

max
vj :‖vj‖=1

m∑
i=1

m∑
j=1

π(i, j)Vij(ui, vj)

where u1, . . . , um, v1, . . . , vm ∈ IRd and (ui, vj) is the scalar product.

The part of the sum containing ui is

m∑
j=1

π(i, j)Vij(ui, vj) =

ui, m∑
j=1

π(i, j)Vijvj

 .

To maximize the scalar product, ui must be the unit vector in the direction of∑m
j=1 π(i, j)Vijvj .



For the EQUAL-EQUAL game and the distribution πα,β we have Vij = 1
and πα,β(i, j) = α if i = j, Vij = −1 and πα,β(i, j) = β if i 6= j. So we have to
maximize the sum

S =

m∑
i=1

∥∥∥∥∥∥
m∑
j=1

πα,β(i, j)Vijvj

∥∥∥∥∥∥ =

m∑
i=1

∥∥∥∥∥∥αvi − β
m∑

j=1,j 6=i

vj

∥∥∥∥∥∥ .
Let us denote s =

∑m
j=1 vj and apply the inequality between the arithmetic

and quadratic means (and use the fact that ‖vi‖ = 1):

S2 ≤ m
m∑
i=1

‖αvi − β(s− vi)‖2 = m

m∑
i=1

‖(α+ β)vi − βs‖2

= m

(
m∑
i=1

(α+ β)2‖vi‖2 −
m∑
i=1

2(α+ β)β(vi, s) +

m∑
i=1

β2‖s‖2
)

= m

(
(α+ β)2m− 2(α+ β)β

(
m∑
i=1

vi, s

)
+mβ2‖s‖2

)
= m((α+ β)2m− 2(α+ β)β‖s‖2 +mβ2‖s‖2)

= m2(α+ β)2 + ‖s‖2mβ(mβ − 2(α+ β)).

With values of α and β

α =

{
m−1

m(3m−1) if m is odd,
m−2

m(3m−4) if m is even,
β =

{
2

(m−1)(3m−1) if m is odd,
2

m(3m−4) if m is even.
(1)

one can calculate that the coefficient at ‖s‖2 is 0 for even m and − 4
(m−1)2(3m−1)2

(negative) for odd m, so dropping this summand and extracting the square root
we get S ≤ m(α+ β). Substituting the values of α and β according to equation
(1) we get the desired estimations. ut

Thus, for any even m the quantum strategy cannot achieve any advantage
over the classical strategies (and for odd m there is no difference asymptotically).
It was quite surprising for us. In the Appendix of full paper [3], we show a similar
result for any of the symmetric distributions πα,β .

Theorem 8 If m is even, then ω
πα,β
q (EEm) = ω

πα,β
c (EEm). If m is odd, then

0 ≤ ωπα,βq (EEm)− ωπα,βc (EEm) ≤ 2

m(3m− 4)
.

While games with quantum advantage are common, there are only a few
examples of games with no quantum advantage for an entire class of proba-
bility distributions. ”Guess your neighbour’s input” of [2] is one such example,
with quantum strategies having no advantage for any probability distribution on
the input. Our EQUAL-EQUAL game provides another natural example where
quantum strategies have no advantage for a class of distributions.

Also in the Appendix of full paper [3], we show that quantum and classical
values are the same for the uniform distribution.



Corollary 1 For m ≥ 4: ωuni
q (EEm) = ωuni

c (EEm) = m−2
m .

4.2 n-party AND game

n-party AND game (nAND) is a symmetric XOR game with binary inputs
X1 = . . . = Xn = {0, 1} and V (a | x) = (

⊕n
i=1 ai =

∧n
i=1 xi).

Although this is a natural generalization of the CHSH game (compare the
winning conditions), it appears that this game has not been studied before. Possi-
bly, this is due to the fact that in the average case the game can be won classically
with a probability that is very close to 1 by a trivial strategy: all players always
outputting ai = 0. If this game is studied in the worst-case scenario, it becomes
more interesting. The following theorem implies that limn→∞ ωc(nAND) = 1/3.

Theorem 9 ωc(nAND) = 2n−2/(3 · 2n−2 − 1).

Proof. In the full version of paper [3]. ut
In the quantum case, since the game is symmetric with binary inputs, we

can introduce parameters ci being equal to the value of V ((0, . . . , 0) | x) on any
input x containing i ones and n− i zeroes, and pi being equal to the probability
(determined by π) of such kind of input. According to [4], for such game G:

ωπq (G) = max
z:|z|=1

∣∣∣∣∣
n∑
i=0

piciz
i

∣∣∣∣∣
where z is a complex number. By Yao’s principle,

ωq(G) = min
p0,...,pn:

∑
pi=1

max
z:|z|=1

∣∣∣∣∣
n∑
i=0

piciz
i

∣∣∣∣∣ . (2)

We have for the nAND game: c0 = . . . = cn−1 = 1 and cn = −1.

Theorem 10 limn→∞ ωq(nAND) = 1/3.

Proof. Since ωq(nAND) ≥ ωc(nAND) > 1/3, it is sufficient to prove that
ωq(nAND) ≤ 1/3 + o(1) by picking particular values of pi and showing that
with them the limit of the expression (2) does not exceed 1/3. Such values are:

pn = 1/3, pi = pqn−i for i = 0, . . . , n − 1 where q = e
− 1√

n and p is chosen so
that p

∑n
i=1 q

i = 2
3 , i.e. p = 2

3
1−q

q(1−qn) . The inequality to prove is

lim
n→∞

max
z:|z|=1

∣∣∣∣∣p
n−1∑
i=0

qn−izi − 1

3
zn

∣∣∣∣∣ ≤ 1

3
.

Since |z| = 1, we can divide the expression within modulus by zn and use the
substitution w = 1/z. We obtain

lim
n→∞

max
w:|w|=1

∣∣∣∣∣p
n∑
i=1

(qw)i − 1

3

∣∣∣∣∣ = lim
n→∞

max
w:|w|=1

∣∣∣∣23 1− q
1− qn

w(1− qnwn)

1− qw
− 1

3

∣∣∣∣ . (3)



From limn→∞ qn = limn→∞ e−
√
n = 0 we get limn→∞(1− qn) = 1 and, since

|w| = 1, limn→∞(1− qnwn) = 1. Thus (3) is equal to

lim
n→∞

max
w:|w|=1

∣∣∣∣23 (1− q)w
1− qw

− 1

3

∣∣∣∣ . (4)

Claim 1 For each ε > 0 there exists δ0 such that the inequality∣∣∣∣∣∣∣∣ 2δw

1− (1− δ)w
− 1

∣∣∣∣− 1

∣∣∣∣ < ε (5)

holds where 0 < δ < δ0 and z ∈ C, and |w| = 1.

Now Claim 1 gives that (4) is equal to 1/3. We used the fact that limn→∞ e
− 1√

n =
1 and the substitution 1− q = δ. ut

Proof (of Claim 1).
The inequality (5) requires that there exists some number with absolute value

1 that is sufficiently close to 2δw
1−(1−δ)w −1 or, equivalently, that there exists some

number on a circle in the complex plane with its center at 1/2 and a radius of
1/2 that is sufficiently close to δw

1−(1−δ)w = 1
1+((1/w)−1)/δ .

The numbers
{

1
1+((1/w)−1)/δ |w ∈ C and |w| = 1

}
form a circle in the com-

plex plane with its center on the real axis that has common points with the real
axis at 1 and 1

1−2/δ = δ
δ−2 . The latter circle is sufficiently close to the circle with

its center at 1/2 and radius of 1/2 if we choose δ0 > 0 sufficiently small so that
the value of δ

δ−2 is sufficiently close to 0. ut

4.3 n-party MAJORITY game

By replacing the AND function with the MAJORITY function in the definition
of the n-party AND game, we obtain the n-party MAJORITY game.

More formally, n-party MAJORITY game (nMAJ) is a symmetric XOR
game with X1 = . . . = Xn = {0, 1} and V (a | x) demanding that

⊕n
i=1 ai is

true if at least half of xi is true, and false otherwise. Similarly as in the previous
section, we introduce parameters ci and pi and use the expression for game value
given in [4]. This time c0 = . . . = cdn/2e−1 = 1, cdn/2e = . . . = cn = −1.

We have

Theorem 11 limn→∞ ωc(nAND) = limn→∞ ωq(nAND) = 0.

Proof. Since 0 ≤ ωc(nMAJ) ≤ ωq(nMAJ), it suffices to prove limn→∞ ωq(nAND) =
0. Similarly as above, we can do it by picking particular values of pi for which the
limit of (2) is 0. Such values are as follows. If n is even, let n = 2k and p2k = 0,
otherwise let n = 2k−1. Let pi = ri/s where ri = r2k−1−i and ri = 1/(2k−1−2i)

for 0 ≤ i ≤ k − 1, and s = 2
∑k
i=1 1/(2i− 1). We have to prove that

lim
k→∞

max
z:|z|=1

∣∣∣∣∣
k−1∑
i=0

piz
i −

2k−1∑
i=k

piz
i

∣∣∣∣∣ = 0.



Since |z| = 1, we can multiply the polynomial within the modulus by z1/2−k

and use the substitution w = z−1/2 obtaining:

max
z:|z|=1

∣∣∣∣∣
k−1∑
i=0

piz
i −

2k−1∑
i=k

piz
i

∣∣∣∣∣ = max
w:|w|=1

∣∣∣∣∣
k−1∑
i=0

piw
2k−1−2i −

2k−1∑
i=k

piw
2k−1−2i

∣∣∣∣∣
=

2

s
max
w:|w|=1

∣∣∣∣∣Im
(
k−1∑
i=0

riw
2k−1−2i

)∣∣∣∣∣ =
2

s
max
θ

∣∣∣∣∣
k∑
i=1

sin(2i− 1)θ

2i− 1

∣∣∣∣∣
where Im(z) is the imaginary part of z and w = eiθ.

Since the function
∑k
i=1(sin(2i− 1)θ)/(2i− 1) is a partial sum of the Fourier

series of a square wave function, we have

max
θ

∣∣∣∣∣
k∑
i=1

sin(2i− 1)θ

2i− 1

∣∣∣∣∣ = O(1).

Also, 2/s = o(1) because limk→∞ s =∞. The result follows. ut

5 Games without common data

What happens if the players are not allowed to share neither common random-
ness nor common quantum state?

If the probability distribution on the inputs is fixed, this scenario is equivalent
to two players with common randomness because common random bits can be
always fixed to the value that achieves the best result for the two players. For
this reason, the question above has never been studied.

In the worst-case setting, the situation changes. Players with no common
randomness are no longer equivalent to players with shared randomness. For
many games, not allowing shared randomness results in the players being unable
to win the game with any probability p > 1/2.

Let ωn(G) denote the value of a game G if no shared randomness is allowed.
We have

Theorem 12 Suppose G is a two-player XOR game (with sets of inputs X,Y
of arbitrary size) where on every input (x, y) exactly one of the two possible
values of a ⊕ b wins. If ωn(G) > 0 then ωn(G) = 1, i. e. then G can be won
deterministically.

If we do not restrict to XOR games, it becomes possible to have a game
which can be won with probability more than 1

2 but not with probability 1.

Theorem 13 There is a two-player game G (with binary sets of inputs and
outputs X = Y = A = B = {0, 1}) with 0 < ωn(G) =

(√
5− 2

)
< 1.

We give the proofs of both theorems in the full version of this paper [3].
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