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Abstract. Non-local games are known as a simple but useful model
which is widely used for displaying nonlocal properties of quantum me-
chanics. In this paper we concentrate on a simple subset of non-local
games: multiplayer XOR games with 1-bit inputs and 1-bit outputs which
are symmetric w.r.t. permutations of players.

We look at random instances of non-local games from this class. We
prove a tight bound for the expected performance on the classical strate-
gies for a random non-local game and provide numerical evidence that
quantum strategies achieve better results.

1 Introduction

Non-local games [CHTW04] are studied in quantum information, with the goal of
understanding the differences between quantum mechanics and classical physics.
An example of non-local game is the CHSH (Clauser-Horne-Shimoni-Holt) game
[CHSH69, CHTW04]. This is a game played by two parties against a referee. The
referee prepares two uniformly random bits x, y and gives one of them to each
of two parties. The two parties cannot communicate but can share common
randomness or a common quantum state that is prepared before the beginning
of the game. The parties reply by sending bits a and b to the referee. They win
if a⊕ b = x ∧ y.

The maximum winning probability that can be achieved in the CHSH game
is 0.75 classically and 1

2 + 1
2
√
2
= 0.85... quantumly. This is interesting because

it provides a simple experiment for testing the validity of quantum mechanics.
Assume that we implement the referee and the players by devices so that the
communication between the players is clearly excluded. If the experiment is
repeated m times and players win substantially more than 0.75m times, then
the results of experiment can be explained using quantum mechanics but not
through classical physics.

More generally, we can study non-local games with N players. The referee pre-
pares inputs x1, . . . , xN by picking (x1, . . . , xN ) according to some probability
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distribution and sends xi to the ith player. The ith player replies to sending an
answer yi to the referee. Players win if their answers y1, . . . , yN satisfy some win-
ning condition P (x1, . . . , xN , y1, . . . , yN). Similarly as before, the players cannot
communicate but can use shared random bits or a common quantum state that
has been prepared before receiving x1, . . . , xN from the referee.

Non-local games have been a very popular research topic (often, under the
name of Bell inequalities [Be64]). Many non-local games have been studied and
large gaps between classical and quantum winning probabilities have been dis-
covered (e.g., [Me90, BV11, BRSW11]).

In this paper, we study non-local games for which the winning condition
P (x1, . . . , xN , y1, . . . , yN ) is chosen randomly from some class of possible win-
ning conditions. This direction of study was started by [ABB+12] which studied
random XOR games with 2 players (players receive inputs x1, x2 ∈ {1, . . . ,m}
and provide outputs y1, y2 ∈ {0, 1}, the winning condition depends on x1, x2 and
y1 ⊕ y2) and showed that, for a random game in this class, its quantum value1

is between 1.2011... and 1.5638... times its classical value.
We look at a different class of games: N player symmetric XOR games with

binary inputs [AKNR09]. For games in this class, both inputs x1, . . . , xN and
outputs y1, . . . , yN are binary. The winning condition may depend on the number
of i : xi = 1 and the parity of all outputs ⊕N

i=1yi. This class of non-local games
contains some games with a big quantum advantage. For example, Mermin-
Ardehali inequality [Me90, Ar92] can be recast into an N -partite symmetric

XOR game whose quantum value is 2�
N
2 −1�− 1

2 times bigger than its classical
value.

We show that quantum strategies have some advantage even for a random
non-local game from this class:

– We present results of computer experiments that clearly indicate an advan-
tage for quantum strategies.

– We prove that the expected classical value of a random N -player symmetric
XOR game is 0.8475...

4√N
.

– We provide a non-rigorous argument that the quantum value is Ω(
√
logN
4√N

),

with a high probability.

This quantum advantage is, however, much smaller than the maximum advan-
tage achieved by the Mermin-Ardehali game.

2 Definitions

We consider non-local games of N players. We assume that players are informed
about the rules of the game and are allowed to have a preliminary discussion.
When the game is started, players receive a uniformly random input x1, . . . , xN ∈
1 Quantum (classical) value of a game is the maximum difference between the winning
probability and the losing probability that can be achieved by quantum (classical)
strategies.
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{0, 1} with the ith player receiving xi. The ith player then produces an output
yi ∈ {0, 1}. No communication is allowed between the players but they can
use shared randomness (in the classical case) or quantum entanglement (in the
quantum case).

In an XOR game, the winning condition P (x1, . . . , xN , y1, . . . , yN ) depends
only on x1, . . . , xN and the overall parity of all the output bits ⊕N

i=1yi. A game
is symmetric if the winning condition does not change if x1, . . . , xN are permuted.

If an XOR game is symmetric, the winning condition depends only on
∑N

i=1 xi

and ⊕N
i=1yi. Thus, we can define the rules of a game as a sequence of N +1 bits

G = G0G1 . . .GN , where Gj defines a “winning” value of ⊕N
i=1yi for input with∑N

i=1 xi = j.
By a random N -player symmetric XOR game we shall mean a game defined

by the (N + 1)-bit string G = G0G1 . . . GN picked uniformly at random.
Let Prwin(S) and Prloss(S) be the probabilities that players win (lose) the

game when playing according to a strategy S (which can be either a classical
or a quantum strategy). The value of a strategy S for a game is V al (S) =
Prwin(S)− Prloss(S).The value of a game V al (G) = maxS V al (S) is the value
of an optimal (or a best) strategy for this game.

We use V alC to denote the classical value (maximum of the value over classical
strategies) and V alQ to denote the quantum value (maximum of the value over
classical strategies). We omit the subscript C or Q if it is clear from the context
whether we are considering quantum or classical value.

3 Optimal Strategies

3.1 Classical Games

Without a loss of generality, we can assume that in a classical game all players
use deterministic strategies. (If a randomized strategy is used, we can fix the
random bits to the values that achieve the biggest winning probability. Then, a
randomized strategy becomes deterministic.)

Then, each player has four different choices — (00), (01), (10), (11). (The first
bit here represents the answer on input 0, and second bit represents the answer
on input 1. Thus, (ab) denotes a choice to answer a on input 0 and answer b on
input 1.)

We use (00)
k0 (01)

k1 (10)
k2 (11)

k3 to denote a strategy for N players in which
k0 players use (00), k1 players use (01), k2 players use (10) and k3 players use
(11).

Let S be an arbitrary strategy for N players. If exactly one of the players
inverts his choice of a strategy bitwise (e.g. (11) → (00), or (10) → (01)), this
leads to the parity of output bits ⊕N

i=1yi always being opposite compared to the
original strategy. Hence, if S is the new strategy, then S wins whenever S loses
and S loses whenever S wins. Therefore,

V al (S) = Prwin(S)− Prloss(S) = Prloss(S)− Prwin(S) = −V al
(
S
)
.
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From now on, we consider such strategies S and S (with exactly one player’s
choice bitwise inverted) together with a positive value |V al (S)| = ∣∣V al

(
S
)∣
∣.

Theorem 1. [AKNR09] Let S be any classical strategy for a symmetric XOR
game with binary inputs. Then, V al(S) is the same as the value of one of N +1
following strategies:

(00)k (01)N−k ,where k ∈ {0, 1, . . . , N}. (1)

This allows to restrict the set of strategies considerably. In fact, the most use-
ful strategies are (00)N and (01)N . In our computer experiments, one of these
strategies is optimal for ≈ 99% symmetric XOR games. Our rigorous results
in Section 5 imply that asymptotically (in the limit of large N) the fraction of
games for which one of these strategies is optimal is 1− o(1).

3.2 Quantum Games

The setting in quantum game is identical to the classical one except that the
players are allowed to use a quantum system which is potentally entangled before
the start of the game. There are two notable results that significantly help the
further analysis.

Firstly, it was shown by Werner and Wolf in [WW01] and [WW01a] that in
the more general setting where games are not necessarily symmetric the value
of the game is described by a simple expression. Let the game be specified by

cx1,x2,...,xN =

{
1, if players win when y1 ⊕ . . .⊕ yN = 1

−1, if players win when y1 ⊕ . . .⊕ yN = 0

Theorem 2

V alQ(G) = max
λ1,...,λN∈C,

|λ1|=...=|λN |=1

∣
∣
∣
∣
∣
∣

∑

x1,...,xN∈{0,1}

cx1,...,xNλ
x1
1 · · ·λxN

N

2N

∣
∣
∣
∣
∣
∣

Secondly, for symmetric games the expression was simplified further in
[AKNR09]. Denoting again for convenience cj = (−1)Gj :

Theorem 3

V alQ(G) = max
λ∈C,
|λ|=1

∣
∣
∣
∣
∣
∣

N∑

j=0

cj
(
N
j

)
λj

2N

∣
∣
∣
∣
∣
∣

4 Computer Experiments

On the ground of Theorems 1 and 3 we have built efficient optimization algo-
rithms in order to show the difference between classical and quantum versions
of symmetric XOR games.
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Fig. 1. Expected values of quantum and classical XOR games + classical bound

The Figure 1 shows the expected classical and quantum values for a randomly
chosen symmetric XOR game with binary inputs, with the number of players N
ranging between 2 and 1012. Dashed graph corresponds to the function f(N) =
0.8475...

4√
N

derived from Theorem 4.

We see that there is a consistent quantum advantage for all N .
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Fig. 2. Histograms of values of random 64-player symmetric XOR games

In the Figure 2, we provide some statistical data on the distribution of the
game values (from 106 randomly selected games for N = 64). The first two

2 For N ≤ 16 graphs are precise, as for small number of players it was possible to
analyze all 2N+1 games. For N > 16 we picked 105 games at random for each N .
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histograms show the distribution of classical and quantum values, respectively.
The last one shows the distribution of biases between the values of classical and
quantum versions of a game.

We see that the quantum value of a game is more sharply concentrated than
the classical value. There is a substantial number (around 30%) of games which
have no quantum advantage (or almost no quantum advantage)3. For the re-
maining games, the gap between quantum and classical values is quite uniformly
distributed over a large interval.

5 Bounding Classical Game Value

5.1 Results

In this section we first obtain a tight bound on the value of strategies (00)N and
(01)N .

Theorem 4. For a random N -player symmetric XOR game with binary inputs,

E
[
max

(∣
∣
∣V al

(
(00)N

)∣
∣
∣ ,
∣
∣
∣V al

(
(01)N

)∣
∣
∣
)]

=
0.8475...+ o(1)

4
√
N

.

We then show that any other strategy from (1) gives a weaker result, with a high
probability.

Theorem 5. For any c > 0,

Pr

[

max
k:1≤k≤N−1

∣
∣
∣V al

(
(00)

k
(01)

N−k
)∣
∣
∣ ≥ c

4
√
N

]

= O

(
1

N

)

.

5.2 Proof of Theorem 4

We first consider the strategy (00)
N
. As all players always answer 0, the value

of this strategy is equal to

V al
(
(00)

N
)
=

N∑

j=0

(−1)
Gj
(
N
j

)

2N
(2)

For the strategy (01)
N
, we have

V al
(
(01)N

)
=

∣
∣
∣
∣
∣
∣

N∑

j=0

(−1)
Gj+j (N

j

)

2N

∣
∣
∣
∣
∣
∣

(3)

We need to find a bound for

E
[
max

(∣
∣
∣V al

(
(00)N

)∣
∣
∣ ,
∣
∣
∣V al

(
(01)N

)∣
∣
∣
)]

3 However, our results in the next sections indicate that the fraction of such games will
tend to 0 for larger N .
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= E

⎡

⎣max

⎛

⎝

∣
∣
∣
∣
∣
∣

N∑

j=0

(−1)
Gj
(
N
j

)

2N

∣
∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣
∣

N∑

j=0

(−1)
Gj+j (N

j

)

2N

∣
∣
∣
∣
∣
∣

⎞

⎠

⎤

⎦ (4)

Among the summands of these two sums let us first evaluate those which are
equal for both of sums, i.e. for even j’s, and then for remaining summands, which
have opposite values in these sums, i.e. for odd j’s:

E
[
max

(∣
∣
∣V al

(
(00)

N
)∣
∣
∣ ,
∣
∣
∣V al

(
(01)

N
)∣
∣
∣
)]

= E

⎡

⎢
⎢
⎣max

⎛

⎜
⎜
⎝±

∑

0≤j≤N,
j is even

(−1)
Gj
(
N
j

)

2N
±
∑

0≤j≤N,
j is odd

(−1)
Gj
(
N
j

)

2N

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

= E

⎡

⎢
⎢
⎣

∣
∣
∣
∣
∣
∣
∣
∣

∑

0≤j≤N,
j is even

(−1)
Gj
(
N
j

)

2N

∣
∣
∣
∣
∣
∣
∣
∣

⎤

⎥
⎥
⎦+ E

⎡

⎢
⎢
⎣

∣
∣
∣
∣
∣
∣
∣
∣

∑

0≤j≤N,
j is odd

(−1)
Gj
(
N
j

)

2N

∣
∣
∣
∣
∣
∣
∣
∣

⎤

⎥
⎥
⎦ (5)

Let Σeven and Σodd be the two sums in (5). Then, we have

Var [Σeven] =
∑

0≤j≤N,
j is even

((
N
j

)

2N

)2

=

(
2N
N

)

2 · 4N .

Similarly, Var [Σodd] =
(2NN )
2·4N . From the central limit theorem, in the limit of

large N , each of random variables Σeven and Σodd can be approximated by
a normally distributed random variable with the same mean (which is 0) and
variance. If X is a normally distributed random variable with E[X ] = 0, then

E[|X |] =
√

2
π

√
Var[X ]. Hence, (5) is equal to

E [|Σeven|] + E [|Σodd|]

=

√
2

π
(1 + o(1))

√
Var [Σeven] +

√
2

π
(1 + o(1))

√
Var [Σodd]

= (1 + o(1))

√
2

π

√

2
(
2N
N

)

4N
= (1 + o(1))

4

√
16

π3

1
4
√
N

=
0.8475...+ o(1)

4
√
N

where the second-to-last equality follows from the approximation of the binomial

coefficients
(
2N
N

)
= (1 + o(1)) 4N√

πN
.
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5.3 Variance of Other Strategies

We now consider other strategies S, with the goal of proving Theorem 5. To do
that, we first compute the variances for their values V al(S). (Our goal is to prove
Theorem 5 by Chebyshev’s inequality, which we do in the next subsection.)

We start with the variance of V al((00)N). Because of (2), the variance of
V al((00)N) can be calculated as

Var
[
V al
(
(00)

N
)]

=

N∑

j=0

Var

[
(−1)Gj

(
N
j

)

2N

]

=

N∑

j=0

(
N
j

)2

4N
=

(
2N
N

)

4N
≈ 1√

πN
(6)

We note that V al
(
(00)

N
)
for the game G0G1G2G3G4 . . . is exactly the same

as V al
(
(01)

N
)
for the game G0G1G2G3G4 . . ., with all odd bits inverted.

More generally, assume that we have a strategy (00)
k
(01)

N−k
. We can invert

the answers by all players for the case xi = 1. Then, the overall parity of answers
⊕N

i=1yi stays the same if an even number of players have received xi = 1 and
changes to opposite value if an odd number of players have received xi = 1. If
we simultaneously invert all odd-numbered bits Gi in the winning condition, the
game value does not change. From this, we conclude that for each k,

V al
(
(00)k (01)N−k

)
= V al

(
(00)N−k (01)k

)
(7)

We now consider the value for the second strategy from (1), (00)
N−1

(01), for a
random symmetric XOR game.

Probability distribution of ⊕N
i=0yi when

∑N
i=0 xi = j is the following:

j 0 1 2 3 4 5 6 7 . . .

Pr
[⊕N

i=0yi = 0
]

1 1
N

N−2
N

3
N

N−4
N

5
N

N−6
N

7
N

. . .

Pr
[⊕N

i=0yi = 1
]

0 N−1
N

2
N

N−3
N

4
N

N−5
N

6
N

N−7
N

. . .

Given input with
∑N

i=0 xi = j, the strategy outputs even or odd answer, de-
pending on whether or not the last player has received 1, i.e. with probabilities
N−j
N and j

N (unlike 1 and 0 in the case of symmetric strategies).

Therefore, variance of the strategy (00)
N−1

(01) for input with
∑N

i=0 xi = j

is
(

N−j
N − j

N

)2
=
(

N−2j
N

)2
.

Summing up variances for all possible j’s, we get

Var
[
V al
(
(00)

N−1
(01)
)]

=

N∑

j=0

Var

[±N−2j
N

(
N
j

)

2N

]

=
N∑

j=0

(±N−2j
N

(
N
j

)

2N

)2

=

(
2N
N

)

4N (2N − 1)
≈ 1√

πN (2N − 1)
,

(8)
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with the third equality following from Lemma 1 in the appendix (Notation
±N−2j

N denotes a random variable with equiprobable values +N−2j
N and−N−2j

N .)

Due to (7), the value of strategy (00) (01)N−1 has the same variance.

Other strategies of type (00)
N−k

(01)
k
where 2 ≤ k ≤ N−2 have much smaller

variances, which can be expressed as follows:

Var
[
V al
(
(00)N−k (01)k

)]
=

N∑

j=0

⎛

⎜
⎜
⎝

(
∑j

l=0 (−1)
l (kl)(

N−k
j−l )

(Nj )

)
(
N
j

)

2N

⎞

⎟
⎟
⎠

2

=

∑N
j=0

(∑j
l=0 (−1)

l (k
l

)(
N−k
j−l

))2

4N

(9)

The expression
∑j

l=0 (−1)l
(
k
l

)(
N−k
j−l

)
inside (9) is well known Kravchuk poly-

nomial Kj (k), whose square can be bounded by strict inequality provided in
[Kr01]:

(
j∑

l=0

(−1)
l

(
k

l

)(
N − k

j − l

))2

= (Kj (k))
2
< 2N

(
N

j

)(
N

k

)−1

. (10)

This inequality implies that

Var
[
V al
(
(00)

N−k
(01)

k
)]

=

∑N
j=0 (Kj (k))

2

4N

<

∑N
j=0 2

N
(
N
j

)(
N
k

)−1

4N
=

(
N

k

)−1

.

(11)

5.4 Proof of Theorem 5

Among the strategies (00)k(01)N−k, k ∈ {1, . . . , N−1}, two strategies (for k = 1
and k = N − 1) have variance ≈ 1√

πN(2N−1)
, and the remaining N − 3 strategies

have variance less than 1

(Nk)
.

We now apply Chebyshev inequality, using those two bounds on the variance.
We have

Pr

[∣
∣
∣V al

(
(00)

N−1
(01)
)∣
∣
∣ ≥ λ

4
√
πN

√
2N − 1

]

= Pr

[∣
∣
∣V al

(
(00) (01)

N−1
)∣
∣
∣ ≥ λ

4
√
πN

√
2N − 1

]

≤ 1

λ2
,

and, for 2 ≤ k ≤ N − 2:

Pr

⎡

⎣
∣
∣
∣V al

(
(00)

N−k
(01)

k
)∣
∣
∣ ≥ λ
√(

N
k

)

⎤

⎦ ≤ 1

λ2
.

(12)
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We now combine the bounds (12) into one upper bound.

Pr

[

max
0≤k≤N

∣
∣
∣V al

(
(00)

N−k
(01)

k
)∣
∣
∣ ≥ B

]

≤

≤ 2× 1
(
B 4
√
πN
√
(2N − 1)

)2 +

N−2∑

k=2

1
(

B
√(

N
k

)
)2

=
2

B2
√
πN (2N − 1)

+O

(
1

B2N3

)

, (13)

with the last equality following from
(
N
k

) ≥ (N2
)
and the fact that we are summing

over N − 3 values for k: k ∈ {2, . . . , N − 2}. Taking B = c
4√
N

proves theorem 5.

6 Bounding Quantum Game Value

So far we have not been able to find a tight lower bound on the mean value of
the game in quantum case. However, we provide some insights which could lead
to a solution to the problem. We can bound the value from below by

max
λ∈C,
|λ|=1

∣
∣
∣
∣
∣
∣

N∑

j=0

cj
(
N
j

)
λj

2N

∣
∣
∣
∣
∣
∣
≥ max

α

∣
∣
∣
∣
∣
∣

N∑

j=0

cj
(
N
j

)
cos(αj)

2N

∣
∣
∣
∣
∣
∣

(14)

The sum
∑N

j=0 cj cos(αj) where cj are indepedent random variables with mean
0 and variance 1 has been extensively studied under the name “random trigono-
metric polynomials” by Salem and Zygmund[SZ54] and others. Their results
imply that there exist constants A and B such that

lim
M→∞

Pr

⎡

⎣A
√
M logM ≤ max

α

∣
∣
∣
∣
∣
∣

M∑

j=0

cj cos(αj)

∣
∣
∣
∣
∣
∣
≤ B
√
M logM

⎤

⎦ = 1 (15)

To apply (15), the crucial step is to reduce a sum cj
(
N
j

)
cos(αj) with binomial

coefficients to a sum cj cos(αj) not containing binomial coefficients.
We propose a following non-rigorous approximation. We first drop the terms

with j ≤ N
2 − √

N and j ≥ N
2 − √

N . For the remaining terms, we replace
(
N
j

)
with

(
N

N/2

)
(since

(
N
j

)
= Θ(

(
N

N/2

)
) for j ∈ [N2 − √

N, N
2 +

√
N ]). If this

approximation can be justified, it reduces (14) to (15) with M = 2
√
N . This

would lead to a lower bound of

EG[V alQ(G)] = Ω

(√
logM√
M

)

= Ω

(√
logN
4
√
N

)

.

We are currently working on making this argument rigorous.
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7 Conclusion

We studied random instances of symmetric N -player XOR games with binary
inputs, obtaining tight bounds for the classical value of such games. We also
presented a non-rigorous argument bounding the quantum value. Our results
indicate that quantum strategies are better than classical for random games in
this class, by a factor of Ω(

√
logN). An immediate open problem is to make our

bound for quantum strategies precise, by bounding the error introduced by our
approximations.

A more general question is: can we analyze random instances of other classes
of non-local games? We currently know how to analyze random games for 2-
player XOR games with N -valued inputs and for symmetric N -player games
with binary inputs.

Can we analyze, for example, 3-player XOR games with N -valued inputs? In
a recent work, Briët and Vidick [BV11] have shown big gaps between quantum
and classical strategies for this class of games. However, methods of analyzing
such games are much less developed and this makes analysis of random games
quite challenging. Developing tools for it is an interesting direction for future
work.

References

[ABB+12] Ambainis, A., Bačkurs, A., Balodis, K., Kravčenko, D., Ozols, R., Smotrovs,
J., Virza, M.: Quantum Strategies Are Better Than Classical in Almost
Any XOR Game. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer,
R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 25–37. Springer, Heidelberg
(2012)

[AKNR09] Ambainis, A., Kravchenko, D., Nahimovs, N., Rivosh, A.: Nonlocal Quan-
tum XOR Games for Large Number of Players. In: Kratochv́ıl, J., Li, A.,
Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 72–83.
Springer, Heidelberg (2010)

[Ar92] Ardehali, M.: Bell inequalities with a magnitude of violation that grows
exponentially with the number of particles. Physical Review A 46, 5375–
5378 (1992)

[Be64] Bell, J.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200
(1964)
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A Appendix

Lemma 1
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j=0
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(
N

j

))2

=
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2N − 1
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