
Innovations in Computer Science 2011

The Need for Structure in Quantum Speedups

Scott Aaronson1 Andris Ambainis2

1MIT, Cambridge, MA, USA
2University of Latvia, Raina bulv. 19, Riga, LV-1586, Latvia

aaronson@csail.mit.edu ambainis@lu.lv

Abstract: Is there a general theorem that tells us when we can hope for exponential speedups from quantum
algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box
model where most quantum algorithms operate.
First, we show that for any problem that is invariant under permuting inputs and outputs (like the collision
or the element distinctness problems), the quantum query complexity is at least the 9th root of the classical
randomized query complexity. This resolves a conjecture of Watrous from 2002.
Second, inspired by recent work of O’Donnell et al. and Dinur et al., we conjecture that every bounded low-degree
polynomial has a “highly influential” variable. Assuming this conjecture, we show that every T -query quantum
algorithm can be simulated on most inputs by a poly (T)-query classical algorithm, and that one essentially
cannot hope to prove P 6= BQP relative to a random oracle.

Keywords: quantum computing, quantum algorithms, quantum lower bounds, Boolean functions, influence of
variables.

1 Introduction

Perhaps the central lesson gleaned from fifteen years
of quantum algorithms research is this:

Quantum computers can offer superpoly-
nomial speedups over classical comput-
ers, but only for certain “structured”
problems.

The key question, of course, is what we mean by
“structured.” In the context of most existing quan-
tum algorithms, “structured” basically means that
we are trying to determine some global property
of an extremely long sequence of numbers, assum-
ing that the sequence satisfies some global regularity.
As a canonical example, consider Period-Finding,
the core of Shor’s algorithms for factoring and dis-
crete logarithm [22]. Here we are given black-box
access to an exponentially-long sequence of integers
X = (x1, . . . , xN); that is, we can compute xi for a
given i. We are asked to find the period of X—that
is, the smallest k > 0 such that xi = xi−k for all
i > k—promised that X is indeed periodic, with pe-
riod k ¿ N . The requirement of periodicity is cru-
cial here: it is what lets us use the Quantum Fourier
Transform to extract the information we want from a

superposition of the form

1√
N

N∑

i=1

|i〉 |xi〉 .

For other known quantum algorithms, X needs to be
(for example) a cyclic shift of quadratic residues [12],
or constant on the cosets of a hidden subgroup.

By contrast, the canonical example of an “unstruc-
tured” problem is the Grover search problem. Here
we are given black-box access to an N -bit string
x1, . . . , xN ∈ {0, 1}N , and are asked whether there
exists an i such that xi = 1.1 Grover [15] gave a quan-
tum algorithm to solve this problem using O(

√
N)

queries [15], as compared to the Ω (N) needed classi-
cally. However, this quadratic speedup is optimal, as
shown by Bennett, Bernstein, Brassard, and Vazirani
[7]. For other “unstructured” problems—such as com-
puting the Parity or Majority of an N -bit string—
quantum computers offer no asymptotic speedup at all
over classical computers (see Beals et al. [6]).

Unfortunately, this “need for structure” has essen-
tially limited the prospects for superpolynomial quan-
tum speedups to those areas of mathematics that are
liable to produce things like periodic sequences or se-

1A variant asks us to find an i such that xi = 1, under the
mild promise that such an i exists.

338

THE NEED FOR STRUCTURE IN QUANTUM SPEEDUPS

quences of quadratic residues.2 This is the fundamen-
tal reason why the greatest successes of quantum algo-
rithms research have been in cryptography, and specif-
ically in number-theoretic cryptography. It helps to
explain why we do not have a fast quantum algorithm
to solve NP-complete problems (for example), or to
break arbitrary one-way functions.

Given this history, the following problem takes on
considerable importance:

Problem 1 (Informal) For every “unstructured”
problem f , are the quantum query complexity Q (f)
and the classical randomized query complexity R(f)
polynomially related?

Despite its apparent vagueness, Problem 1 can be
formalized in several natural and convincing ways—
and under these formalizations, the problem has re-
mained open for about a decade.

1.1 Formalizing the Problem

Let S ⊆ [M]N be a collection of inputs, and let
f : S → {0, 1} be a function that we are trying to
compute. In this paper, we assume for simplicity
that the range of f is {0, 1}; in other words, that we
are trying to solve a decision problem. It will also
be convenient to think of f as a function from [M]N

to {0, 1, ∗}, where ∗ means ‘undefined’ (that is, that a
given input X ∈ [M]N is not in f ’s domain S).

We will work in the well-studied decision-tree model.
In this model, given an input X = (x1, . . . , xN), an
algorithm can at any time choose an i and receive
xi. We count only the number of queries the algo-
rithm makes to the xi’s, ignoring other computational
steps. Then the deterministic query complexity of
f , or D (f), is the number of queries made by an op-
timal deterministic algorithm on a worst-case input
X ∈ S. The (bounded-error) randomized query com-
plexity R (f) is the expected number of queries made
by an optimal randomized algorithm that, for every
X ∈ S, computes f (X) with probability at least 2/3.
The (bounded-error) quantum query complexity Q (f)
is the same as R (f), except that we allow quantum
algorithms. Clearly Q (f) 6 R(f) 6 D(f) 6 N for
all f . See Buhrman and de Wolf [11] for detailed

2Here we exclude BQP-complete problems, such as simu-
lating quantum physics (the “original” application of quantum
computers), approximating the Jones polynomial [4], and esti-
mating a linear functional of the solution of a well-conditioned
linear system [16].

definitions as well as a survey of these measures.

If S = [M]N , then we say f is total, while if M =
2, then we say f is Boolean. The case of total f is
relatively well-understood. Already in 1998, Beals et
al. [6] showed the following:

Theorem 2 (Beals et al. [6]) D(f) = O(Q (f)6) for
all total Boolean functions f : {0, 1}N → {0, 1}.

Furthermore, it is easy to generalize Theorem 2 to
show that D (f) = O(Q (f)6) for all total functions
f : [M]N → {0, 1}, not necessarily Boolean.3 In other
words, for total functions, the quantum query com-
plexity is always at least the 6th root of the classical
query complexity. The largest known gap between
D (f) and Q (f) for a total function is quadratic, and
is achieved by the OR function (because of Grover’s
algorithm).

On the other hand, as soon as we allow non-total
functions, we can get enormous gaps. Aaronson [2]
recently gave a Boolean function f : S → {0, 1} for
which R (f) = Ω(

√
N), yet Q (f) = O (1). Other

examples, for which R (f) = Ω(
√

N) and Q (f) =
O (log N log log N), follow easily from Simon’s algo-
rithm [23] and Shor’s algorithm [22]. Intuitively, these
functions f achieve such large separations by being
highly structured: that is, their domain S includes
only inputs that satisfy a stringent promise, such as
encoding a periodic function, or (in the case of [2])
encoding two Boolean functions, one of which is cor-
related with the Fourier transform of the other one.

By contrast with these highly-structured prob-
lems, consider the collision problem: that of deciding
whether a sequence of numbers x1, . . . , xN ∈ [M]N

is one-to-one (each number appears once) or two-to-
one (each number appears twice). Let Col(X) = 1
if X is one-to-one and Col(X) = 2 if X is two-to-
one, promised that one of these is the case. Then
Col(X) is not a total function, since its definition
involves a promise on X. Intuitively, however, the
collision problem seems much less “structured” than
Simon’s and Shor’s problems. One way to formalize
this intuition is as follows. Call a partial function

3For Theorem 2 is proved by combining three ingredients:
D (f) = O (C (f) bs (f)), C (f) = O(bs (f)2), and bs (f) =
O(Q (f)2) (where C (f) is the certificate complexity of f and
bs (f) is the block sensitivity). And all three ingredients go
through with no essential change if we set M > 2, and define
suitable M -ary generalizations of C (f) and bs (f). (We could

also convert the non-Boolean function f : [M]N → {0, 1} to a
Boolean one, but then we would lose a factor of log M .)

339

S. AARONSON, A. AMBAINIS

f : [M]N → {0, 1, ∗} permutation-invariant if

f (x1, . . . , xN) = f
(
τ

(
xσ(1)

)
, . . . , τ

(
xσ(N)

))

for all inputs X ∈ [M]N and all permutations σ ∈ SN

and τ ∈ SM . Then Col(X) is permutation-invariant:
we can permute a one-to-one sequence and relabel its
elements however we like, but it is still a one-to-one
sequence, and likewise for a two-to-one sequence. Be-
cause of this symmetry, attempts to solve the collision
problem using (for example) the Quantum Fourier
Transform seem unlikely to succeed. And indeed, in
2002 Aaronson [1] proved that Q (Col) = Ω

(
N1/5

)
:

that is, the quantum query complexity of the colli-
sion problem is at most polynomially better than its
randomized query complexity of Θ(

√
N). The quan-

tum lower bound was later improved to Ω
(
N1/3

)
by

Aaronson and Shi [3], matching an upper bound of
Brassard, Høyer, and Tapp [10].

Generalizing boldly from this example, John Wa-
trous (personal communication) conjectured that the
randomized and quantum query complexities are
polynomially related for every permutation-invariant
problem:

Conjecture 3 (Watrous 2002) R(f) 6 Q(f)O(1)

for every partial function f : [M]N → {0, 1, ∗} that is
permutation-invariant.

Let us make two remarks about Conjecture 3.
First, the conjecture talks about randomized versus
quantum query complexity, since in this setting, it is
easy to find functions f for which R (f) and Q (f) are
both tiny but D (f) is huge. As an example, con-
sider the Deutsch-Jozsa problem: given a Boolean in-
put (x1, . . . , xN), decide whether the xi’s are all equal
or whether half of them are 1 and the other half are
0, promised that one of these is the case.

Second, if M = 2 (that is, f is Boolean), then
Conjecture 3 follows relatively easily from known re-
sults: indeed, we prove in Appendix A that R (f) =
O(Q (f)2) in that case. So the interesting case is
when M À 2, as it is for the collision problem.

Conjecture 3 provides one natural way to formal-
ize the idea that classical and quantum query com-
plexities should be polynomially related for all “un-
structured” problems. A different way is provided by
the following conjecture, which we were aware of since
about 1999:

Conjecture 4 (folklore) Let Q be a quantum al-
gorithm that makes T queries to a Boolean input

X = (x1, . . . , xN), and let ε > 0. Then there ex-
ists a deterministic classical algorithm that makes
poly (T, 1/ε, 1/δ) queries to the xi’s, and that approxi-
mates Q’s acceptance probability to within an additive
error ε on a 1− δ fraction of inputs.

Loosely speaking, while Conjecture 3 said that there
was no property of a symmetric oracle string that
quantum algorithms can evaluate superpolynomially
faster than classical ones, Conjecture 4 says that there
is no such property of a random oracle string.

Conjecture 4 would imply a far-reaching general-
ization of the result of Beals et al. [4] that D (f) =
O(Q (f)6) for all total Boolean functions f . In par-
ticular, define the ε-approximate query complexity of
a Boolean function f : {0, 1}N → {0, 1}, or Dε (f),
to be the minimum number of queries made by a de-
terministic algorithm that evaluates f on at least a
1 − ε fraction of inputs X. Likewise, let Qε (f) be
the minimum number of queries made by a quantum
algorithm that evaluates f on at least a 1 − ε frac-
tion of inputs. Then Conjecture 4 implies that Dε (f)
and Qδ (f) are polynomially related for all Boolean
functions f and all ε > δ > 0. This would provide
a quantum counterpart to a beautiful 2002 result of
Smyth [24], who solved an old open problem of Steven
Rudich by showing that Dε (f) = O(Cε3/30 (f)2 /ε3)
for all ε > 0 (where Cδ (f) denotes the “δ-approximate
certificate complexity” of f).

More dramatically, if Conjecture 4 holds, then we
basically cannot hope to prove P 6= BQP relative to a
random oracle. This would answer a question raised
by Fortnow and Rogers [14] in 1998, and would con-
trast sharply with the situation for non-random ora-
cles: we have had oracles relative to which P 6= BQP,
and indeed BQP 6⊂ MA, since the work of Bernstein
and Vazirani [8] in the early 1990s. More precisely,
under some suitable complexity assumption (such as
P = P#P), we would get BQPA ⊂ AvgPA with prob-
ability 1 for a random oracle A. Here AvgP is the
class of languages for which there exists a polynomial-
time algorithm that solves a 1 − o (1) fraction of in-
stances of size n. In other words, separating BQP
from AvgP relative to a random oracle would be as
hard as separating complexity classes in the unrela-
tivized world. This would provide a quantum coun-
terpart to a theorem of Impagliazzo and Rudich (cred-
ited in [17]), who used the powerful results of Kahn,
Saks, and Smyth [17] to show that if P = NP, then
NPA∩ coNPA ⊂ ioAvgPA with probability 1 for a ran-

340

THE NEED FOR STRUCTURE IN QUANTUM SPEEDUPS

dom oracle A.4

1.2 Our results

Our main contribution in this paper is to prove
Watrous’s conjecture, that randomized and quantum
query complexities are polynomially related for every
symmetric problem.

Theorem 5 Conjecture 3 holds. Indeed, R(f) =
O(Q (f)9 polylog Q (f)) for every partial function f :
[M]N → {0, 1, ∗} that is permutation-invariant.

We conjecture that R (f) and Q (f) are polyno-
mially related even for functions f satisfying one
of the two symmetries: namely, f (x1, . . . , xN) =
f

(
xσ(1), . . . , xσ(N)

)
for all σ ∈ SN . We also con-

jecture that the exponent of 9 can be improved to 2:
in other words, that Grover’s algorithm once again
provides the optimal separation between the quantum
and classical models.

While the proof of Theorem 5 is somewhat involved,
it can be entirely understood by those unfamiliar with
quantum computing: the difficulties lie in getting the
problem into a form where existing quantum lower
bound technology can be applied to it. Let us stress
that it was not at all obvious a priori that existing
quantum lower bounds would suffice here; that they
did came as a surprise to us.

We first define and analyze a simple randomized
algorithm, which tries to compute f (X) for a given
X = (x1, . . . , xN) by estimating the multiplicity of
each element xi. Next, by considering where this
randomized algorithm breaks down, we show that one
can identify a “hard core” within f : roughly speak-
ing, two input types A∗ and B∗, such that the dif-
ficulty of distinguishing A∗ from B∗ accounts for a
polynomial fraction of the entire difficulty of com-
puting f . The rest of the proof consists of lower-
bounding the quantum query complexity of distin-
guishing A∗ from B∗. We do so using a hybrid
argument: we develop a “chopping procedure” that
gradually deforms A∗ and B∗ to make them more
similar to each other, creating L = O (log N) inter-
mediate input types A0 = A∗,A1,A2, . . . ,AL and
B0 = B∗,B1,B2, . . . ,BL such that AL = BL. We

4Here ioAvgP means “average-case P for infinitely many in-
put lengths n.” The reason Impagliazzo and Rudich only get
a simulation in ioAvgP, rather than AvgP, has to do with the
fact that Smyth’s result [24] only relates Dε (f) to Cε3/30 (f),

rather than Dε+δ (f) to Cε (f) for all δ > 0.

then show that, for every ` ∈ [L], distinguishing A`

from A`−1 (or B` from B`−1) requires many quan-
tum queries, either by a reduction from Midrijanis’s
quantum lower bound for the Set Equality prob-
lem [18] (which was a nontrivial extension of Aaron-
son and Shi’s collision lower bound [3]), or else by an
application of Ambainis’s general quantum adversary
theorem [5].

Our second contribution is more exploratory, some-
thing we put forward in the hope of inspiring followup
work. We study Conjecture 4, the one that stated
that every T -query quantum algorithm can be simu-
lated on most inputs using TO(1) classical queries. We
relate this conjecture to a fundamental open problem
in Fourier analysis and approximation theory. Given
a real polynomial p : RN → R, let

Infi [p] := EX
X∈{0,1}N

[∣∣p (X)− p
(
Xi

)∣∣]

be the influence of the ith variable, where Xi means
X with the ith bit flipped. Then we conjecture that
every bounded low-degree polynomial has a “highly in-
fluential” variable. More precisely:

Conjecture 6 (Influential Variables) Let p :
RN → R be a polynomial of degree d. Suppose that
0 6 p (X) 6 1 for all X ∈ {0, 1}N , and

E
X,Y ∈{0,1}N

[|p (X)− p (Y)|] > ε.

Then there exists an i such that Infi [p] > (ε/d)O(1).

We show the following:

Theorem 7 Assume Conjecture 6. Then

(i) Conjecture 4 holds.

(ii) Dε+δ (f) 6 (Qε (f) /δ)O(1) for all Boolean func-
tions f : {0, 1}N → {0, 1} and all ε, δ > 0 such
that ε− δ = Ω(1/nc) for some constant c.

(iii) If P = P#P, then BQPA ⊂ AvgPA with proba-
bility 1 for a random oracle A.

The main evidence for Conjecture 6—besides the
fact that all the Fourier analysis experts we asked were
confident of it!—is that extremely similar statements
have recently been proved. Firstly, O’Donnell, Saks,
Schramm, and Servedio [19] proved an analogue of
Conjecture 6 for decision trees, which are a special
case of bounded real polynomials:

Theorem 8 (O’Donnell et al. 2005 [19]) Let f :
{0, 1}N → {0, 1} be a Boolean function, and suppose

341

S. AARONSON, A. AMBAINIS

Pr [f = 1] Pr [f = 0] > ε. Then there exists an i such
that Infi [f] > 4ε/D(f), where D(f) is the decision
tree complexity of f .

Unfortunately, Theorem 8 does not directly imply
anything about our problem, even though Beals et al.
[6] showed that D (f) and Q (f) are polynomially re-
lated for all total Boolean functions f . The reason
is that the acceptance probability of a quantum algo-
rithm need not approximate a total Boolean function.

The second piece of evidence for Conjecture 6 comes
from a powerful result of Dinur, Friedgut, Kindler, and
O’Donnell [13], which implies our conjecture, except
with Infi [p] > ε5/2O(d) instead of Infi [p] > (ε/d)O(1).
Let us state the special case of their result that is
relevant for us:

Theorem 9 (Dinur et al. 2006 [13]) Let ε > 0,
and let p : RN → R be a degree-d polynomial such that
0 6 p (X) 6 1 for all X ∈ {0, 1}N . Then there exists
a 2O(d)/ε2-junta p̃ : RN → R (that is, a polynomial
depending on at most 2O(d)/ε2 variables) such that

E
X∈{0,1}N

[
(p̃ (X)− p (X))2

]
6 ε.

Even though Theorem 9 has an exponential rather
than polynomial dependence on 1/d, we observe that
it already has a nontrivial consequence for quantum
computation. Namely, it implies that any T -query
quantum algorithm can be simulated on most inputs
using 2O(T) classical queries.5 Recall that the gaps
between classical and quantum query complexities can
be superexponential (and even NΩ(1) versus O (1), as
in the example of Aaronson [2]), so even an exponen-
tial upper bound is far from obvious.

2 Quantum lower bound for all
symmetric problems

In this section we prove Theorem 5: that
R (f) = O(Q (f)9 polylog Q (f)) for all permutation-
symmetric f .

We start with a simple observation that is essential
to everything that follows. Since f is symmetric, we
can group the inputs X = (x1, . . . , xN) into equiva-
lence classes that we call types.

Definition 10 Given an input X = (x1, . . . , xN) ∈
[M]N , the type of X is a list of positive integers
A = (a1, . . . , au) such that a1 > · · · > au and

5Indeed, in this case the classical queries are nonadaptive.

a1 + · · · + au = N , with each ai recording the mul-
tiplicity of some integer in X. For convenience, we
adopt the convention that ai = 0 for all i > u.

In other words, a type is just a partition (or Young
diagram) that records the multiplicities of the input
elements. For example, a one-to-one input has type
a1 = · · · = aN = 1, while a two-to-one input has
type a1 = · · · = aN/2 = 2. We write X ∈ A if
X is of type A. Clearly f (X) depends only on the
type of X. Furthermore, given a quantum query al-
gorithm Q, we can assume without loss of general-
ity that Pr [Q accepts X] depends only on the type of
X—since we can “symmetrize” Q (that is, randomly
permute X’s inputs and outputs) prior to running Q.

2.1 Randomized upper bound

Let X = (x1, . . . , xN) be an input. For each
j ∈ [M], let κj be the number of i’s such that xi = j.
Then the first step is to give a classical randomized
algorithm that estimates the κj ’s. This algorithm,
ST , is an extremely straightforward sampling proce-
dure (indeed, there is essentially nothing else that a
randomized algorithm can do here). ST will make
O

(
T 1+c log T

)
queries, where T is a parameter and

c ∈ (0, 1] is a constant that we will choose later to
optimize the final bound.

1. Set U := 24T 1+c ln T .
2. Choose U indices i1, . . . , iU ∈ [N]

uniformly at random with replacement.
3. Query xi1 , . . . , xiU

.
4. For each j ∈ [M]:
(a) Let zj be the number of occurrences of j

in (xi1 , . . . , xiU
)

(b) Output κ̃j := N
U zj as the estimate for κj

We now analyze how well ST works.

Lemma 11 With probability 1 − O (1/T), we have
|κ̃j − κj | 6 N

T + κj

T c for all j ∈ [M].

Proof. For each j ∈ [M], we consider three cases.
First suppose κj > N/T 1−c. Notice that zj is a sum
of U independent Boolean variables, and that E [zj] =
U
N E [κ̃j] = U

N κj . So

Pr
h
|eκj − κj | >

κj

T c

i
= Pr

»˛̨
˛̨zj − U

N
κj

˛̨
˛̨ >

Uκj

NT c

–

< 2 exp

„
−Uκj/N

4T 2c

«
< 2 exp

„
− U

4T 1+c

«

= 2T−6,

342

THE NEED FOR STRUCTURE IN QUANTUM SPEEDUPS

where the second line follows from a Chernoff bound
and the third from κj > N/T 1−c.

Second, suppose N/T 5 6 κj < N/T 1−c. Then

Pr

»
|eκj − κj | > N

T

–
= Pr

»˛̨
˛̨zj − U

N
κj

˛̨
˛̨ >

U

T

–

< 2 exp

−Uκj/N

4

„
N

Tκj

«2
!

< 2 exp

„
− U

4T 1+c

«

= 2T−6

where the second line follows from a Chernoff bound
and the third from κj < N/T 1−c.

Third, suppose κj < N/T 5. Then

Pr
[
|κ̃j − κj | > N

T

]
= Pr

[∣∣∣∣zj − U

N
κj

∣∣∣∣ >
U

T

]

6 Pr [zj > 2]

6
(

U

2

) (κj

N

)2

6 U2

T 5

(κj

N

)

6 κj

TN

for all sufficiently large T , where the second line fol-
lows from κj < N/T 5, the third from the union bound,
the fourth from κj < N/T 5 (again), and the fifth from
U 6 24T 2 ln T .

Notice that there are at most T 5 values of j such
that κj > N/T 5. So putting all three cases together,

Pr
[
∃j : |κ̃j − κj | > N

T
+

κj

T c

]

6
∑

j:κj>N/T 1−c

Pr
[
|κ̃j − κj | > κj

T c

]

+
∑

j:N/T 56κj<N/T 1−c

Pr
[
|κ̃j − κj | > N

T

]

+
∑

j:κj<N/T 5

Pr
[
|κ̃j − κj | > N

T

]

6 T 5

(
2

T 6

)
+

∑

j:κj<N/T 5

κj

TN

= O

(
1
T

)
.

¤

Now call A a 1-type if f (X) = 1 for all X ∈ A,
or a 0-type if f (X) = 0 for all X ∈ A. Consider
the following randomized algorithm RT to compute
f (X):

1. Run ST to find an estimate κ̃i for each
κi

2. Sort the κ̃i’s in descending order, so
that κ̃1 > · · · > κ̃M

3. If there exists a 1-type A = (a1, a2, . . .)
such that |κ̃i − ai| 6 N

T + ai

T c for all i,
then output f (X) = 1

4. Otherwise output f (X) = 0

Clearly RT makes O
(
T 1+c log T

)
queries, just as

ST does. We now give a sufficient condition for RT

to succeed.

Lemma 12 Suppose that for all 1-types A =
(a1, a2, . . .) and 0-types B = (b1, b2, . . .), there exists
an i such that |ai − bi| > 2N

T + ai+bi

T c . Then RT com-
putes f with bounded probability of error, and hence
R (f) = O

(
T 1+c log T

)
.

Proof. First suppose X ∈ A where A = (a1, a2, . . .)
is a 1-type. Then by Lemma 11, with probability
1−O (1/T) we have |κ̃i − ai| 6 N

T + ai

T c for all i (it is
easy to see that sorting the κ̃i’s can only decrease the
maximum difference). Provided this occurs, RT finds
some 1-type close to (κ̃1, κ̃2, . . .) (possibly A itself)
and outputs f (X) = 1.

Second, suppose X ∈ B where B = (b1, b2, . . .) is
a 0-type. Then with probability 1 − O (1/T) we
have |κ̃i − bi| 6 N

T + bi

T c for all i. Provided this
occurs, by the triangle inequality, for every 1-type
A = (a1, a2, . . .) there exists an i such that

|κ̃i − ai| > |ai − bi| − |κ̃i − bi| > N

T
+

ai

T c
.

Hence RT does not find a 1-type close to (κ̃1, κ̃2, . . .),
and it outputs f (X) = 0. ¤

In particular, suppose we keep decreasing T until
there exists a 1-type A∗ = (a1, a2, . . .) and a 0-type
B∗ = (b1, b2, . . .) such that

|ai − bi| 6 3N

T
+

ai + bi

T c
(1)

for all i, stopping as soon as that happens. Then
Lemma 12 implies that we will still have R (f) =
O

(
T 1+c log T

)
. For the rest of the proof, we will

fix that “almost as small as possible” value of T for

343

S. AARONSON, A. AMBAINIS

which (1) holds, as well as the 1-type A∗ and the 0-
type B∗ that RT “just barely distinguishes” from one
another.

2.2 The chopping procedure

Given two sets of inputs A and B with A ∩B = ∅,
let Q (A,B) be the minimum number of queries made
by any quantum algorithm that accepts every X ∈ A
with probability at least 2/3, and accepts every Y ∈ B
with probability at most 1/3. Also, let Qε (A, B) be
the minimum number of queries made by any quantum
algorithm that accepts every X ∈ A with at least some
probability p, and that accepts every Y ∈ B with
probability at most p−ε. Then we have the following
basic relation:

Proposition 13 Q(A,B) = O
(

1
ε Qε (A,B)

)
for all

A,B and all ε > 0.

Proof. This follows from standard amplitude estima-
tion techniques (see Brassard et al. [9] for example).

¤

The rest of the proof is going to consist of lower-
bounding Q (A∗,B∗), the quantum query complexity
of distinguishing inputs of type A∗ from inputs of
type B∗. We do this via a hybrid argument. Let
L := dlog2 Ne. At a high level, we will construct two
sequences of types, A0, . . . ,AL and B0, . . . ,BL, such
that

(i) A0 = A∗,
(ii) B0 = B∗,
(iii) AL = BL, and
(iv) Q (A`,A`−1) and Q (B`,B`−1) are large for ev-

ery ` ∈ [L].

Provided we can do this, it is not hard to see that
we get the desired lower bound on Q (A∗,B∗). For
suppose a quantum algorithm distinguishes A0 = A∗
from B0 = B∗ with constant bias. Then by the trian-
gle inequality, it must also distinguish some A` from
A`+1, or some B` from B`+1, with reasonably large
bias (say Ω (1/ log N)). And by Proposition 13, any
quantum algorithm that succeeds with bias ε can be
amplified, with O (1/ε) overhead, to an algorithm that
succeeds with constant bias.

We now describe the procedure for creating the in-
termediate types A` and B`. Intuitively, we want
to form A` from A`−1, and B` from B`−1, by “chop-

ping the rows” of their respective Young diagrams,
whenever a row of A` sticks out further than the cor-
responding row of B` or vice versa. This way, we can
gradually makeA` and B` more similar to one another.
To describe how this works, it will be convenient to
relax the notion of a type slightly. Let a row-array
be a list of 2N nonnegative integers (a1, . . . , a2N), not
necessarily sorted, such that a1+· · ·+a2N = N . Note
that every type (a1, . . . , au) is also a row-array, if we
adopt the convention that au+1 = · · · = a2N = 0.
Also, every row-array (a1, . . . , a2N) can be converted
to a type A = type (a1, . . . , a2N) in a unique way, by
simply sorting the ai’s in descending order.

We construct the intermediate types A1,A2, . . .
via the following procedure. In this procedure,
(a1, . . . , a2N) is a row-array that is initialized to A∗,
and B∗ = (b1, b2, . . .).

1. let P be the first power of 2 greater
than or equal to N

2. for ` := 1 to L

(a) for every i ∈ [2N] such that ai − bi > P/2` and
ai > P/2`

i. set ai := ai − P/2`

ii. find a j ∈ [2N] such that aj = bj = 0, and
set aj := P/2`

(b) set A` := type (a1, . . . , a2N)

The procedure to produce B1,B2, . . . is exactly the
same, except with the roles of a and b reversed. The
procedure is illustrated pictorially in Figure 1.

Figure1: Chopping a row of Al’s Young diagram to make

it more similar to Bl.

We start with some simple observations. First, by
construction, this procedure halts after L = O (log N)
iterations. Second, within a given iteration `, no row
i is ever chopped more than once—for if it could be,
then it would have been chopped in a previous itera-
tion. (This is just saying that the integer ai − bi can
be written uniquely as a sum of powers of 2.) Third,
initially ai = bi = 0 for all N + 1 6 i 6 2N , and there
are at most N−1 chopping steps throughout the whole
procedure. That is why it is always possible to find
a j ∈ [2N] such that aj = bj = 0.

344

THE NEED FOR STRUCTURE IN QUANTUM SPEEDUPS

Define

‖A − B‖ :=
1
2

N∑

i=1

|ai − bi| .

Then it is not hard to see that A1,A2, . . . and
B1,B2, . . . both evolve toward the same final config-
uration: namely, ‖A∗ − B∗‖ singleton rows, together
with one row of length min {ai, bi} for each i such that
min {ai, bi} > 0. We therefore have the key fact that
AL = BL.

Notice that ‖A` −A`−1‖ = rP/2`, where r is the
number of rows that get chopped in the `th iteration.
We now prove an upper bound on ‖A` −A`−1‖ when
` is small, which will be useful later.

Lemma 14 If ` 6 (log2 T) − 2, then ‖A` −A`−1‖ 6
8N
T c .

Proof. Let C be the set of rows that are chopped in
going from A`−1 to A`; then each row i ∈ C decreases
in length by P/2`. It follows that, if we let j = j (i) be
the “ancestral row” in A∗ = (a1, a2, . . .) that i came
from, we must have

P

2`
6 |aj − bj | 6 3N

T
+

aj + bj

T c
.

Since ` 6 (log2 T)− 2, the left inequality implies

|aj − bj | > 4N

T
,

which combined with the right inequality yields

aj + bj

T c
> N

T
.

Now let R :=
⋃

i∈C j (i) be the set of all ancestral
rows. Then

‖A` −A`−1‖ 6
∑

i∈R

|ai − bi|

6
∑

i∈R

(
3N

T
+

ai + bi

T c

)

6 4
∑

i∈R

ai + bi

T c

6 8N

T c
.

¤

2.3 Quantum lower bounds

Recall that we listed four properties that we needed
the chopping procedure to satisfy. We have already
seen that it satisfies properties (i)-(iii), so the remain-
ing step is to show that it satisfies property (iv). That
is, we need to lower-bound Q (A`,A`−1), the bounded-
error quantum query complexity of distinguishing in-
puts of type A` from inputs of type A`−1. (Lower-
bounding Q (B`,B`−1) is exactly analogous.) To do
this, it will be convenient to consider two cases: first,
that forming A` involved chopping few elements of
A`−1, and second, that it involved chopping many el-
ements. We will show that we “win either way,” by a
different quantum lower bound in each case.

First consider the case that few elements were
chopped. Here we prove a lower bound using Am-
bainis’s quantum adversary method [5], in its “gen-
eral” form (the one used, for example, to lower-bound
the quantum query complexity of inverting a permu-
tation). For completeness, we now state Ambainis’s
adversary theorem in the form we will need.

Theorem 15 (Ambainis [5]) Let A,B ⊆ [M]N be
two sets of inputs with A∩B = ∅. Let R ⊆ A×B be
a relation on input pairs, such that for every X ∈ A
there exists at least one Y ∈ B with (X, Y) ∈ R and
vice versa. Given inputs X = (x1, . . . , xN) in A and
Y = (y1, . . . , yN) in B, let

qX,i = Pr
Y ∈B

[xi 6= yi | (X,Y) ∈ R] ,

qY,i = Pr
X∈A

[xi 6= yi | (X, Y) ∈ R] .

Suppose that qX,iqy,i 6 α for every (X, Y) ∈ R and
every i ∈ [N] such that xi 6= yi. Then Q(A,B) =
Ω (1/

√
α).

Using Theorem 15, we can prove the following lower
bound on Q (A`,A`−1).

Lemma 16 Let d = ‖A` −A`−1‖, and assume d 6
N/2. Then Q(A`,A`−1) = Ω

(√
N/d

)
.

Proof. Let A`−1 = (a1, a2, . . .), and let
i (1) , . . . , i (r) be the r rows in A`−1 that get
chopped. Recall that in going from A`−1 to A`, we
chop each row i (j) into a row of length ai(j) − P/2`

and another row of length P/2`, so that d = rP/2`.

Now, given inputs X = (x1, . . . , xN) in A`−1 and
Y = (y1, . . . , yN) in A`, we set (X, Y) ∈ R if and only
if one can transform X to Y in the following way:

345

S. AARONSON, A. AMBAINIS

(1) Find distinct h1, . . . , hr ∈ [M] such that for each
j ∈ [r], there are exactly ai(j) indices i ∈ [N]
satisfying xi = hj .

(2) For each j ∈ [r], change exactly P/2` of the xi’s
that are equal to hj to something else.

(3) Swap the d elements of X that were changed in
step (2) with any other d elements of X.

The procedure is illustrated pictorially in Figure 2.
Note that we can reverse the procedure in a natural
way to go from Y back to X:

Figure 2:In this example, N = 11, r = 2, P/2` = 2, and

a1 = a2 = 3. So we transform X to Y by choosing h1 = 1

and h2 = 2, changing any two elements equal to h1 and

any two elements equal to h2, and then swapping the four

elements that we changed with four unchanged elements.

(1) Find distinct h1, . . . , hr ∈ [M] such that for each
j ∈ [r], there are exactly P/2` indices i ∈ [N]
satisfying yi = hj .

(2) For each j ∈ [r], change all of the yi’s that are
equal to hj to something else.

(3) Swap the d elements of Y that were changed in
step (2) with any other d elements of Y .

Fix any (X,Y) ∈ R, and let i ∈ [N] be any index
such that xi 6= yi. Then applying Theorem 15, we
claim that either qX,i 6 d

N−d or qY,i 6 d
N−d . To

see this, observe that either xi is one of the “other
d elements” in step (3) of the X → Y conversion, in
which case

Pr
Y ′∈A`

[xi 6= y′i | (X,Y ′) ∈ R] 6 d

N − d
,

or else yi is one of the “other d elements” in step (3)
of the Y → X conversion, in which case

Pr
X′∈A`−1

[x′i 6= yi | (X ′, Y) ∈ R] 6 d

N − d
.

Hence
qX,iqY,i 6 d

N − d
.

So by Theorem 15,

Q (A`,A`−1) = Ω
(

1√
qX,iqY,i

)

= Ω

(√
N − d

d

)
= Ω

(√
N

d

)
.

¤

We now consider the case that many elements are
chopped. Here we prove a lower bound by reduc-
tion from Set Equality. Given two sequences of
integers Y ∈ [M]N and Z ∈ [M]N , neither with
any repeats, the Set Equality problem is to de-
cide whether Y and Z are equal as sets or disjoint
as sets, promised that one of these is the case. Set
Equality is similar to the collision problem studied
by Aaronson and Shi [3], but it lacks permutation sym-
metry, making it harder to prove a lower bound by the
polynomial method. By combining the collision lower
bound with Ambainis’s adversary method, Midrijanis
[18] was nevertheless able to show the following:

Theorem 17 (Midrijanis [18])

Q (Set Equality) = Ω
(
(N/ log N)1/5

)
.

We now use Theorem 17 to prove another lower
bound on Q (A`,A`−1).

Lemma 18 Suppose A` was formed from A`−1 by
chopping r rows. Then

Q(A`,A`−1) = Ω

((
r

log r

)1/5
)

.

Proof. We will show how to embed a Set Equality
instance of size r into the A` versus A`−1 problem.

Let A`−1 = (a1, . . . , au). Also, let i (1) , . . . , i (r) ∈
[u] be the r rows that are chopped in going from A`−1

to A`, and let j (1) , . . . , j (u− r) ∈ [u] be the u − r
rows that are not chopped. Recall that, in going from
A`−1 to A`, we chop each row i (k) into a row of length
ai(k) − P/2` and another row of length P/2`.

Now let Y = (y1, . . . , yr) and Z = (z1, . . . , zr) be
an instance of Set Equality. Then we construct
an input X ∈ [M]N as follows. First, for each k ∈ [r],
set ai(k) − P/2` of the xi’s equal to yk, and set P/2`

of the xi’s equal to zk. Next, let w1, w2, . . . ∈ [M]
be a list of numbers that are guaranteed not to be in
Y ∪Z. Then for each k ∈ [u− r], set aj(k) of the xi’s
equal to wk.

It is easy to see that, if Y and Z are equal as sets,
then X will have type A`−1, while if Y and Z are dis-
joint as sets, then X will have type A`. So in decid-
ing whether X belongs to A` or A`−1, we also decide

346

THE NEED FOR STRUCTURE IN QUANTUM SPEEDUPS

whether Y and Z are equal or disjoint. The lemma
now follows from Theorem 17. ¤

2.4 Putting everything together

Let C be a quantum query algorithm that distin-
guishes A0 = A∗ from B0 = B∗, and assume C
is optimal: that is, it makes Q (A∗,B∗) 6 Q (f)
queries. As mentioned earlier, we can assume that
Pr [C accepts X] depends only on the type of X. So
let

p` := Pr [C accepts X ∈ A`] ,
q` := Pr [C accepts X ∈ B`] .

Then by assumption, |p0 − q0| > 1/3. Since pL = qL,
this implies that either |p0 − pL| > 1/6 or |q0 − qL| >
1/6. Assume the former without loss of generality.

Now let β` := 1
10`2 , and observe that

∑∞
`=1 β` < 1

6 .
By the triangle inequality, it follows that there exists
an ` ∈ [L] such that |p` − p`−1| > β`. In other words,
we get a Q (f)-query quantum algorithm that distin-
guishes A` from A`−1 with bias β`. By Proposition
13, this immediately implies

Q (A`,A`−1) = O

(
Q(f)

β`

)

or equivalently

Q (f) = Ω
(

Q(A`,A`−1)
`2

)
.

Now let d = ‖A` −A`−1‖, and suppose A` was pro-
duced from A`−1 by chopping r rows. Then d =
rP/2` 6 2rN/2`. So combining Lemmas 16 and 18,
we find that

Q (A`,A`−1) = Ω

(
max

{√
N

d
,

(
r

log r

)1/5
})

= Ω

(√
2`

r
+

(
r

log r

)1/5
)

= Ω
(

2`/7

`1/7

)

since the minimum occurs when r ≈ 25`/7`2/7. If
` 6 (log2 T) − 2, then combining Lemmas 16 and 14,
we also have the lower bound

Q (A`,A`−1) = Ω

(√
N

8N/T c

)
= Ω

(√
T c

)
.

Hence

Q (f) =





Ω
(√

T c

`2

)
if ` 6 (log2 T)− 2

Ω
(

1
`2 · 2`/7

`1/7

)
if ` > (log2 T)− 2

Let us now make the choice c = 2/7, so that we get a
lower bound of

Q (f) = Ω
(

T 1/7

log15/7 T

)

in either case. Hence T = O(Q (f)7 log15 Q (f)). So
by Lemma 12,

R (f) = O(T 1+c log T)

= O(T 9/7 log T)

= O(Q (f)9 log21 Q (f)).

This completes the proof of Theorem 5.

3 Quantum lower bounds under
the uniform distribution

In this section, we consider the problems of P
?=

BQP relative to a random oracle, and of simulating
a T -query quantum algorithm on most inputs using
TO(1) classical queries. We show that these problems
are connected to a fundamental conjecture about in-
fluences in low-degree polynomials.

Let p : {0, 1}N → [0, 1] be a real polynomial. Given
a string X ∈ {0, 1}N , let Xi denote X with the ith

bit flipped. The following notions will play important
roles in this section: the L1-variance Vr [p] of p, the
influence Infi [p] of the ith variable xi, the total influ-
ence SumInf [p], and the L2-norm ‖p‖22.

Vr [p] := E
X,Y ∈{0,1}N

[|p (X)− p (Y)|] ,

Infi [p] := E
X∈{0,1}N

[∣∣p (X)− p
(
Xi

)∣∣] ,

SumInf [p] :=
N∑

i=1

Infi [p] ,

‖p‖22 := E
X∈{0,1}N

[
p (X)2

]
.

Recall Conjecture 6, which stated that bounded poly-
nomials have influential variables: that is, for ev-
ery degree-d polynomial p : RN → R such that
0 6 p (X) 6 1 for all X ∈ {0, 1}N , there exists an
i ∈ [N] such that Infi [p] > (Vr [p] /d)O(1). Assuming

347

S. AARONSON, A. AMBAINIS

Conjecture 6, we will derive a number of consequences
for quantum complexity theory.

To do so, we first need a lemma that slightly gener-
alizes a result of Shi [21].

Lemma 19 Suppose a quantum algorithm makes T
queries, and accepts the input X ∈ {0, 1}N with prob-
ability p (X). Then SumInf [p] = O (T).

Proof. Let |ψX〉 be the final state of the quantum
algorithm if the input is X, and let

E := E
X∈{0,1}N ,i∈[N]

[
‖|ψX〉 − |ψXi〉‖2

]
.

Then Lemma 4.3 of Shi [21] implies that E 6 2T/N .
Hence

SumInf [p] = N · E
X∈{0,1}N ,i∈[N]

h˛̨
˛p (X)− p

“
Xi
”˛̨
˛
i

6 N · 2E 6 4T.

¤

We also need the following lemma of Beals et al. [6].

Lemma 20([6]) Suppose a quantum algorithm Q

makes T queries to a Boolean input X ∈ {0, 1}N .
Then Q’s acceptance probability is a real multilinear
polynomial p (X), of degree at most 2T .

We now prove our first consequence of Conjecture
6: namely, that it implies the folklore Conjecture 4.

Theorem 21 Suppose Conjecture 6 holds, and let
ε, δ > 0. Then given any quantum algorithm Q
that makes T queries to a Boolean input X, there
exists a deterministic classical algorithm that makes
poly (T, 1/ε, 1/δ) queries, and that approximates Q’s
acceptance probability to within an additive constant ε
on a 1− δ fraction of inputs.

Proof. Let p (X) be the probability that Q accepts
input X = x1 . . . xN . Then Lemma 20 says that p
is a real polynomial of degree at most 2T . Assume
Conjecture 6: that for every such p, there exists a
variable i satisfying Infi [p] > q (Vr [p] /T), for some
fixed polynomial q. Under that assumption, we give
a classical algorithm C that makes poly (T, 1/ε, 1/δ)
queries to the xi’s, and that approximates p (X) on
most inputs X.

1. set p0 := p

2. for j := 0, 1, 2, . . .:

(a) if Vr [pj] 6 εδ, output p (X) ≈
EY ∈{0,1}N−j [pj (Y)] and halt

(b) else
i. find an i ∈ [N − j] such that

Infi [pj] > q (εδ/T)
ii. query xi, and let pj+1 : RN−j → R be

the polynomial induced by the answer

If C halts, then by assumption Vr [pt] 6 εδ. So
clearly

E
X∈{0,1}N−j

[|pj (X)− E [pj]|]

6 E
X,Y ∈{0,1}N−j

[|pj (X)− pj (Y)|] 6 εδ

as well. By Markov’s inequality, this implies

Pr
X∈{0,1}N−j

[|pj (X)− E [pj]| > ε] < δ,

which proves C’s correctness.

On the other hand, suppose Vr [pj] > εδ. Then by
Conjecture 6, there exists an i such that

E [SumInf [pj+1]] < SumInf [pj]− q

(
εδ

T

)

where the expectation is taken over the two possible
values for xi. (Since we are considering a random
input, xi = 0 with probability 1/2 and xi = 1 with
probability 1/2.) Let Q [pj] be the expected number
of variables queried by the algorithm C before it halts.
Then,

Q [pj] = E [Q [pj+1]] + 1.

From these two equations, we can deduce that

Q [pj] 6 SumInf [pj]
q
(

εδ
T

)

Since SumInf [p0] = O (T) (by Lemma 19), it follows
that the expected number of variables queried by C is
at most

SumInf [p0]
q (εδ/T)

6
(

T

εδ

)O(1).

¤

An immediate corollary is the following:

Corollary 22 Suppose Conjecture 6 holds. Then
Dε+δ (f) 6 (Qε (f) /δ)O(1) for all Boolean functions
f and all ε, δ > 0.

Proof. Let Q be a quantum algorithm that evaluates
f (X), with bounded error, on a 1−ε fraction of inputs
X ∈ {0, 1}N . Let p (X) := Pr [Q accepts X]. Now

348

THE NEED FOR STRUCTURE IN QUANTUM SPEEDUPS

run the classical simulation algorithm C from The-
orem 21, to obtain an estimate p̃ (X) of p (X) such
that

Pr
X∈{0,1}N

[
|p̃ (X)− p (X)| 6 1

10

]
> 1− δ.

Output f (X) = 1 if p̃ (X) > 1
2 and f (X) = 0 oth-

erwise. By the theorem, this requires poly (T, 1/δ)
queries to X, and by the union bound it successfully
computes f (X) on at least a 1−ε−δ fraction of inputs
X. ¤

We also get the following complexity consequence:

Theorem 23 Suppose Conjecture 6 holds. Then P =
P#P implies BQPA ⊂ AvgPA with probability 1 for a
random oracle A.

Proof. Let Q be a polynomial-time quantum Tur-
ing machine that queries an oracle A, and assume
Q decides some language L ∈ BQPA with bounded
error. Given an input x ∈ {0, 1}n, let px (A) :=
Pr

[
QA (x) accepts

]
. Then clearly px (A) depends

only on some finite prefix B of A, of size N = 2poly(n).
Furthermore, Lemma 20 implies that px is a polyno-
mial in the bits of B, of degree at most poly (n).

Assume Conjecture 6 as well as P = P#P. Then
we claim that there exists a deterministic polynomial-
time algorithm C such that for all Q and x ∈ {0, 1}n,

Pr
A

[
|p̃x (A)− px (A)| > 1

10

]
<

1
n3

, (2)

where p̃x (A) is the output of C given input x and
oracle A. This C is essentially just the algorithm
from Theorem 21. The key point is that we can im-
plement C using not only poly (n) queries to A, but
also poly (n) computation steps.

To prove the claim, let M be any of the 2poly(n)

monomials in the polynomial pj from Theorem 21, and
let αM be the coefficient of M . Then notice that αM

can be computed to poly (n) bits of precision in P#P,
by the same techniques used to show BQP ⊆ P#P [8].
Therefore the expectation

E
Y ∈{0,1}N−j

[pj (Y)] =
∑

M

αM

2|M |

can be computed in P#P as well. The other two
quantities that arise in the algorithm—Vr [pj] and
Infi [pj]—can be computed in the second level of the
counting hierarchy CH = P#P∪P#P#P∪· · · (since they

involve an exponential sum inside of an absolute value
sign, and another exponential sum outside of it). This
means that finding an i such that Infi [pj] > q

(
ε2/T

)
is in the third level of the counting hierarchy. But
under the assumption P = P#P, the entire counting
hierarchy collapses to P. Therefore all of the compu-
tations needed to implement C take polynomial time.

Now let δn (A) be the fraction of inputs x ∈ {0, 1}n

such that |p̃x (A)− px (A)| > 1
10 . Then by (2) to-

gether with Markov’s inequality,

Pr
A

[
δn (A) >

1
n

]
<

1
n2

.

Since
∑∞

n=1
1

n2 converges, it follows that δn (A) 6 1
n

for all but finitely many values of n, with probability
1 over A. Assuming this occurs, we can simply hard-
wire the behavior of Q on the remaining n’s into our
classical simulation procedure C. Hence L ∈ AvgPA.

Since the number of BQPA languages is countable,
the above implies that L ∈ AvgPA for every L ∈ BQPA

simultaneously (that is, BQPA ⊂ AvgPA) with proba-
bility 1 over A. ¤

As a side note, suppose we had an extremely strong
variant of Conjecture 6, one that implied something
like

Pr
A

[
|p̃x (A)− px (A)| > 1

10

]
<

1
exp (n)

.

in place of (2). Then we could eliminate the need for
AvgP in Theorem 23, and show that P = P#P implies
PA = BQPA with probability 1 for a random oracle
A.

We conclude this section with some unconditional
results. These results will use Theorem 9 of Dinur et
al. [13]: that for every degree-d polynomial p : RN →
R such that 0 6 p (X) 6 1 for all X ∈ {0, 1}N , there
exists a polynomial p̃ depending on at most 2O(d)/ε2

variables such that ‖p̃− p‖22 6 ε.

Theorem 9 has the following simple corollary.

Corollary 24 Suppose a quantum algorithm Q makes
T queries to a Boolean input X ∈ {0, 1}N . Then for
all α, δ > 0, we can approximate Q’s acceptance prob-
ability to within an additive constant α, on a 1 − δ

fraction of inputs, by making 2O(T)

α4δ4 deterministic clas-
sical queries to X. (Indeed, the classical queries are
nonadaptive.)

Proof. Let p (X) := Pr [Q accepts X]. Then p is

349

S. AARONSON, A. AMBAINIS

a degree-2T real polynomial by Lemma 20. So by
Theorem 9, there exists a polynomial p̃, depending on
K = 2O(T)

α4δ4 variables xi1 , . . . , xiK , such that

E
X∈{0,1}N

[
(p̃ (X)− p (X))2

]
6 α2δ2.

By Cauchy-Schwarz, then,

E
X∈{0,1}N

[|p̃ (X)− p (X)|] 6 αδ,

so by Markov’s inequality

Pr
X∈{0,1}N

[|p̃ (X)− p (X)| > α] < δ.

Thus, our algorithm is simply to query xi1 , . . . , xiK
,

and then output p̃ (X) as our estimate for p (X). ¤

Likewise:

Corollary 25 Dε+δ (f) 6 2O(Qε(f))/δ4 for all Boolean
functions f and all ε, δ > 0.

Proof. Set α to any constant less than 1/6, then
use the algorithm of Corollary 24 to simulate the
ε-approximate quantum algorithm for f . Output
f (X) = 1 if p̃ (X) > 1

2 and f (X) = 0 otherwise.
¤

Given an oracle A, let BQPA[log] be the class of
languages decidable by a BQP machine able to make
O (log n) queries to A. Also, let AvgPA

|| be the class
of languages decidable, with probability 1− o (1) over
x ∈ {0, 1}n, by a P machine able to make poly (n)
parallel (nonadaptive) queries to A. Then we get the
following unconditional variant of Theorem 23.

Theorem 26 Suppose P = P#P. Then BQPA[log] ⊂
AvgPA

|| with probability 1 for a random oracle A.

Proof. The proof is essentially the same as that of
Theorem 23, except that we use Corollary 24 in place
of Conjecture 6 In the proof of Corollary 24, observe
that the condition

E
X∈{0,1}N

[|p̃ (X)− p (X)|] 6 αδ

implies

E
X∈{0,1}N

[|pµ (X)− p (X)|] 6 αδ (3)

as well, where pµ (X) equals the mean of p (Y) over
all inputs Y that agree with X on xi1 , . . . , xiK . Thus,
given a quantum algorithm that makes T queries to an

oracle string, the computational problem that we need
to solve boils down to finding a subset of the oracle
bits xi1 , . . . , xiK such that K = 2O(T)

α4δ4 and (3) holds.
Just like in Theorem 23, this problem is solvable in
the counting hierarchy CH = P#P ∪ P#P#P ∪ · · · . So
if we assume P = P#P, it is also solvable in P.

In Theorem 23, the conclusion we got was BQPA ⊂
AvgPA with probability 1 for a random oracle A. In
our case, the number of classical queries K is exponen-
tial (rather than polynomial) in the number of quan-
tum queries T , so we only get BQPA[log] ⊂ AvgPA.
On the other hand, since the classical queries are
nonadaptive, we can strengthen the conclusion to
BQPA[log] ⊂ AvgPA

|| . ¤

4 Open problems

It would be nice to improve the R (f) =
O(Q (f)9 polylog Q (f)) bound for all symmetric prob-
lems. As mentioned earlier, we conjecture that
the right answer is R (f) = O(Q (f)2). Note
that if one could tighten Midrijanis’s quantum lower
bound for Set Equality [18] from Ω((N/ log N)1/5)
to Ω(N1/3), then an improvement to R (f) =
O(Q (f)7 polylog Q (f)) would follow immediately.
However, it seems better to avoid using Set Equal-
ity altogether. After all, it is a curious feature of
our proof that, to get a lower bound for all sym-
metric problems, we need to reduce from the non-
symmetric Set Equality problem, which in turn is
lower-bounded by a reduction from the symmetric col-
lision problem!

We also conjecture that R (f) 6 Q(f)O(1) for all
partial functions f that are symmetric only under per-
muting the inputs (and not necessarily the outputs).
Proving this seems to require a new approach.

It would be interesting to reprove the R (f) 6
Q (f)O(1) bound using only the polynomial method,
and not the adversary method. Or, to rephrase this
as a purely classical question: for all X = (x1, . . . , xN)
in [M]N , let BX be the N ×M matrix whose (i, j)th

entry is 1 if xi = j and 0 otherwise. Then given a
set S ⊆ [M]N and a function f : S → {0, 1}, let
d̃eg (f) be the minimum degree of a real polynomial
p : RMN → R such that

(i) 0 6 p (BX) 6 1 for all X ∈ [M]N , and

(ii) |p (BX)− f (X)| 6 1
3 for all X ∈ S.

350

THE NEED FOR STRUCTURE IN QUANTUM SPEEDUPS

Then is it the case that R (f) 6 d̃eg (f)O(1) for all
permutation-invariant functions f?

On the random oracle side, the obvious problem
is to prove Conjecture 6—thereby establishing that
Dε (f) and Qδ (f) are polynomially related, and all
the other consequences shown in Section 3. Alter-
natively, one could look for some technique that was
tailored to polynomials p that arise as the acceptance
probabilities of quantum algorithms. In this way, one
could conceivably solve Dε (f) versus Qδ (f) and the
other quantum problems, without settling the general
conjecture about bounded polynomials.

Acknowledgments

We thank Andy Drucker, Ryan O’Donnell, and
Ronald de Wolf for helpful discussions.

Scott Aaronson was supported by the National
Science Foundation under Grant No. 0844626,
a DARPA YFA grant and the Keck Foundation.
Andris Ambainis was supported by ESF project
1DP/1.1.1.2.0/09/APIA/VIAA/044, FP7 Marie
Curie Grant PIRG02-GA-2007-224886 and FP7
FET-Open project QCS.

References

[1] S. Aaronson.Quantum lower bound for the col-
lision problem. In Proc. ACM STOC, pages 635-
642, 2002. quant-ph/0111102.

[2] S. Aaronson.BQP and the polynomial hierarchy.
In Proc. ACM STOC, 2010. arXiv:0910.4698.

[3] S. Aaronson and Y. Shi.Quantum lower bounds
for the collision and the element distinctness
problems. J. ACM, 51(4):595-605, 2004.

[4] D. Aharonov, V. Jones, and Z. Landau. A poly-
nomial quantum algorithm for approximating the
Jones polynomial. In Proc. ACM STOC, pages
427-436, 2006. quant-ph/0511096.

[5] A. Ambainis.Quantum lower bounds by quan-
tum arguments. J. Comput. Sys. Sci., 64:750-
767, 2002. Earlier version in ACM STOC 2000.
quant-ph/0002066.

[6] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and
R. d. Wolf. Quantum lower bounds by polyno-
mials. J. ACM, 48(4):778-797, 2001. Earlier ver-
sion in IEEE FOCS 1998, pp. 352-361. quant-
ph/9802049.

[7] C. Bennett, E. Bernstein, G. Brassard, and U.
Vazi-rani. Strengths and weaknesses of quantum
com-puting. SIAM J. Comput., 26(5):1510-1523,
1997. quant-ph/9701001.

[8] E. Bernstein and U. Vazirani. Quantum complex-
ity theory. SIAM J. Comput., 26(5):1411-1473,
1997. First appeared in ACM STOC 1993.

[9] G. Brassard, P. Hφyer, M. Mosca, and A. Tapp.
Quantum amplitude amplification and estima-
tion. In S. J. Lomonaco and H. E. Brandt, ed-
itors, Quantum Computation and Information,
Contemporary Mathematics Series. AMS, 2002.
quant-ph/0005055.

[10] G. Brassard, P. Hφyer, and A. Tapp.Quantum al-
gorithm for the collision problem. ACM SIGACT
News, 28:14-19, 1997. quant-ph/9705002.

[11] H. Buhrman and R. d. Wolf. Complexity mea-
sures and decision tree complexity: a survey.
Theoreti-cal Comput. Sci., 288:21-43, 2002.

[12] W. v. Dam, S. Hallgren, and L. Ip.Quantum al-
gorithms for some hidden shift problems. SIAM
J. Comput., 36(3):763-778, 2006.Conference ver-
sion in SODA 2003. quant-ph/0211140.

[13] I. Dinur, E. Friedgut, G. Kindler, and R.
O’Donnell. On the Fourier tails of bounded func-
tions over the discrete cube. In Proc. ACM
STOC, pages 437-446, 2006.

[14] L. Fortnow and J. Rogers.Complexity limitations
on quantum computation. J. Comput. Sys. Sci.,
59(2):240-252, 1999. cs.CC/9811023.

[15] L. K. Grover.A fast quantum mechanical algo-
rithm for database search. In Proc. ACM STOC,
pages 212-219, 1996. quant-ph/9605043.

[16] A. Harrow, A. Hassidim, and S. Lloyd. Quan-
tum algorithm for solving linear systems of equa-
tions. Phys. Rev. Lett., 15(150502), 2009.
arXiv:0811.3171.

[17] J. Kahn, M. Saks, and C. Smyth. A dual version
of Reimer’s inequality and a proof of Rudich’s
con-jecture. In Proc. IEEE Conference on Com-
putational Complexity, pages 98-103, 2000.

[18] G. Midrijanis. A polynomial quantum query
lower bound for the set equality problem. In Proc.
Intl. Colloquium on Automata, Languages, and
Programming (ICALP), pages 996-1005, 2004.
quant-ph/0401073.

351

S. AARONSON, A. AMBAINIS

[19] R. O’Donnell, M. E. Saks, O. Schramm, and R.
A. Servedio. Every decision tree has an influen-
tial variable. In Proc. IEEE FOCS, pages 31-39,
2005.

[20] R. Paturi.On the degree of polynomials that ap-
proximate symmetric Boolean functions. In Proc.
ACM STOC, pages 468-474, 1992.

[21] Y. Shi. Lower bounds of quantum black-box com-
plexity and degree of approximating polynomials
by in?uence of Boolean variables. Inform. Proc.
Lett., 75(1-2):79-83, 2000. quant-ph/9904107.

[22] P. W. Shor. Polynomial-time algorithms for
prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput.,
26(5):1484-1509, 1997. Earlier version in IEEE
FOCS 1994. quant-ph/9508027.

[23] D. Simon. On the power of quantum computa-
tion. In Proc. IEEE FOCS, pages 116-123, 1994.

[24] C.D. Smyth. Reimer’s inequality and Tardos’
conjecture. In Proc. ACM STOC, pages 218-221,
2002.

A The Boolean case

Given a partial Boolean function f : {0, 1}N →
{0, 1, ∗}, call f symmetric if f (X) depends only on
the Hamming weight |X| := x1 + · · ·+ xN . For com-
pleteness, in this appendix we prove the following ba-
sic fact:

Theorem 27 R(f) = O(Q (f)2) for every partial
symmetric Boolean function f .

For total symmetric Boolean functions, Theorem 27
was already shown by Beals et al. [6], using an approx-
imation theory result of Paturi [20]. Indeed, in the
total case one even has D (f) = O(Q (f)2). So the
new twist is just that f can be partial.

Abusing notation, let f (k) ∈ {0, 1, ∗} be the value
of f on all inputs of Hamming weight k (where as
usual, ∗ means ‘undefined’). Then we have the fol-
lowing quantum lower bound:

Lemma 28 Suppose that f (a) = 0 and f (b) = 1
or vice versa, where a < b and a 6 N/2. Then
Q(f) = Ω

(√
bN

b−a

)
.

Proof. This follows from a straightforward applica-

tion of Ambainis’s adversary theorem (Theorem 15).
Specifically, let A,B ⊆ {0, 1}N be the sets of all
strings of Hamming weights a and b respectively, and
for all X ∈ A and Y ∈ B, put (X,Y) ∈ R if and only
if X ¹ Y (that is, xi 6 yi for all i ∈ [N]). Then

Q (f) = Ω

(√
N − a

b− a
· b

b− a

)
= Ω

(√
bN

b− a

)
.

Alternatively, this lemma can be proved using the
approximation theory result of Paturi [20], following
Beals et al. [6]. ¤

In particular, if we set β := b
N and ε := b−a

N , then
Q (f) = Ω(

√
β/ε). On the other hand, we also have

the following randomized upper bound, which follows
from a Chernoff bound (similar to Lemma 11):

Lemma 29 Assume β > ε > 0. By making O
(
β/ε2

)
queries to an N -bit string X, a classical sampling al-
gorithm can estimate the fraction β := |X| /N of 1 bits
to within an additive error ±ε/3, with success proba-
bility at least (say) 2/3.

So assume the function f is non-constant, and let

γ := max
f(a)=0,f(b)=1

√
bN

b− a
. (4)

Assume without loss of generality that the maximum
of (4) is achieved when a < b and a 6 N/2, if necessary
by applying the transformations f (X) → 1 − f (X)
and f (X) → f (N −X). Now consider the follow-
ing randomized algorithm to evaluate f , which makes
T := O

(
γ2

)
queries:

1. Choose indices i1, . . . , iT ∈ [N] uniformly
at random with replacement

2. Query xi1 , . . . , xiT

3. Set k := N
T (xi1 + · · ·+ xiT

)
4. If there exists a b ∈ {0, . . . , N} such that

f (b) = 1 and |k − b| 6
√

bN
3γ output f (X) =

1
5. Otherwise output f (X) = 0

By Lemma 29, the above algorithm succeeds with
probability at least 2/3, provided we choose T suitably
large. Hence R (f) = O

(
γ2

)
. On the other hand,

Lemma 28 implies that Q (f) = Ω (γ). Hence R (f) =
O(Q (f)2), completing the proof of Theorem 27.

352

