
Evolution-Oriented User-Centric Data
Warehouse

Darja Solodovnikova and Laila Niedrite

Abstract. Data warehouses tend to evolve, because of changes in data sources
and business requirements of users. All these kinds of changes must be properly
handled, therefore, data warehouse development is never-ending process. In this
paper we propose the evolution-oriented user-centric data warehouse design,
which on the one hand allows to manage data warehouse evolution automatically
or semi-automatically, and on the other hand it provides users with the under-
standable, easy and transparent data analysis possibilities. The proposed approach
supports versions of data warehouse schemata and data semantics.

1 Introduction

Data warehouses are databases designed for querying and analysing data. The
main goal of a data warehouse is to provide the most accurate and historically cor-
rect information to users in the most convenient and easy understandable way to
support the analysis of business processes and decision making. On the one hand,
this means that the data warehouse must reflect all the changes that occur in the
analyzed process, and on the other hand users should receive answers to their
questions as fast and easy as possible.

Data warehouses integrate information from various data sources that can
change in the course of time. Besides, business requirements often evolve at the
client level. To reflect this evolution, it is possible to adapt the existing data ware-
house schemata and data extraction, transformation and loading (ETL) processes,
but this solution can cause a loss of history. This is why it is preferable to keep
track of the evolution. This can be realized by data warehouse schema versions.
According to [1], ‘schema version is a schema that reflects the business require-
ments during a given time interval, called its validity, that starts upon schema
creation and extends until the next version is created.’

In this paper we propose the approach to supporting data warehouse evolution,
creation and management of data warehouse schema versions and versions of data
semantics, analysis of data warehouse data by users in easily designed and modi-
fied reports that take into account existence of data warehouse versions.

The rest of this paper is organized as follows. In Section 2 the related work is
presented. In Section 3 the proposed data warehouse framework is outlined. The
Section 4 describes the working example used throughout the rest of the paper for
demonstration purposes. The main contribution of this paper is presented in Sec-
tions 5 and 6, where the metadata model for a multiversion data warehouse is de-
scribed and different aspects of creation and execution of reports are discussed.
We conclude with directions for future work in Section 7.

2 Related Work

In the literature there are various solutions for the data warehouse evolution prob-
lems. In [2] dimension update operators are formally specified, and their effect is
studied over materialized views over dimension levels. In [3] the primitive evolu-
tion operations that occur over the data warehouse schema are defined. In [4] the
generalized data warehouse model formally is defined, which supports extended
hierarchies, and the transformation rules of evolution operators are specified.

The above mentioned papers do not address the problems of the data ware-
house adaptation after changes in data sources. Several approaches have been pro-
posed for solving these problems [5], [6]. These approaches are based on map-
pings or transformations that specify how one schema is obtained from the other
schema. This specification is used to adapt one schema after changes in the other
schema.

In several papers [7], [8] a data warehouse is defined as a set of materialized
views over data sources. These papers study the problems of how to rewrite a
view definition and adapt view extent after changes in source data and schemata.

Several authors [1], [9], [10] propose the data warehouse schema versioning
approach to solve the problems of schema evolution. The main idea in [1] is to
store augmented schemata together with schema versions to support cross-version
querying. Though the metadata of schema versions is mentioned, the details are
not explored. In [10] a method to support data and structure versions of dimen-
sions is proposed. The method allows tracking history and comparing data using
temporal modes of presentation that is data mapping into the particular structure
version. In [9] metadata management solutions in a multiversion data warehouse
are proposed. Issues related to queries over a multiversion data warehouse are
considered in [11], but the translation of queries to SQL is not discussed.

The above mentioned papers consider only one kind of evolution problems, for
example, changes in a data warehouse schema raised by evolving business re-
quirements, changes in data sources or data warehouse. In our approach we pro-
pose the solution that is able to handle all these kinds of evolution problems. Be-
sides there was too little research on implementation methods of data warehouse
evolution and creation and execution of reports on multiple data warehouse
schema versions.

3 Data Warehouse Evolution Framework

To handle data warehouse evolution problems, we propose the data warehouse
framework. The detailed description of the framework is given in [12]. The frame-
work is composed of the development environment, where the metadata repository
is located and ETL processes and change processing is conducted, and the user
environment, where reports on one or several data warehouse versions are defined
and executed by users.

All operation of the data warehouse framework is based on the metadata, which
are used to describe the data warehouse schema versions, their storage in the rela-
tional database and semantics of data stored in the data warehouse, and to accumu-
late information about reports defined by users on schema versions.

The data warehouse evolution framework supports physical, logical and seman-
tic changes that create a new data warehouse schema version. Physical changes
operate with database objects (tables, columns), but logical and semantic changes
modify mainly schema metadata. The examples of physical changes are renaming,
creation or deletion of an attribute, measure, dimension or cube, etc. The examples
of logical changes are connection or disconnection of a dimension from a cube,
creation or deletion of a hierarchy or level, etc. Semantic changes refer to adapta-
tion of meanings of the same data objects. As a result of a logical change, logical
metadata are adapted and there may be no changes at the physical level, except for
new keys or key columns. As a result of a physical change, both logical and
physical metadata are modified. As a result of semantic change usually the seman-
tic and logical metadata are adjusted.

In this paper we will concentrate on the part of the framework related to the
metadata models of data warehouse versions, execution of reports and analysis of
data warehouse data.

4 Working Example

Let us consider a working example of a data warehouse, which was designed at
our university to store data about course usage in the e-learning environment. The
evolution of the data warehouse is depicted in Figure 1. The first version V1 of the
data warehouse was created on 01.09.2004. It contained a cube Activity, where the
number of hits, total usage time in hours, and number of active users was accumu-
lated. It was possible to analyze these measures by the course, tool, user role in a
course and time.

Using this data warehouse, it became obvious that its’ granularity was not satis-
factory and on 01.02.2005 the version V2 was created, where the activity was col-
lected separately for each user and session. The data warehouse was redesigned
and two data warehouse versions were created.

The following changes were conducted to implement the new schema version
of the data warehouse:

• Physical changes:

– Addition of new dimensions User and Session;
– Addition of new dimension attributes Time and Hour of the Time dimen-

sion, SubCategory and Category of the Tool dimension;
– Deletion of measure NumberOfUsers from the Activity cube.

• Logical changes:

– Connection of the User and Session dimensions to the Activity cube;
– Addition of new hierarchy ToolHierarchy to the Tool dimension;
– Addition of new levels ToolName, SubCategory and Category to the

ToolHierarchy; levels Time and Hour to the TimeHierarchy;
– Connection of attributes ToolName, SubCategory, Category, Time and

Hour to the appropriate hierarchy levels.

• Semantic change – Change of meaning of the measure TotalTime from ‘Usage
time in hours‘ to ‘Usage time in seconds’.

Time

PK TimeID

FK1 MonthID
FK2 SemesterID
 Date

Activity

FK1 ToolID
FK2 TimeID
FK3 RoleID
FK4 CourseID
 NumberOfHits
 TotalTime
 NumberOfUsers

Tool

PK ToolID

 ToolName

Course

PK CourseID

FK1 LevelID
FK2 DepartmentID
FK3 BranchID
 Code
 CourseName

V1 Role

PK RoleID

 Role

Level

PK LevelID

 Level

Department

PK DepartmentID

 Department

ScientificBranch

PK BranchID

 ScientificBranch

Month

PK MonthID

FK1 YearID
 Month

Semester

PK SemesterID

FK1 AcademicYearID
 Semester

Year

PK YearID

 Year

AcademicYear

PK AcademicYearID

 AcademicYear

Time

PK TimeID

FK2 HourID
FK1 SemesterID
 Time

Activity

FK1 ToolID
FK2 TimeID
FK3 RoleID
FK4 CourseID
FK5 UserID
FK6 SessionID
 NumberOfHits
 TotalTime

Tool

PK ToolID

FK1 SubCatID
 ToolName

Course

PK CourseID

FK1 LevelID
FK2 DepartmentID
FK3 BranchID
 Code
 CourseName

Role

PK RoleID

 Role

Level

PK LevelID

 Level

Department

PK DepartmentID

 Department

ScientificBranch

PK BranchID

 ScientificBranch

Month

PK MonthID

FK1 YearID
 Month

Semester

PK SemesterID

FK1 AcademicYearID
 Semester

Year

PK YearID

 Year

AcademicYear

PK AcademicYearID

 AcademicYear

V2

User

PK UserID

 Username
 LastName
 FirstName

Session

PK SessionID

 Length
 Access place

SubCategory

PK SubCatID

FK1 CategoryID
 SubCategory

Category

PK CategoryID

 Category

Date

PK DateID

FK1 MonthID
 Date

Hour

PK HourID

FK1 DateID
 Hour

Fig. 1. Data warehouse schema versions

5 Metadata Repository

The metadata repository of the data warehouse evolution framework describes a
data warehouse at three levels, namely logical, physical and semantic levels. Be-

sides the repository also contains reporting metadata, which describes the structure
of reports generated by users.

Common Warehouse Metamodel (CWM) [13] was used as a basis of the pro-
posed metamodel of multidimensional data warehouse. CWM consists of pack-
ages, which describe different aspects of a data warehouse. In the next sections
each type of metadata is outlined.

5.1 Logical Metadata

Metadata at the logical level describe the multidimensional data warehouse
schema. The logical level metadata are based on the OLAP package of CWM and
contains the main objects from this package, such as dimensions and cubes con-
nected by cube-dimension associations, measures, attributes, hierarchies, etc.

To reflect multiple versions of a data warehouse schema, two objects were in-
troduced: SchemaVersion and VersionTransformation (Fig. 2), which are not in-
cluded in CWM. An object SchemaVersion corresponds to a data warehouse
schema version, which is created as a result of some change in a data warehouse
schema. Each schema version has a validity period defined by attributes Valid-
From and ValidTill. Each version, except for the first one, has a link to a previous
version.

Elements of a version are connected to the SchemaVersion by the Version-
Transformation. The association ToElement connects an element of the current
version. A Schema Element can be any element of the logical metamodel, for ex-
ample, Measure, Cube, etc. If an element remains unchanged it is connected to
several versions through the VersionTransformation. The attribute Conversion
stores a function that obtains a changed element from elements of other version.
Elements of other version, which are used to calculate the changed element of a
new version, are connected to VersionTransformation by the association FromE-
lements and the corresponding version is connected by the association FromVer-
sion.

-Name : String
-Description : String

Schema
-ValidFrom : Date
-ValidTill : Date
-IsValid : Boolean

SchemaVersion

11..*

1

0..1

-Conversion : String
VersionTransformationSchemaElement

CubeDimensionAssociation Dimension Hierarchy

1*

-FromVersion 0..1

0..11..*-ToElement1

*
-FromElements {ordered}
*

HierarchyLevelAssociationAttributeLevelAssociation LevelAttributeCubeMeasure

Fig. 2. Schema versions in logical metadata

For the example data warehouse (Fig. 1) in the logical metadata, two schema
versions V1 and V2 are constructed. Both schema versions include dimensions,
cubes, attributes, measures, hierarchies and corresponding associations, according
to the schemata in Figure 1. The elements, which are common to both versions,
are connected by version transformations with empty conversion functions to ver-

sions V1 and V2. The measure NumberOfUsers is connected only to version V1.
Since the granularity of other measures is different in both versions, in the logical
metadata the two different measure objects are constructed for each of the meas-
ures NumberOfHits and TotalTime and connected to each of the versions. The
dimensions User and Session and the corresponding cube-dimension associations
between these dimensions and cube Activity are connected only to version V2.
Also the new attributes of the dimensions Time and Tool and corresponding hier-
archies made of these attributes exist only in the new version V2.

The version transformations given in Table 1 are generated for measures. The
transformations are created from version V2 to version V1, because the transforma-
tions of measures in other direction are not possible. Also transformations are pos-
sible for new Tool dimension attributes Subcategory and Category.

Table 1. Version transformations

FromVersion ToVersion ToElement Conversion
V2 V1 NumberOfUsers COUNT(DISTINCT Activity.UserID)
V2 V1 NumberOfHitsV1 SUM(Activity.NumberOfHitsV2)
V2 V1 TotalTimeV1 SUM(Activity.TotalTimeV2/3600)

5.2 Physical Metadata

Metadata at the physical level describe relational database schema of a data ware-
house and mapping of a multidimensional schema to relational database objects
from the logical level. The model of physical level metadata is shown in Figure 3.
Physical metadata do not include versioning information because in the database
there is only one schema version and versioning is implemented at the logical
level. The physical level metadata are based on the Relational package of CWM.
The objects of physical and logical levels are connected by objects defined in the
Transformation package of CWM. This means that attributes of dimensions and
measures of cubes are defined by Mappings, which specify formulas that obtain
attributes and measures from one or several columns of physical tables and views.

-Name : String
-DataType : String
-Precision : Integer
-Scale : Integer
-IsNull : Boolean
-Length : Integer

Column

1

-{ordered}

1..*

0..*
-primaryKey

0..*

-(from Logical)
Attribute

-(from Logical)
Measure

-(from Logical)
SchemaElement

0..*

-keyColumn {ordered} 1..*-RefreshDate : Date
ColumnSet

-Name : String
-Owner : String

Table

-Name : String
-Owner : String
-SQLText : String

View

-Name : String
-SQLText : String

Query
-IsPrimary : Boolean

Key0..*
1

-Name : String
-Username : String
-Contacts : String
-Title : String

User -Condition : String
AccessRights

-Function : String
Mapping

0..*

-{ordered}

0..*

Fig. 3. Physical metadata

For the example data warehouse physically in the database all schema versions
are stored in one physical schema. The schema of the first version of the data
warehouse is created according to the model V1 in Figure 1. When the version V2
is created, the new tables User and Session are created. In these tables new fictive
records with data “All together” are created with an identifier U and S respec-
tively. The columns User_ID and Session_ID are added to the table Activity and
filled with U and S for all existing data. The table Time and Tool are supple-
mented with columns Time, Hour and Subcategory, Category respectively. The
new columns Subcategory and Category are updated with data for the existing re-
cords in tables to form corresponding hierarchies, because these columns corre-
spond to new hierarchy levels of smaller detail. But the new columns of the Time
dimension correspond to new hierarchy levels of grater detail, therefore, they are
updated with fictive data, for example, time ’00:00’. The column NumberOfUsers
is not removed, but is no longer updated by ETL processes. For the new versions
of other two measures additional columns are not created, i.e. both versions of
each measure are stored in one table column.

5.3 Reporting Metadata

Reporting metadata describe structure of reports. CWM contains a package Infor-
mation Visualization that describes how data warehouse elements are rendered.
These metadata are very general and not sufficient, therefore, a new metamodel
(Figure 4) was developed. Basically reports are worksheets that contain data items
defined by calculations, which specify computation formulas from parameters and
table columns, which usually correspond to schema elements. Reports also consist
of user-defined conditions and joins between tables.

-Name : String
Workbook

CalculationPart

-Type : String
-Outer : Boolean

Join

-Name : String
-DefaultValue : String

Parameter

-Name : String
-Type : String
-Title : String

Worksheet

1
-{ordered}1..*

1 *

1 *

-(from Physical)
Column

-Location : String
-Name : String
-CalculationFormula : String

Item

1
-{ordered}

1..*

* 2

-(from Logical)
Attribute

-(from Logical)
Measure

1

-{ordered}

1..*

-(from Logical)
SchemaElement

*

-corresponds *

-Formula : String
-IsVersionPeriod

ConditionSet
1*

-Operator : String
Condition

1
-{ordered} 1..*

ConditionObject

-Value : String
Constant

-QueryText : String
Subquery

-compares {ordered} *1..2

Fig. 4. Reporting metadata

5.4 Semantic Metadata

Data warehouse users must understand the semantics of data that appear in reports
from business perspective. They also must be able to analyse these data using all
necessary features, including OLAP operations drill-down and roll-up, using hier-

archies. Besides, it is desirable that users can modify or construct reports them-
selves from elements, which are familiar to them, so that reports creation becomes
transparent. For these purposes, it is necessary to describe each element of the data
warehouse model in business language. This description could also be used by us-
ers to express their requirements for information and changes in requirements
making the understanding between users and developers of data warehouse
clearer. The description of data warehouse elements in business language is stored
in semantic metadata.

In CWM there is the package Business Nomenclature, which can be used to
represent business metadata. This package was used as a basis for semantic meta-
data depicted in Figure 5. The main classes that are used for description of data
warehouse elements are Terms and Concepts, which are united in Glossaries and
Taxonomies respectively. A concept is the semantic meaning or notion of some
data warehouse element or data stored in some element, but a term is particular
word or phrase used by users to refer to a concept. Terms define items used in a
report. There may be preferred terms and synonym terms to identify a concept.
Also terms may be related to each other.

-(from Logical)
SchemaElement

-Description : String
Term

-Description : String
Concept

-Description : String
Glossary

-Description : String
Taxonomy

BusinessDomain

0..1

*

*

*

0..1*

0..1

*
*

*

-Description : String
TermVersion

-defines
*

*

-(from Reporting)
Item

-preferedTerm 0..1
-synonym

*

*
-related *

-(from Logical)
-ValidFrom
-ValidTill
-IsValid

SchemaVersion

1
*

-defines *

*1

*

Fig. 5. Semantic metadata

The CWM metamodel was supplemented with the class TermVersion, which is
connected to the particular schema version. The new term version reflects the
meaning of some data warehouse schema element, which was valid during the
particular period of time defined by attributes ValidFrom and ValidTill of the cor-
responding schema version.

Different versions of terms may be created in case of changes of the data ware-
house business requirements. For example, in the working example data ware-
house the measure TotalTime is defined by two term versions ‘Total time of all
users in hours’ and ‘Total time of each user in seconds’.

6 Reports on Multiversion Data Warehouse

In the evolution data warehouse framework reports are constructed by users, who
select desirable terms and term versions from the semantic metadata. The structure
of concepts and terms is displayed as a graph, which shows taxonomies of con-
cepts, their associated terms, relations between terms and term versions. The re-
port items, which correspond to selected terms and term versions, are automati-

cally created in the reporting metadata. Users also can define new report items and
their corresponding terms, which are saved in the semantic metadata and become
available to other users. Users must also specify the location of selected terms in
the report. There is also a possibility to define report parameters and conditions.
All necessary reporting metadata are created automatically, according to require-
ments of users.

Example Report. To demonstrate the execution of reports in the following
sections, according to the approach presented in the paper, let us use the most
popular report executed in the example data warehouse. This report was first
developed in the first version of the data warehouse schema. The report is widely
used by lecturers of particular courses, who are interested in the detailed analysis
of the usage of taught courses. It displays the number of students
(NumberOfUsers), who used the specific tool (ToolName) in their course during
some period of time and the duration of this tool usage (TotalTimeV1).

6.1 Building Queries on Multiple Versions

6.1.1 Version Selection

When a user runs a report, at first the list of data warehouse versions, which con-
tain report items, is obtained. For each attribute or measure used in the report, all
versions that contain it and that were valid in the time period of the report are col-
lected from the logical metadata. If only one version remains then report data are
presented according to this version. If more then one version remains, further
analysis is necessary.

To determine options of report data presentation, a special relationship matrix
is being constructed. The columns of the matrix correspond to versions, but rows
correspond to schema elements, selected for the report. If a schema element exists
in a version (it is obtained by a version transformation without conversion), then
‘1’ is recorded in the corresponding matrix cell. If a schema element does not exist
in a version, but it is obtainable with the transformation version by conversion
function from other elements, then the corresponding matrix cell is filled with ‘2’.
If a schema element does not exist in a version and can not be obtained with any
conversion function (no version transformation), then in the corresponding matrix
cell ‘0’ is recorded. Depending on the values of cells of the relationship matrix,
the following options of report presentation are available:

1. The report can be presented in accordance with one particular version, if all
matrix cells of the column, which corresponds to that version, are filled with
‘1’ and all other cells are filled either with ‘1’ or ‘2’.

2. If neither of versions does contain all elements, then elements from different
versions can be presented in one report, if all matrix cells contain ‘1’ or ‘2’.

3. If any matrix cell contains ‘0’, then the report can only be displayed separately
for each version.

If the example report is executed for the time period that spans both schema
versions, then the corresponding matrix is depicted in Figure 6 (a), where it can be
seen that the report can be presented according to the first version. If we change a
little the definition of the report to display data by tool Subcategory, the report
then can be presented only with elements from various versions (Figure 6 (b).

 Version

 V1 V2
CourseName (Course) 1 1
TotalTimeV1 (Activity) 1 2
ToolName (Tool) 1 1
Date (Time) 1 1 Sc

he
m

a
E

le
m

en
t

NumberOfUsers (Activity) 1 2

 Version

 V1 V2
CourseName (Course) 1 1
TotalTimeV1 (Activity) 1 2
ToolName (Tool) 1 1
Date (Time) 1 1
NumberOfUsers (Activity) 1 2 Sc

he
m

a
E

le
m

en
t

SubCategory (Tool) 2 1

Fig. 6. Relationships Matrix

6.1.2 Query Generation

When a user chooses any option of report presentation, an SQL query is built
based on a report definition in reporting metadata, and its result is displayed to a
user. An SQL query is constructed, according to special algorithm consisting of
the following steps:

1. Analysis of chosen items and determination of used column sets;
2. Analysis of joins;
3. Generation of list of conditions;
4. Grouping and construction of conditions with aggregates functions;
5. Adding restrictions of user rights;
6. Simplification and optimization of the query;
7. Supplementation of a query with version transformations.

The details of the algorithm were published in the paper [14]. According to the
query construction algorithm, the query displayed in Figure 7 is constructed for
the example report.

 /*Q1*/ SELECT TOOL_NAME, DATE1, SUM(NUMBER_OF_USERS), SUM(TOTAL_TIME) FROM COURSE, TOOL, TIME, ACTIVITY, ROLE
WHERE ROLE.ID=ROLE_ID AND COURSE.ID=COURSE_ID AND TOOL.ID=TOOL_ID AND TIME.ID=TIME_ID
AND DATE1 BETWEEN TO_DATE(:"from",'dd.mm.yyyy') AND TO_DATE(:"until",'dd.mm.yyyy')
AND DATE1 BETWEEN TO_DATE('01.09.2004','dd.mm.yyyy') AND TO_DATE('31.01.2005','dd.mm.yyyy')
AND COURSE_NAME=:"course" AND O140169.ROLE='Student' GROUP BY TOOL_NAME, DATE1
UNION
/*Q2*/ SELECT TOOL_NAME, DATE1, COUNT(DISTINCT USER_ID), SUM(TOTAL_TIME) FROM COURSE, TOOL, TIME, ACTIVITY, ROLE
WHERE ROLE.ID=ROLE_ID AND COURSE.ID=COURSE_ID AND TOOL.ID=TOOL_ID AND TIME.ID=TIME_ID
AND DATE1 BETWEEN TO_DATE(:"from",'dd.mm.yyyy') AND TO_DATE(:"until",'dd.mm.yyyy')
AND DATE1 BETWEEN TO_DATE('01.02.2005','dd.mm.yyyy') AND sysdate
AND COURSE_NAME=:"course" AND O140169.ROLE='Student' GROUP BY TOOL_NAME, DATE1;

Fig. 7. Query on multiple schema versions

(a) (b)

6.2 Using Hierarchy Versions

Data warehouse reports should support high interactivity with a user including
OLAP operations: roll-up, drill-down, etc. This is why the reporting tool allows to
transform data in the report according to user needs. One of the possibilities to
analyze data from different points of view is to use hierarchies defined in the logi-
cal metadata. In the metadata, different versions of hierarchies, levels and associa-
tions between attributes and hierarchy levels can be created. When a user runs a
report, the query construction algorithm also identifies all hierarchies and their
structure that exist in the particular data warehouse version, which is selected by a
user to present report data. If a user chooses to present elements from different
versions in one report, then only hierarchies, which exist in all versions, are avail-
able as well as hierarchies that can be transformed by version transformations.

For the example report executed in accordance with the first version, the fol-
lowing hierarchies are available: all Course dimension hierarchies, Time hierar-
chy, which consists of only three levels Date, Month and Year. But if the report
includes tool Subcategory, then additional Tool hierarchy can be used to analyse
data, because it exists in the second version and the version transformation can be
constructed to map lower hierarchy level ToolName to higher hierarchy levels.

6.3 Using Term Versions

In reports term versions are used to separate different meanings of the same
schema element. If any schema element has multiple term versions, when a user
runs a report, which includes this schema element, he is informed that for the same
schema element two term versions exist. The user has to choose the preferred term
version and then the appropriate schema element version is included in the report.

In the example report, the measure TotalTime was used. The semantics of this
measure is different in two versions of the data warehouse. In the first version To-
talTime was accumulated in hours and summarized for all users of the e-learning
environment, but in the second version this measure was accumulated in seconds
for each user and session. So to execute the example report the user must select
one of two term versions ‘Total time of all users in hours’ or ‘Total time of each
user in seconds’ and the appropriate data are presented in the report.

7 Conclusions and Future Work

In this paper we have presented an approach to data warehouse design. This ap-
proach is evolution-oriented because it supports adaptation of data sources and

business requirements and allows to propagate different changes in data ware-
house creating versions of schemata and data semantics. This approach is user-
centric, because users themselves can design reports on multiple data warehouse
versions using terms, which are familiar to them. Besides changes in users’ re-
quirements are taken into account.

Several directions for future research related to the presented issue are person-
alization of reports built on multiple data warehouse versions and support of
automatic adaptation of data warehouse according to user needs expressed using
terms and term versions from semantic metadata without or with minimal partici-
pation of a data warehouse administrator.

Acknowledgments This work has been supported by ESF projects No.
2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044 and 2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004.

References

1. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data ware-
houses: Enabling cross-version querying via schema augmentation. Data Knowl. Eng. 59(2),
435—459 (2006)

2. Hurtado, C.A., Mendelzon, A. O., Vaisman, A.A.: Maintaining Data Cubes under Dimension
Updates. In: 15th International Conference on Data Engineering, pp. 346—357. IEEE Com-
puter Society, Sydney (1999)

3. Blaschka, M.: FIESTA: A Framework for Schema Evolution in Multidimensional Databases.
PhD thesis, Technische Universitat Munchen, Germany (2000)

4. Banerjee S., Davis, K.C.: Modeling Data Warehouse Schema Evolution over Extended Hier-
archy Semantics. Journal on Data Semantics XIII, LNCS, vol. 5530, 72—96. Springer, Hei-
delberg (2009)

5. Marotta, A.: Data Warehouse Design and Maintenance through Schema Transformations.
Master thesis, Universidad de la República Uruguay (2000).

6. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping Adaptation under Evolving Schemas. In: 29th
Int. Conf. VLDB, pp. 584—595. Morgan Kaufmann, Berlin, Germany (2003)

7. Bellahsene, Z.: Schema Evolution in Data Warehouses. Knowl. Inf. Syst. 4, 283–304 (2002)
8. Rundensteiner, E.A., Koeller, A., Zhang, X.: Maintaining Data Warehouses over Changing

Information Sources. Commun. ACM. 43(6), 57—62 (2000)
9. Wrembel, R., Bebel, B.: Metadata Management in a Multiversion Data Warehouse. In: OTM

Conferences (2) LNCS, vol. 3761, 1347—1364. Springer, Heidelberg (2005)
10. Body, M., Miquel, M., Bedard, Y., Tchounikine, A.: A Multidimensional and Multiversion

Structure for OLAP Applications. In: ACM 5th International Workshop on Data Warehous-
ing and OLAP, pp. 1—6. ACM, McLean, VA (2002)

11. Morzy, T., Wrembel, R.: On Querying Versions of Multiversion Data Warehouse. In: ACM
7th International Workshop on Data Warehousing and OLAP, pp. 92—101. ACM, Washing-
ton, DC (2004)

12. Solodovnikova, D.: Data Warehouse Evolution Framework. In: Spring Young Researcher's
Colloquium on Database and Information Systems, Moscow, Russia (2007)

13. Object Management Group. Common Warehouse Metamodel Specification, v1.1
http://www.omg.org/cgi-bin/doc?formal/03-03-02

14. Solodovnikova, D.: Building Queries on Multiple Versions of Data Warehouse. In: 8th Int.
Balt. Conf. DB&IS, pp. 75—86, Tallinn, Estonia (2008)

