We consider an elliptic equation with nonlinear and nonlocal boundary conditions, which arises in conductive-radiative heat transfer problems, see, for instance, [1; 2; 3]. The corresponding to our problem variational equality reads as

\[
\int_{\Omega} \left[k_1 \langle \nabla (u + u_*), \nabla \eta \rangle + k_2 (u + u_*) \eta \right] \, dx + \int_{\Gamma} \sigma [(I - H) (| u + u_* |^3 (u + u_*))] \eta \, dS = \int_{\Omega} \langle f, \eta \rangle \, dx + \int_{\Gamma} g \eta \, dS \quad \forall \eta \in V,
\]

(1)

where \(\Omega = \Sigma \times [0, L] \subset \mathbb{R}^3 \) is a bounded cylinder, \(V \) is a subspace of \(W_2^1 (\Omega) \) of functions that are zero on the intersection of \(\Omega \) with the plane \(\{ x_3 = 0 \} \), \(\Gamma \) is the lateral surface of \(\Omega \), \(k_1, k_2, \sigma \) are positive constants, but \(H \) is a nonlocal bounded linear operator from \(L_p (\Gamma) \) to \(L_p (\Gamma) \) such that for \(p = 1 \) its norm is less than 1.

We show that there exists a two level iterative process that converges to the solution of (1). The first level consists of the Newton-type process

\[
\int_{\Omega} \left[k_1 \langle \nabla v_{k+1} + u_*, \nabla \eta \rangle + k_2 (v_{k+1} + u_*) \eta \right] \, dx + \int_{\Gamma} \sigma \psi (v_k) v_{k+1} \, dS = \langle \langle F(v_k), \eta \rangle \rangle \quad \forall \eta \in V, \quad k = 1, 2, \ldots,
\]

with appropriate nonnegative function \(\psi \) and \(F(v_k) \in (V)^* \). In its turn, the second level consists on iterations of the type

\[
\int_{\Omega} \left[k_1 \langle \nabla u_{k+1} + u_*, \nabla \eta \rangle + k_2 (u_{k+1} + u_*) \eta \right] \, dx + \int_{\Gamma} \sigma \left[| u_{k+1} + u_* |^3 (u_{k+1} + u_*) \right] \eta \, dS = \int_{\Gamma} \sigma H \left[| u_k + u_* |^3 (u_k + u_*) \right] \eta \, dS + \langle \langle F_0, \eta \rangle \rangle \quad \forall \eta \in V, \quad k = 1, 2, \ldots,
\]

with an appropriate \(F_0 \in (V)^* \).

REFERENCES

1This work was supported by the Latvian Council of Sciences under grant 09.1572 and by the ESF project No. 2009/0223/IP1/1.1.1.2.0/APIA/VIAA/008.