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Abstract

A new method was developed for the immobilization of humic substances. Humic acids (HA) immobilized onto dif-
ferent carriers were studied as sorbents for organic and inorganic substances. The sorption isotherms of 4-aminoazo-
benzene, Crystal Violet, Methylene Green, and flavine mononucleotide on immobilized HA show that pH and salt
concentration have a significant effect on the sorption process, largely depending on the properties of polymeric matrix.
Humic acids from different sources showed differing sorption capacity for the studied groups of substances.
� 2005 Published by Elsevier Ltd.
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1. Introduction

Humic substances (HS) play a major role in the bio-
geochemical cycling of carbon and they are major
organic substances in soils and waters, thus being of
importance also in fossil organic deposits, especially
peat and low rank coal (MacCarthy, 2001). Due to their
multifunctional character (presence of numerous car-
boxylic and phenolic, but also keto-, and aminogroups)
humic substances are able to complex heavy metals and
persistent organic xenobiotics (Leenheer et al., 2003).
Many important processes in the environment are influ-
enced through interaction with humic substances, for
example with solid phases in soils and natural waters.
At the interactions both organic (usually detritus parti-
cles) and inorganic (mineral matter) substances become
covered with humic substances and thus contaminant
U 50
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movement can be largely modified by interaction with
humic substances (De Paolis and Kukkonen, 1997).
Interaction of humic substances with xenobiotics can
modify the uptake and toxicity of these compounds
and affect the fate of pollutants in the environment.
The properties and the structure of the HS depend on
their origin (Ritchie and Perdue, 2003).

To offer new areas of use and to study the interaction
between xenobiotics and humic substances, their immo-
bilization on solid carriers (Bulman and Szabo, 1991;
Klavins, 1993; Klavins and Eglite, 2000) has been sug-
gested. Considering the wide application of immobilized
enzymes and low molecular biologically active molecules
in chromatography and biotechnology, immobilization
of HS has received substantial interest. Several ap-
proaches for immobilization of HS have been suggested.
Immobilized HS were used to study the interactions of
HS with metal ions and organic substances (Koopal
et al., 1998; Yang and Koopal, 1999; Laor et al., 2002;
de la Rosa et al., 2003; Prado et al., 2003), and as models
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of humate-coated minerals to study migration of 241Am
around nuclear waste repositories (Szabo et al., 1998).

Considering immobilized HS as prospective sorbents
for organic and inorganic substances, the aim of the
present study is to study the sorption character of
organic substances and metal ions onto humic sub-
stances isolated from different environments and immo-
bilized onto differing polymeric matrixes.
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2. Materials and methods

The properties of commercial humic acid (Aldrich
Chemical Co. Ltd.) and obtained humic acids isolated
from soil, peat and water as are described earlier (Klav-
ins and Eglite, 2000). Elemental analysis was carried out
by a Perkin–Elmer 240B analyzer.

The specific surface areas of the prepared solid
phases were determined by the Brunauer–Emmet–Teller
(BET) method using a EMS-61 Sorptometer. Adsorp-
tion isotherms of N2 were determined volumetrically at
100 �C. Prior to the measurements each sample was
dried in vacuum at 383 K for 1 h. The maximum error
in these measurements was about 5%.

Humic substances were immobilized as described ear-
lier (Klavins and Eglite, 2000) and their basic properties
are summarized in Table 1.

Adsorption of p-aminoazobenzene (4-amino-1,1 0-
azobenzene, p-AAB) on immobilized humic acids was
conducted as batch experiments in 100 ml sealed glass
bottles on a rotary shaker table 24 h at 20 �C. 30 ml of
either 10, 30, 50, 70, 90, 120 mg l�1 solutions of p-amino-
azobenzene with 100 mg of sorbent were shaken until
equilibrium was reached (24 h). After separation of the
phases by filtration through Watman paper filter, the
concentrations of p-AAB in the supernatant phase were
determined spectrophotometrically (using a HACH
2000, glass cell with path length 2.5 cm) as absorption
U
N
C
O
R

Table 1
Properties of immobilized humic acids

Immobilized
HA

C
(%)

H
(%)

N
(%)

COOH
(mmol g�1)

I-HAC 86.17 7.29 0.21 0.185
I-HAS 76.12 9.16 0.97 0.153
I-HAP 77.03 8.21 0.43 0.131
II-HAC 12.32 3.74 0.12 0.072
II-HAS 12.31 4.76 0.32 0.065
III-HAS 43.86 7.30 1.50 0.098
III-HAC 42.20 6.13 0.30 0.86
IV-HAC 4.67 0.59 0.31 –
VA–HAC 53.93 3.59 1.33 0.723
VB–HAC 66.24 6.39 0.05 1.180
VC–HAC 58.60 6.51 0.13 0.943
VD–HAC 60.98 6.30 0.78 1.322
P
R
O
O
F

at 470 nm (values obtained from initially prepared cali-
bration graph). The quantity of p-AAB adsorbed to dif-
ferent phases was determined from the difference of the
initial aqueous phase concentration and the amount in
solution at equilibrium. Sorption of Crystal Violet
(CrV), Methylene Green (MethG), flavine mononucleo-
tide (FMN) and metal ions on immobilized humic sub-
stances was performed similarly. Concentrations of
metal ions were determined using atomic absorption
spectrometry in an air–acetylene flame (Perkin–Elmer
2380 with double beam and deuterium background cor-
rector). pH of solution has been adjusted using citric
acid—phosphate buffers.

The sorption test was performed in a laboratory scale
column (10 · 250 mm) filled with humic acid immobi-
lized onto aminopropylsilica (IV). A p-AAB solution
(1; 2; 3 mg l�1) was percolated through the column with
a velocity 6 ml min�1, sampling fractions of 18 ml with a
‘‘Pharmacia Fine Chemicals’’ fraction collector and ana-
lyzing concentrations of the humic acids remaining in
solution.
E
D3. Results and discussion

Considering that the properties of humic substances
depend on their origin, humic acids of commercial origin
(HAC) as well as HA isolated from the major sources,
soil (HAS) and peat (HAP), were used to cover the var-
iability in properties of humic acids.

The following methods (Klavins and Eglite, 2000)
have previously been used for the immobilization of
HS (Fig. 1):

(I) Immobilization by grafting on Merrifield resin or
chloromethylated macroreticular styrene–divinyl-
benzene copolymer;

(II) Immobilization on epoxypropylsilica;
Content of
HA (mg g�1)

Swelling with
water (ml g�1)

Swelling with
benzene (ml g�1)

120 0.87 1.85
228 0.59 1.06
208 0.48 1.01
57 0.11 0.35
85 0.12 0.45
83 0.18 0.56
87 0.22 0.64
7 0.12 0.12

373 1.15 2.35
340 0.73 1.87
185 0.82 1.84
430 1.14 2.40
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Fig. 1. Methods used for immobilization of humic substances: (I) by grafting on Merrifield resin; (II) on epoxypropylsilica; (III) on
epoxypropycellulose; (IV) on aminopropylsilica; (V) by polycondensation with formaldehyde (VA); phenol (VB); toluene (VC) and
resorcinol (VD).
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U
N
C(III) Immobilization on epoxypropycellulose;

(IV) Immobilization on aminopropylsilica using cou-
pling by means of water soluble carbodimide;

(V) Polycondensation of HA with formaldehyde and
molecules able to enter in condensation reactions
(phenols).

The suggested approaches allow to remove the
immobilized humic macromolecule from the surface of
polymer chain and to increase the flexibility of interac-
tions of immobilized humic substances with sorbates.
The obtained immobilized HS were characterized by
elemental and functional analysis, as well as by the
amount of immobilized HS (Table 1). The differing
matrices used in the study and the variability of humic
substances employed allow to obtain a range of sorbents
with different hydrophobicity of the polymeric matrix,
concentration of immobilized humic substances, and
also porosity. The surface area of polymers obtained
using polycondensation (VA–VD, Fig. 1) is low (0.326–
0.580 m2 g�1), higher for sorbents (I) on macroreticular
styrene–divinylbenzene copolymer (51.6 m2 g�1), and
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Fig. 2. Sorption kinetics of p-aminoazobenzene (p-AAB) on
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for sorbents on silica (II, IV) it can reach even
106 m2 g�1.

The sorption kinetics (Fig. 2) on the immobilized hu-
mic acids depends on porosity of the polymeric matrix
and the hydrophilicity/hydrophobicity balance of the
sorbates, being fast for sorption on macroreticular poly-
mers, but comparatively slow on gel-type polymers
(immobilized humic substances on styrene–divinylben-
zene copolymers or polycondensation polymers).

The character of the sorption process depends on the
salt concentration in the solution (Fig. 3). Also in this
case the sorption capacity depends on the porosity of
the polymer structure which is insignificant for gel-type
polymers and substantial for sorbents on aminopropyl-
silica. The p-AAB sorption ability on immobilized hu-
mic substances depends also from pH, and with
increase of pH in the solution the sorption capacity is
increasing (Fig. 4).

The sorption isotherms of p-aminoazobenzene (p-
AAB) on immobilized humic substances are shown in
U
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Fig. 3. Sorption of p-aminoazobenzene on immobilized humic
acids: (1) VC–HAP, (2) I-HAS, (3) IV-HAC depending on the
ionic strength of the solution.
E
D
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RFig. 5. The adsorption of p-aminoazobenzene on immo-

bilized humic substances differs substantially depending
on the properties of the original polymeric carrier. On
silica polymers the sorption capacity is low (Yang and
Koopal, 1999), while on humic substances immobilized
on Merrifield resin it can be quite high. However, for
polymers obtained using polycondensation with formal-
dehyde, the specific polymeric matrix as such does not
exist. To compare the obtained immobilized humic sub-
stances, the sorption was expressed as mg of p-AAB on
1 g of sorbent. The experimental data were fitted to
empirical Freundlich and Langmuir adsorption equa-
tions. We found that the Langmuir isotherm gave the
best fit for the description of the p-aminoazobenzene
sorption. The r2 values together with Langmuir empiri-
cal constants are given in Table 2. Comparison of
adsorption isotherms shows substantial differences be-
tween the obtained polymers and, possibly also the ma-
jor impact of the original polymeric matrix: for polymer
obtained by grafting humic acid onto Merrifield resin
the sorption capacity is higher and can be described by
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Fig. 5. Sorption of p-aminoazobenzene on immobilized humic
acids: (1) I-HAS, (2) IV-HAC, (3) VC–HAP depending on the
type of polymeric matrix.
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Table 2
Langmuir constants (K and b are empirical constants related to
bonding energy and sorption maximum, respectively) for the
sorption of p-aminoazobenzene on immobilized humic acids

Immobilized HA K b r2

I-HAS 3.226 0.066 0.88
II-HAC 0.021 0.01 0.91
III-HAS 0.085 0.018 0.94
IV-HAC 0.043 0.031 0.98
VA–HAC 0.121 0.039 0.99
VC–HAC 6.599 0.055 0.95
VD–HAC 0.024 0.028 0.97
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Fig. 7. Sorption of p-aminoazobenzene on humic acid immo-
bilized on aminopropylsilica (IV-HAC) in a laboratory scale
column.
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the Langmuir model, while the sorption capacity on hu-
mic substances immobilized onto silica is lower. The
Langmuir constants K and b, indicating bonding energy
and the maximum sorption capacity, respectively dif-
fered from sample to sample, suggesting that various
mechanisms of sorption may occur.

The sorption on HS immobilized on a carrier espe-
cially on a polymer carrier obtained using polycondensa-
tion much depends on the size of the polymeric particles
(Fig. 6). The sorption takes place faster for small
polymer particles and follows the Langmuir model.
However, on large polymer particles obtained using
polycondensation (VA–VD, Fig. 1), the sorption follows
the so-called S-type form, indicating a low surface affin-
ity that increases with surface saturation with sorbate.
The polycondensation polymers are gel-type, their swell-
ing in aquatic media much depends on the polymer com-
position, the sorption in this case is evidently lower than
on macroreticular polymers, it takes place on the surface
layers of sorbent, and it is diffusion controlled.
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E
D
PThe obtained immobilized humic acids demonstrated

good sorption properties for column processes (after
Fig. 7). For column processes, the most effective sor-
bents are obtained using more rigid matrices (silica,
crosslinked styrene–divinylbenzene copolymer with a
high degree of crosslinking) and the retention processes
much depend on the concentration of sorbate.

In comparison to the sorption process of p-amino-
azobenzene, the character of sorption differs for higher
molecular-weight polar sorbates, such as the dyes Crys-
tal Violet, Methylene Green, and flavine mononucleo-
tide (Fig. 8). All of these isotherms clearly exhibited
evidence for a sequence of adsorption steps and a rela-
tively low affinity of immobilized humic substances with
respect to hydrophilic cationic sorbates.

The first stage of the adsorption is characterized by
relatively low sorption efficiency, but is followed with
a significant increase of the sorbed amount. The affinity
of selected sorbates towards the sorbent significantly in-
creases after surface saturation of sorbents is reached.
However, immobilized humic substances cannot be con-
sidered as good sorbent for sorption of hydrophilic cat-
ionic sorbates.

As it is well known, humic substances in solution can
form stable complexes with metal ions as well as with or-
ganic molecules (after Fig. 8). The same is true also for
immobilized humic substances, as shown by the ob-
served sorption of some metal ions and some organic
substances (Table 3). Immobilized HS have rather good
sorption capacity for a wide range of substances. They
are prospective for the investigation of humus properties
and can serve as a potential inexpensive sorbents for re-
moval of metal ions and both hydrophobic and hydro-
philic organic substances during waste water treatment
and drinking water purification procedures.
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Table 3
Sorption of metal ions and organic molecules on immobilized humic substances

IM HV Cu2+

(mg g�1)
Co2+

(mg g�1)
Ni2+

(mg g�1)
Mn2+

(mg g�1)
Cd2+

(mg g�1)

I-HAC 2.5 1.3 1.3 2.4 9.0
I-HAP 10.6 2.8 1.7 3.7 0.0
II-HAS 2.5 1.6 0.3 1.9 9.0
III-HAC 4.6 2.3 1.6 2.7 9.5
IV-HAC 11.9 9.8 5.9 10.1 19.8
VA–HAC 2.2 1.9 1.3 1.8 9.0
VB–HAC 6.9 3.6 2.3 3.3 11.0
VC–HAC 3.1 1.7 1.1 2.8 7.3
VD–HAC 4.3 1.9 1.7 5.7 13.5

6 M. Klavins et al. / Chemosphere xxx (2005) xxx–xxx

CHEM 6522 No. of Pages 7, DTD=5.0.1

15 July 2005 Disk Used
ARTICLE IN PRESS
4. Uncited references

Diallo et al. (2003), Senesi et al. (1989), Senesi and
Sakallariadou (1994), Thurman (1985), Thurman and
Malcolm (1981), Weber and Huang, 2003.
Acknowledgement

We acknowledge the immeasurable aid provided by
Professor Uuve Kirso from the National Institute of
Chemical Physics and Biophysics (Estonia) at determi-



250
251

252

253
254
255
256
257

258
259
260
261

262
263
264
265

266
267
268
269
270
271

272
273

274
275
276

277
278
279
280

281
282
283

284
285

M. Klavins et al. / Chemosphere xxx (2005) xxx–xxx 7

CHEM 6522 No. of Pages 7, DTD=5.0.1

15 July 2005 Disk Used
ARTICLE IN PRESS
nation of the specific surface area of immobilized humic
substances.
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