

INVESTING IN YOUR FUTURE

Agar-based phantoms for skin diagnostic imaging

<u>Ilona Kuzmina,</u>

Vanesa Lukinsone, Uldis Rubins, Ilze Osina, Laura Dambite, Anna Maslobojeva, Janis Spigulis

> Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia

Aim

To validate previously developed smartphone-based RGB imaging devices and algorithm for concentration evaluation of skin chromophores using agar-based phantoms

Tasks

- To produce one-layer and two-layer agar-based phantoms with different chromophore concentrations.
- To evaluate absorption properties of the phantoms using transmittance and diffuse reflectance images.
- To analyze the influence of experimentally determinend photon mean free path values on chromophore concentration maps.
- To compare the results obtained from RGB images captured by two selfdeveloped smartphone-based prototypes

Benefits

- easy to produce
- flexible
- variety of shapes- detailed heterogenety possible
- inclusions possible
- biologically compatible
- adjustable absorption and scattering
- index of refraction (n=1.35) close to the tissues

Limitations

 not stable over long periods of time

Components

<u>Matrix</u>

> Agar (Ag) powder (A7002, Sigma-Aldrich)

Absorption

> Hemoglobin (Hb) water soluble powder (198285, Sigma-Aldrich)

Scattering

Intralipid (IL) emulsion 20% (I141, Sigma-Aldrich)

Phantom measurements

Point spectral measurements

- 1. Steady state spectra: VIS-NIR
- 2. Photon time-of-flight signal -> photon mean pathlength

RGB imaging

- 1. Smartphone + LED illuminator
- 2. Smartphone + Laser illuminator

Spectral point measurements Steady state DR

Halogen lamp – AvaLight-Hal Spectrometer – AvaSpec-Mini4096CL-UVI10 λ=300-1100nm Source-detector distance: d=0.4mm.

Spectral point measurements

Time-resolved DR

Time-correlated single photon counting (TCSPC) system Fianium White-Laser-Micro (400-1000nm) Interference filters (FWHM=10nm) λ_{G} = 520nm, λ_{R} = 680nm Source-detector distance: d=1mm.

Photon time-of-flight (**PTOF**) signals

Photon mean path length (**MPL**)*

*Lukinsone et al, Nov. Biophotonics Tech. Appl. V 1107505(July), 4 (2019) Lukinsone et al, PE2020, Paper 11363-73 'Remitted photon path length in human skin, skin phantoms and cell cultures'

RGB imaging

Nexus 5 smartphone camera

SkinViewer App (self-developed) ISO:100

t_{Exp}: 0.2s

LED illuminator: R: 663nm G: 535nm B: 460nm FWHM= 20nm AZ camera App

ISO:100 **t_{Exp}**: 0.25s

Laser illuminator: R: 659nm G: 532nm B: 448nm FWHM= 2nm

Kuzmina et al, J. Biomed. Opt. 20(9), 090503 (2015) Spigulis et al, J. Biomed. Opt. 20(5), 050503 (2015)

RGB imaging

Calculation algorithm

Beer-Lambert law: $I = I_0 \cdot e^{-\mu_a z}$ $\mu_a = 2,303 \cdot C \cdot \varepsilon$

$$\varepsilon = \frac{ln\left(\frac{I_0}{I}\right)}{2.303 \cdot C \cdot z}$$

- μ_a absorption coefficient,
- **ε** extinction coefficient,
- I intensity of transmitted/diffuse reflected light of sample phantom,
- $\mathbf{I_0}$ intensity of transmitted/diffuse reflected light of reference phantom,
- *z* thickness of the phantom layer/photon mean path length,
- **C** concentration of a chromophore.

One-layer phantoms

Referen phanto:	erence Sample Intom phantom		ole om	C _{Hb} , v∕v %		C _{IL} , v∕v %		Phantom thickness (mm)	s Measurements	
								0.9	RGB imaging (T&DR) DR spectra	
								1.5		
Ag		Ag+Hb		0.5-3.5		-		3.5	RGB imaging (T&DR) DR spectra PTOF	
Ag+IL		Ag+IL+Hb		1-2		1		3.5	RGB imaging (DR) PTOF	
	C _{Hb}									
		v/v %	0.5	1	2	3	3.5	М+	=65000 g/mol	
		$\mu \mathbf{M}$	1.5	3	6	9	10	.5	Hithb 00000 G/ mor	

Phantom spectra

Mean path length

	MPL, mm							
Wavelength, nm	C _{IL} =1%	C _{Hb} =2%	C _{IL} =1% C _{Hb} =1%	$C_{IL} = 1\%$ $C_{Hb} = 2\%$				
520	20.7	14.4	14.9	16.1				
680	24.5	22.5	18.9	21.1				

NIN.

Results - Transmittance

Results - Transmittance

Photonics Europe 2020: Tissue Optics and Photonics

Transmittance

Deoxy – values of the deoxy-hemoglobin from Prahl, S., "Optical Absorption of Hemoglobin," Oregon Med. Laser Cent., 1999, <https://omlc.org/spectra/hemoglobin/>

Transmittance

Reflectance

Deoxy – values of the deoxy-hemoglobin from Prahl, S., "Optical Absorption of Hemoglobin," Oregon Med. Laser Cent., 1999, <https://omlc.org/spectra/hemoglobin/>

Hemoglobin concentration maps

Digital Forum 6-10 April 2020

Hemoglobin concentration maps

21

Summary

- **1. We presented agar-based phantoms for** evaluation and mapping of the hemoglobin concentration by transmittance and diffuse reflectance RGB imaging.
- 2. We evaluated **hemoglobin concentration maps** of the phantoms from diffuse reflectance images by **using the experimentally measured photon time of flight signals**.
- **3. The values of extinction coefficients** from diffuse reflectance images are closer to the values obtained by other authors compared to results from transmission images.
- 4. The images captured by *Laser* prototype showed more precise results compared to the *LED* prototype.

Acknowledgment

This work has been supported by **European Regional Development Fund project** 'Multimodal imaging technology for in-vivo diagnostics of skin malformations' under **grant agreement #1.1.1/18/A/132.**

INVESTING IN YOUR FUTURE

Thank you for attention!

Ilona Kuzmina ilona.kuzmina@lu.lv

Photonics Europe 2020: Tissue Optics and Photonics

