

INVESTING IN YOUR FUTURE

University of Latvia Laboratory of Quantum optics

April 2018

Latvia

University of Latvia

Number of Students ~ 13 000 Academic Personnel ~ 1100

Physics:

- Faculty of Physics and Mathematics (\sim 30 researchers)
- Institute of Atomic Physics and Spectroscopy (~ 40)
- Institute of Solid State Physics (~ 100)
- Institute of Chemical Physics (\sim 30)
- Insitute of Physics (\sim 20)

Institute of Atomic Physics and Spectroscopy of University of Latvia

```
Academic Staff ~ 40
www.asi.lv
```


Laboratories

- 1. Laboratory of theoretical physics Dr. R. Veilande (~ 3 researchers)
- 2. Biophotonics laboratory Prof. J. Spigulis (~ 15)
- Laboratory of high-resolution spectroscopy and light source technology -Dr. A. Skudra (~5)
- 4. Laboratory of atomic and atmospheric physics and photochemistry Dr. A. Ubelis (~ 10)
- 5. Quantum Optics Laboratory Dr. J. Alnis (~5)

About project

- Project title: Development of novel WGM microresonators for optical frequency standards and biosensors, and their characterization with a femtosecond optical frequency comb
- **Project number:** 1.1.1.1/16/A/259
- Project aim: to acquire new knowledge of know-how in design, stabilizing and modeling of the WGM resonator, and the detection of biomolecule using the resonator, thus supporting the objectives of the Latvian Smart specialization, scientific and technological development of human capital and the creation of new knowledge for economy to improve competitiveness.
- Project period: 01.03.2017. 30.08.2019.

Our team

Project team group photo (April 2017).

leading researchers

- J. Alnis
- A. Atvars
- R. Viter

scientific assistant

• I. Brice

laboratory assistants

- K. Grundšteins
- A. Pirktiņa
- A. A. Ūbele substituted by H. Baumanis

Project homepage

https://www.lu.lv/cgm/eng/

We started big

 First, experiments with a huge sphere and visible laser

(d ~ 6cm)

 Second, experiments with a small sphere and visible laser

(d ~ 1 mm)

- Third, experiments with a small microsphere and infrared light
 - (d ~ 0,5 mm)

Set-up for exciting WGMs

H₂ flame

Resonator melted using propane-oxygen flame Resonator melted using hydrogenoxygen flame

Manufacturing a resonator at the tip of a fiber (multi-mode fiber)

Resonator testing

When measured with a scan-wavelength VCSEL laser in an area of 760 nm, the visible photo-diode signal changes when the resonator is pressed into the prism and moved further away.

 O_2 absorption line

Calculating the Q factor First results

First measured Q factor 10⁵

Calculating the Q factor Limit of VCSEL laser

Between the interferometer peaks at 1 GHz. Peak width = Laser line width 40 ... 70 MHz. The laser limits the measurement of WGM Q to $2 \dots 4 \times 10^{6}$.

Calculating the Q factor ECDL laser

780nm ECDL laser. For this laser, the spectral line <1MHz, which is much narrower than the VCSEL laser, allows the measurement of higher Q-factors of WGMR.

Fighting with dust

4 h later

16 h later

Achieving better Q factors

Achieving better Q factors

Resonators made in Līvani by "Lightguide Photonics"

WGM disk resonator made from a 1mm diameter quartz rod, with CO₂ laser

Waveguides

WGM resonators and waveguides made From SU8 photoresist with photolithography. Tested: Laser light can be coupled into waveguides. Failed to see resonances, only interference waves from the ends of the waveguide.

Modeling total internal reflection

Modeling small "bio"-molecules

Figure 8.18: Simulation in Comsol Multiphysics. $n_1 = n_3 = 1.5$, $n_2 = 1$, $n_4 = n_{bio} = 3$, $r = 2 \ \mu m$, $\theta_{light} = 0.846 \ \text{rad}$, $d_1 = \lambda_0/13$, $\phi = 3pi/4$, (M1) $d_2 = \lambda_0$, $r_2 = 0.2 \ \mu m$ (M2) $d_2 = 0$, $r_2 = 0.2 \ \mu m$ (M3) $d_{21} = 0$, $\phi_1 = 3\pi/4$, $d_{22} = 0$, $\phi_2 = 5\pi/4$, (M4) $d_2 = 0$, $r_2 = 969.52 \ \text{nm} \approx \lambda_0$

Modeling non-spherical molecule

Figure 8.19: Simulation in Comsol Multiphysics. $n_1 = n_3 = 1.5$, $n_2 = 1$, $n_4 = n_{bio} = 3$, $r = 2 \ \mu m$, $\theta_{light} = 0.846 \ rad$, $d_1 = \lambda_0/13$, $\phi = 3pi/4$, $d_2=0$, r_1 is changed (in horizontal axes as r_0). Lambda is a bit shifter to larger wavelengths compared to non-bio environment

Figure 8.20: Simulation in Comsol Multiphysics. $n_1 = n_3 = 1.5$, $n_2 = 1$, $n_4 = n_{bio} = 3$, $r = 2 \ \mu m$, $\theta_{light} = 0.846 \ \text{rad}$, $d_1 = \lambda_0/13$, $\phi = 3pi/4$, $d_2=0$, r_1 is changed (in horizontal axes as r_0).

Modeling the signal dependence on the N

Figure 8.21: Simulation in Comsol Multiphysics. $n_1 = n_3 = 1.5$, $n_2 = 1$, $n_4 = n_{bio} = 3$, $r = 2 \ \mu m$, $\theta_{light} = 0.846$ rad, $d_1 = \lambda_0/13$, $\phi = 3pi/4$, $d_2=0$, r_1 is changed (in horizontal axes as r_0). Lambda is a bit shifter to larger wavelengths compared to non-bio environment (A) N=16, (b) N=32; (c) N=64

N = 16

N=32

N=64

Coating the resonators

ZnO NRs – no resonances observed

Polystyrene spheres – no resonances observed

Experiment VS Modelling

Experiment Resonance step ~ 6 nm

Testing resonators Coated with ZnO mono-layer

5 nm ZnO

20 nm ZnO

Silanization of the samples

Types of Antibody binding to the metal oxide surface

Covalent binding (left) and non covalent (right)

Immobilization control

Wavelength (nm)

Characterization of non silanized ZnO-Antibody

Surface coating

Characterization of silanized ZnO-Antibody

Surface coating

Testing to cancer cells

Cell coating of the surface

Different DIY

Fabri-Perot resonator

Frequency comb

Precision measurement system of light frequency

Thank You for Attention!