

Snapshot multi-spectral-line imaging for applications in dermatology and forensics

Janis Spigulis, Peteris Potapovs, Ilze Oshina

Biophotonics Laboratory Institute of Atomic Physics and Spectroscopy University of Latvia, Riga

Spectral image

- By definition, spectral image represents x-y distribution of spectral reflectance $R(\lambda) = I_r(\lambda)/I_o(\lambda)$, where $I_o(\lambda) intensity$ of incident light at a specific single wavelength λ ; $I_r(\lambda) intensity$ of reflected light at the same wavelength
- Theoretically, spectral image = spectral line image (λ)
- In practice: spectral line \rightarrow spectral band imaging

Hyperspectral & multispectral imaging (images at a number of wavelengths bands)

Hyperspectral:

adjacent overlapping spectral bands

Multispectral:

selected nonoverlapping spectral bands

Multi-spectral-band imaging: drawbacks

- HSI (tens of k\$)
 - Huge computing resources required
 - A number of spectral images noninformative
 - Typical spectral bandwidth
 - ~ 10-20nm, overlapping bands → insufficient spectral purity
- MSI (<1k\$)
 - Low spectral purity typical spectral bandwidth ~ 20-50 nm
 - Acquisition time seconds, in-vivo motion artefacts still possible

Challenge: how to minimize both spectral bandwidth and acqisition time of the spectral image set?

The main concept

n =3 → n > 3

Why? Advantages:

- Better spectral selectivity limited by the spectral linewidth
- Improved imaging quality avoided motion artefacts
- Simpler/faster image processing dealing with numbers instead of integrals over the whole spectral bands

Multi-spectral-line imaging

- Monochromatic (< 0.1nm) single spectral line image can be obtained if the object is illuminated by a single spectral line, e.g. emitted by laser
- 3 monochromatic spectral images from a single-snapshot RGB image data can be extracted if object is <u>illuminated simultaneously at 3 laser wavelengths</u>, and the RGB-band sensitivities of the image sensor are known → corrected R-, G- and B-band images*

*) WO 2013135311 (A1), Method and device for imaging of spectral reflectance at several wavelength bands.

Laser illumination uniformity: flat ring-shaped diffusing reflector

Smartphone add-on triple wavelength laser illuminator: 448nm, 532nm, 659nm

WO 2017/012675 A1, Method and device for smartphone mapping of tissue compounds.

Proof of concept - 1: mapping of skin chromophore distributions BENIGN MALIGNANT

Nevi

Seborrheic keratosis

Hemangioma

Melanoma

Basal cell carcinoma

Squamous cell carcinoma

Image processing: 3-chromophore model, Beer's law

$$\begin{cases} \ln\left(\frac{I_1}{I_{01}}\right) = -l_1\left(\Delta c_a \cdot \varepsilon_a(\lambda_1) + \Delta c_b \cdot \varepsilon_b(\lambda_1) + \Delta c_c \cdot \varepsilon_c(\lambda_1)\right) \\ \ln\left(\frac{I_2}{I_{02}}\right) = -l_2\left(\Delta c_a \cdot \varepsilon_a(\lambda_2) + \Delta c_b \cdot \varepsilon_b(\lambda_2) + \Delta c_c \cdot \varepsilon_c(\lambda_2)\right) \\ \ln\left(\frac{I_3}{I_{03}}\right) = -l_3\left(\Delta c_a \cdot \varepsilon_a(\lambda_3) + \Delta c_b \cdot \varepsilon_b(\lambda_3) + \Delta c_c \cdot \varepsilon_c(\lambda_3)\right) \end{cases}$$

Problem: skin-remitted photon path length. Monte-Carlo simulations (*A.Bykov, Oulu*)

(In progress – experimental determination by ps laser pulse propagation measurements: M.Osis et al., *Quant.Electron.*, Vol.49 (2019), Issue 1)

RGB images (a) and maps of chromophore content changes: b – oxy-haemoglobin, c – deoxy-haemoglobin, d – melanin.

J.Spigulis, I.Oshina, A.Berzina, A.Bykov, "Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination", *J.Biomed.Opt.*, **22**(9), 091508 (2017).

RGB image (a) and maps of chromophore content changes for 3 vascular hemangiomas: b – oxy-hemoglobin, c – deoxy-hemoglobin, d – melanin

Proof of concept - 2: color pigment differences in counterfeits

Counterfeit banknotes: from Bank of Latvia

LATVIJAS BANKA

Preliminary results: increased sensitivity by ratios of spectral line images involving blue 448 nm

RGB

448/532nm

More detailed study: samples of EUR 20 and EUR 50 banknotes

		Counterfeit				
	Authentic	Jet-printed	Offset- printed	Copied	Other	
EUR 20 (new version)	7	2	-	2	3	
EUR 20 (old version)	2	-	10	-	3	
EUR 50 (new version)	15	1	-	-	2	
EUR 50 (old version)	3	-	1	-	7	
In total:			58			

Image processing

Numerical comparison: k-factor

Mean pixel values over the selected RoI are calculated/divided

M: counterfeit sensitivity parameter (reliability)

Reliability: jet-printed vs other

Counterfeit method	Processing method	Μ	
other	$\lambda_{\rm R}/\lambda_{\rm B}$	81.5%	
other	$\lambda_{R}-\lambda_{B}$	64.3%	
other	λ_{B}	51.2%	
Jet printer	λ _B	49.4%	
Jet printer	λ _G	43.6%	
other	λ _G	40.4%	
Jet printer	λ _R	39.7%	
other	λ_{R}	37.6%	
other	$\lambda_{\rm R}/\lambda_{\rm G}$	29.2%	
Jet printer	$\lambda_{\rm R}/\lambda_{\rm G}$	25.3%	
Jet printer	$\lambda_{\rm R}/\lambda_{\rm G}$	24.3%	
Jet printer	$\lambda_{\rm G}/\lambda_{\rm B}$	23.5%	
Jet printer	$\lambda_{\rm R}/\lambda_{\rm B}$	23.0%	
Jet printer	$\lambda_{G}-\lambda_{B}$	22.6%	
Jet printer	$\lambda_{G}-\lambda_{B}$	21.1%	
Jet printer	$\lambda_{\rm G}/\lambda_{\rm B}$	21.0%	

3 spectral line approach for document counterfeit detection

Table 1. Spectral line images and the respective normalized printed letter values for the three pages ([•] standard deviations).

Page No.	RGB image with three lasers	659 nm	Mean printed text values	532 nm	Mean printed text values	448 nm	Mean printed text values
1	avimentos para , sito na rua Fle Jesia de Santo tricial sob o art	avimentos para , sito na rua Fle Jesia de Sante ricial sob o art 0	0.029 ± 0.015	avimentos para 0.8 , sito na rua Fle 0.6 Jesia de Santo 0.4 Iricial sob o art 0.2	0.078 ± 0.035	avimentos para , sito na rua Fk Jesia de Santo tricial sob o art	0.051 ± 0.004
2	conforme e canalizaçõe: ninização, toma a custa as nece	conforme e canalizaçõe: inização, toma a custa as neo 0	0.042 ± 0.017	conforme 0.8 e canalizaçõe: 0.6 uinização, toma a custa as neci	0.098 ± 0.036	conforme d ¹ e canalizaçõe: ninização, toma a custa as nec	0.063 ± 0.004
3	o outorgante c consumo de a eléctrica que	o outorgante c consumo de . ^{0.4} a eléctrica que 0.2	0.028 ± 0.015	o outorgante c 0.8 0.6 0.4 a eléctrica que 0	0.073 ± 0.033	o outorgante c consumo de outor a eléctrica que	5 0.051 ± 0.004

Under development: n > 3

- Up to 6 spectral line images by doublesnapshot RGB imaging technique, each snapshot under different 3λ–combined illumination*
- Quality improvement of the monochromatic spectral images by laser speckle removal **
- First switchable 4λ and 5λ laser illuminator prototypes created \rightarrow
- Current project: 4-wavelengths images by RGB-NIR camera under combined 450-520-660-850nm illumination

*) LV 15106 B. Method and device for mapping of chromophores under illumination by several laser lines.
**) WO 2018/177565 A1. Device for speckle-free imaging under laser illumination.

Summary

- Snapshot multi-spectral-line imaging concept implemented in a triple-wavelengths prototype device
- This imaging approach tested for skin tissue chromophore mapping and fake money detection
- Chromophore distribution in pigmented and vascular skin malformations: physiologically feasible results obtained
- Counterfeit EUR banknote studies: the blue line 448nm images and combinations of red 659nm and blue (λ_R/λ_B , $\lambda_R-\lambda_B$) found to be most sensitive
- Potential for document forgery detection demonstrated
- Further improvements for n > 3 in progress

Acknowledgements

- Supported by all team members of Riga Biophotonics lab
 Forensic study inspired by COST CA16101 action «Multi-Foresee»
- Special thanks to the Money Technology Department, Bank of Latvia for sharing the counterfeit EUR banknotes
- Financially supported by the Latvian Council of Science, grant # lzp-2018/2-0006

Thank You!

- janispi@latnet.lv
- http://home.lu.lv/~spigulis

