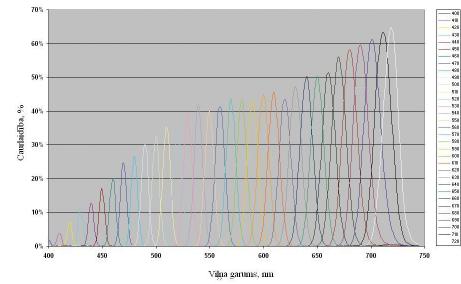
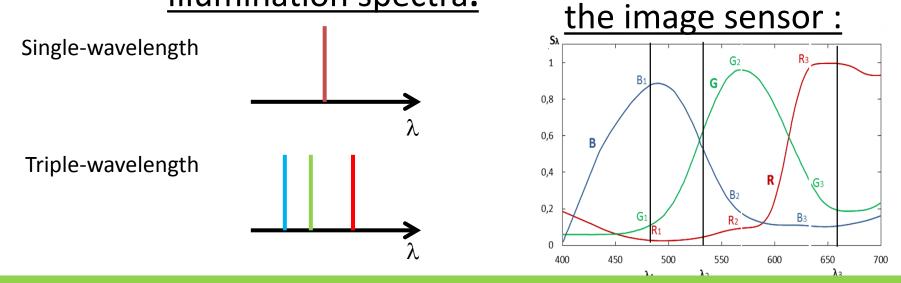


Laser Illumination Designs for Snapshot Multi-Spectral-Line Imaging


Janis Spigulis, Ilze Oshina, Margarita Matulenko

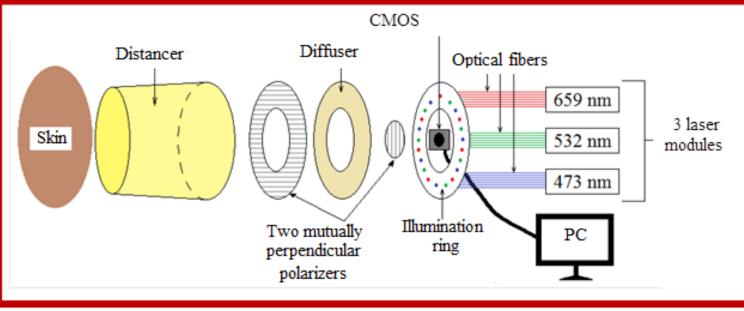
Institute of Atomic Physics and Spectroscopy University of Latvia, Riga

CLEO-Europe, Munich, 24/06/2019


Motivation: improved spectral imaging

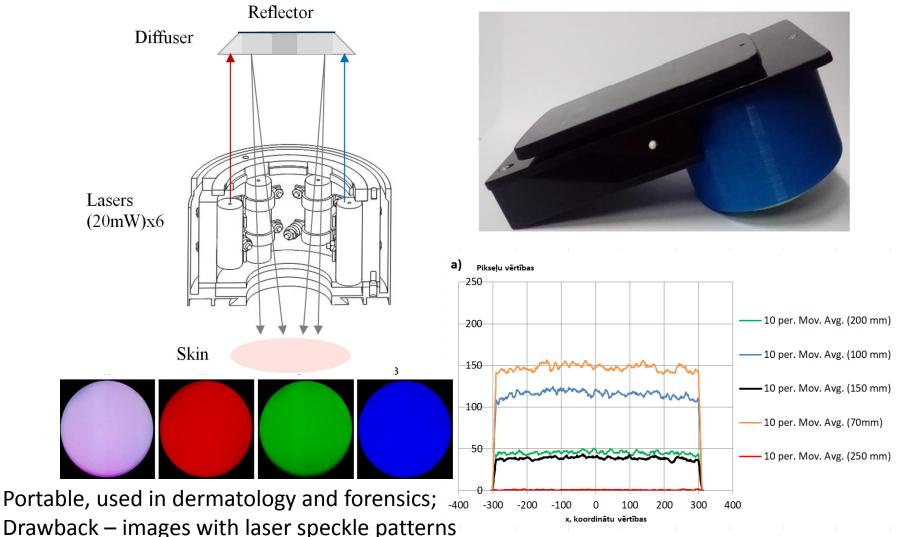
- Hyperspectral imaging: nice technology, but with some disadvantages:
 - insufficient spectral purity bandwidth ~10-20nm, overlapping bands
 - Acquisition time tens of seconds to minutes → motion artefacts (in-vivo)
 - Huge computing resources required
 - A number of spectral images
 non-informative
 - Expensive, tens of kEUR

Single and multi- spectral line imaging


- <u>Narrower spectral band</u> → monochromatic (< 0.1nm) single spectral line image can be obtained if the object is illuminated by a single spectral line, e.g. emitted by laser
- Faster acquisition of a set of spectral images → 3 monochromatic spectral images from a single-snapshot RGB image data can be extracted if object is <u>illuminated simultaneously by 3</u>
 <u>laser lines</u>, and the RGB-band sensitivities of the image sensor are known → crosstalk corrected R-, G- and B-band images can be extracted*
- Advantages radically <u>improved spectral selectivity</u> of images, <u>avoided motion artefacts</u>
- <u>Applications: dermatology (mapping of skin chromophores); forensics (counterfeit detection); ...</u>
 <u>RGB sensitivities of</u>

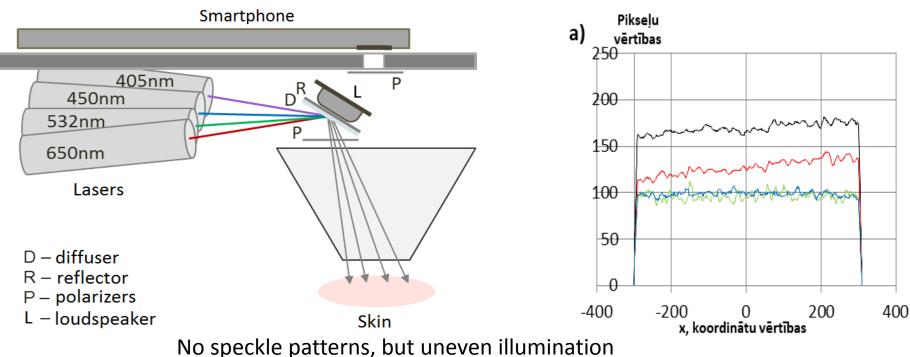
*) Method and device for imaging of spectral reflectance at several wavelength bands. WO 2013135311 (A1), 2012.

1st design: forward illumination by a 21 fiber system, 473/532/659nm



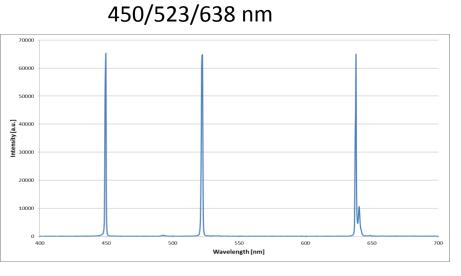
Acceptable uniformity of target illumination; drawback - too bulky, inconvenient for out-of-lab use

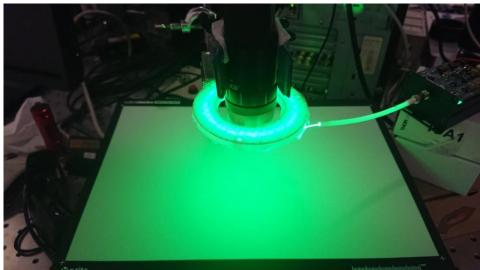
J.Spigulis, I.Oshina. Snapshot RGB mapping of skin melanin and hemoglobin. *J.Biomed.Opt.*,20(5), 050503 (2015


2nd design: free space laser backward illumination (448/532/659nm) by a ring-shaped diffusing reflector

J.Spigulis, I.Oshina, A.Berzina, A.Bykov, "Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination", *J.Biomed.Opt.*, **22**(9), 091508 (2017).

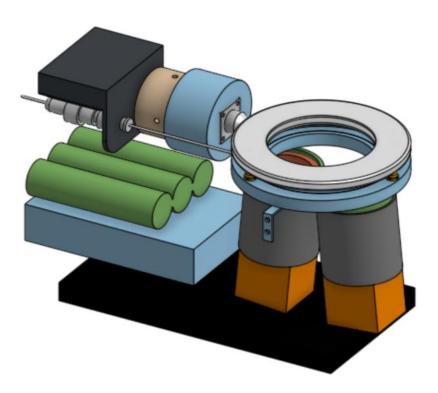
3rd design: four laser line illuminator with sloped diffusing reflector





WO 2018/177565 A1, 2018. Device for speckle-free imaging under laser illumination (U.Rubins, E.Kviesis-Kipge, J.Spigulis)

Current project: RGB laser illumination by a side-emitting optical fiber ring (dia. 55...65 mm)



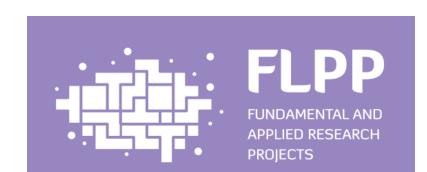
LV 11644 B, 1995. Side-emitting optical fiber (D. Pfafrods, M. Stafeckis, J. Spigulis, D. Boucher).

Illumination profiles at various distances from the fiber ring plane

	Image	R channel	G channel	B channel	
80 mm		0.9 0.8 0.7 0.6 0.5 0.4	0.9 0.8 0.7 0.6		0.75 0.7 0.65 0.6 0.55 0.5 0.5 0.45
70 mm		0.3 0.9 0.8 0.7 0.6 0.5 0.4 0.3	1 0.9 0.8 0.7 0.8		0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.5
60 mm		0.9 0.8 0.7 0.6 0.5 0.4 0.3	1 0.9 0.8 0.7 0.6		0.8 0.7 0.6 0.5
50 mm		0.9 0.8 0.7 0.6 0.5 0.4	0.9 0.8 0.7 0.6		0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45
40 mm		0.9 0.8 0.7 0.6 0.5 0.4	1 0.9 0.8 0.7 0.6		0.9 0.8 0.7 0.6 0.5

Design concept of the new prototype device

Summary


- Non-conventional multi-laser designs for even illumination of centimeter-sized areas discussed
- Applications spectral imaging of increased performance for dermatology, forensics, etc.
- Four design options developed:
 - Multi-fiber forward illumination
 - Backward illumination by a planar light-scattering ring
 - Reflection of laser beams by a sloped planar diffuser
 - Illumination by a ring of side-emitting fibers
- All designs implemented and tested in prototype devices for snapshot multi-spectral-line imaging; advantages and drawbacks identified.

Acknowedgements

This study was supported by the Latvian Council of Science, grant # LZP-2018/2-0006 «Advanced spectral imaging technology for skin diagnostics». Travel support from the ERDF project # 1.1.1.1/18/A/132 is highly acknowledged.

Latvian Council of Science

Thank You!

- janispi@latnet.lv
- <u>http://home.lu.lv/~spigulis</u>

