
Mapping between Relational Databases and OWL
Ontologies: an Example

Guntars Bumans
Department of Computing, University of Latvia

Raina bulv. 19, Riga, LV-1586, Latvia
guntars.bumans@gmail.com

This paper shows how relational databases can be used to define a bridging mechanism between
relational database and OWL ontology. We demonstrate on a simple yet completely elaborated
example how mapping information stored in relational tables can be processed using SQL to
generate RDF triples for OWL class and property instances. This technology provides the means
to use relational database as a powerful tool to transform relational data to Semantic Web layer.

Keywords: relational databases, RDF triples, mappings.

1	 Introduction
There are several studies or tools allowing mapping relational databases (RDBs)

to RDF schema or OWL ontologies. Some of the most notable approaches of this kind
are R2O [1], D2RQ [2], Virtuoso RDF Views [3, 4] and DartGrid [5]. There is W3C
RDB2RDF Incubator Group [6] related to standardization of RDB to RDF mappings,
the group has published its survey of mapping RDBs to RDF [7].

R2O [1] approach defines declarative and extensible language (in xml) to describe
mapping between given RDB and an OWL ontology or RDFS schema so that tools
can process this mapping and generate triples that correspond to source RDB data.
D2RQ [2] technology is another bridging technology where one can use SQL to
describe the mapping information. This language is closer to SQL level and is not as
declarative as R2O. Both D2RQ [2] and Virtuoso RDF Views [3, 4] allow retrieving
instance data from RDB on-the-fly during the execution of SPARQL queries over the
RDF data store.

The aim of this paper is to demonstrate a very simple standard SQL-based RDB
to RDF/OWL mapping approach that is based on defining correspondence between
the tables of the database and the classes of the ontology, as well as between table
fields/links in the database and datatype/object properties in the ontology (with possible
addition of filters and linked tables in the mapping definition), and later automatically
generating SQL statements that generate the RDF triples that correspond to the source
database data.

Our work setting for RDB to RDF/OWL translation involves the assumption that
both the database and the ontology (or RDF schema) are given. The translation is not
meant to be on-the-fly because huge amount of data can be involved. This corresponds
to the practical database semantic re-engineering task, as advocated in [8, 9, 10, 11] in
the setting of Latvian medical research databases.

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 99–117 P.

G. Bumans
Mapping between Relational Databases and OWL Ontologies: an Example

100 Computer Science and Information Technologies

It should be possible to translate the mappings specified here into other RDB-to-
RDF/OWL mapping formalisms (e.g., R2O [1], D2RQ [2], Virtuoso RDF Views [3]),
thus obtaining alternative implementations of these mappings.

There is at least a conceptual possibility to create the mapping between the source
RDB schema and target OWL ontology by means of model transformations described
in some transformation language (e.g. MOF QVT [12], ATL [13], or MOLA [14]);
however, typically these translations are not supported on data in RDB or RDF formats
and require the use of an intermediate format (a so-called model repository, such as
EMF [15]) which may not be feasible for large data sets.

Our approach is to go for direct translation of RDB-stored data into (conceptual)
OWL ontology format that can be executed on the level of DBMS.

In Section 2 of this paper we describe the mapping method and provide the table
structure for storing mapping data. Section 3 introduces the demonstration example.
Section 4 describes and demonstrates the instance generation process for OWL
classes, OWL datatype properties and OWL object properties. Section 5 concludes
the paper.

2	 A Mapping Schema
We propose a bridging mechanism between relational databases and OWL

ontologies. We assume that the ontology and the database have been developed
separately. Most often the database is of legacy type but the ontology reflects the
semantic concerns regarding the data contents. Our approach is to make a mapping
between these structures and store the mapping in meta-level relational schema (we are
working towards mapping specification language that is suitable for the end user, which
however is beyond the scope of this paper). This approach allows us to use relational
database engine to process mapping information and generate SQL sentences that, when
executed, will create RDF/OWL-formatted data (RDF triples) describing instances of
OWL classes and OWL datatype and OWL object properties that correspond to the
source RDB data.

In the simplest case, an OWL class corresponds to a RDB table, an OWL datatype
property corresponds to a table field, and an OWL object property corresponds to a
foreign key. In real life examples the mappings are not so straightforward.

For example, an OWL class Person could be a domain for OWL datatype
property personAddress. But the corresponding database table persons could
have a foreign key reference to some other table having address information. To
complicate things even more, one property of type xsd:string can correspond to
a combination of columns spread over many tables in the database (e.g., country,
city, street information stored in separate tables). Other possible causes of direct
mapping impossibility are subclass relation in the ontology, the use of many to many
relations, the non-existence of “natural” foreign keys in RDB. Often databases are
normalized and their structure is optimized out of performance concerns thus hiding
true conceptual meaning. To deal with all this complexity, we introduce mapping
schema (Fig. 1). We will call it mapping DB. Source database (legacy type) will be
denoted by source DB in this paper.

101G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

Fig. 1. A mapping schema between OWL ontology and relational database

The OWL ontology basic information (classes and properties) is stored in tables
ontology, owl_class, owl_object_property and owl_datatype_property. For each
OWL class the table class_map defines the connections to RDB objects that can be
a table (a real, existing table in a source database), a view (a view can be defined
inline using column class2view.select_sql), or a temporary table (class2temp_table).
In typical cases only real existing source database tables are referenced: however, the
view and temporary table techniques are available to handle certain advanced mapping
situations. For example, the temporary table mechanism allows to create a new table
in triple generation process (definition_sql column) and fill it with data (populate_sql).
This mechanism can be used both for complex data-specific mappings (e.g. splitting
a comma-separated list into independent element data values), and for providing an
auto-generated identity column as a resource for OWL class instance URI generation.
To simplify the further description, we will assume that mapping is to real database
tables (class2table). This way we do not lose the functionality that is required in the
forthcoming example that does not use either inline defined views or temporary tables.
From the perspective of transformation process, mapping specified in class2table can be
also directed to named view in the database. Both tables and named views have columns
and no other table specific information is used.

Each row in the class_map table contains a further filter possibility on the
referenced RDB object (the filter_expr column), as well as the specification for

102 Computer Science and Information Technologies

target OWL class instance URI generation on the basis of the data contained in the
referenced RDB object. The URI of an OWL class instance is defined based on a
record in the class_map table, by concatenating the ontology.xml_base value with
instance_uri_prefix column value (typically holding the name of the referenced RDB
object), followed by the contents of id_column_expr (column or column expression)
evaluated in the referenced RDB object in source DB. The generate_instances column
specifies whether the OWL class instances indeed have to be generated by this class_
map specification. If the instances are not to be generated, the class map can still be
used as a reference point in further object_property_map and datatype_property_map
definitions.

Table object_property_map holds specifications for instance generations for OWL
object properties. Each record in this table is based on a class_map record for both
domain and range of the object property, as it describes or references the rules how the
triples connecting the domain and range instances by this object property are formed.
In the simplest case, a column expression is specified for both DB objects (tables)
corresponding to the domain and range class maps (in source_column_expr and target_
column_expr, respectively), and the values of these expressions are required to coincide
for a triple to be created. If DB objects (tables) for domain and range class maps cannot
be joined directly based on column expressions but they can be joined through some
intermediate table joins then these middle joins are specified by rows in table_link table
(more on this in Sub-section 4.3).

The table datatype_property_map holds specifications for instance generation for
OWL datatype properties. Each record in this table is based on a class_map record for
domain of the datatype property. The record maps domain to DB table (or view) and
specifies how to generate subject part of generated triples: filtering, URI creation is done
the same way as for OWL instance generation. Column column_expr specifies how to
generate object part of triples (value for range). In the simplest case it is evaluated in the
table specified for domain class map. If the value is to be taken from some other table
then table_link row can be used to specify join to that table. Example: Person table
is domain table but range for the property is address that is stored in Address table to
which Person has foreign key.

A mapping DB can hold information of more than one OWL ontology to database
mapping. For each such mapping there should be a separate row in ontology table and
foreign key to it from owl_class, owl_datatype_property and owl_object_property
table.

3	 A Mapping Example
To better explain our proposed approach, we will use a simple example taken from

[8] in Fig. 2. and 3. Below are a sample database schema and a corresponding ontology
(OWL class Thing is omitted for simplicity).

For example, the classes Student and Course in this sample ontology have
corresponding tables student and course in the sample database. To get instance data for
OWL object property takes the table link path is needed: tables student and registration
joined on student_id and registration and course joined on course_id.

103G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

Class personID instances are populated from student and teacher tables (idcode
column).

Classes Asistant, AssocProfessor and Professor all get instance data from one table
teacher but each has a different filtering. It means that string data ‘level_code=…’ must
be written in class_map.filter_expr in corresponding rows.

In the following tables we show the actual data tables of our sample database. This
specific data set will be used as an example.

Fig. 2. A sample relational database schema

Fig. 3. Sample ontology

104 Computer Science and Information Technologies

Table 1
Table program data

program_id name
1 Computer Science
2 Computer Engeneering

Table 2
Table teacher_level data

level_code
Assistant
Associate Professor
Professor

Table 3
Table course data

course_id name program_id teacher_id Required
1 Programming Basics 2 3 0
2 Semantic Web 1 1 1
3 Computer Networks 2 2 1
4 Quantum Computations 1 2 0

Table 4
Table student data

student_id name idcode program_id
1 Dave 123456789 1
2 Eve 987654321 2
3 Charlie 555555555 1
4 Ivan 345453432 2

Table 5
Table teacher data

teacher_id name idcode level_code
1 Alice 999999999 Professor
2 Bob 777777777 Professor
3 Charlie 555555555 Assistant

Table 6
Table registration data

registration_id student_id course_id
1 1 2
2 1 4
3 2 1
4 2 3
5 3 2

Mapping data between these two models inserted in our mapping DB is shown
in Sub-sections 4.1–4.3 in appropriate places when describing instance generation
methods. For our mapping example we have owl_ontology.ontology_id=1.

105G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

The basic information from OWL ontology (classes, datatype and object properties)
is encoded in tables ontology, owl_class, owl_datatype_property and owl_object_
property in an obvious way.

4	 OWL Instance Generation
In this section, we describe the instance generation process. it is done by SQL select

statements executed in mapping DB to generate another SQL select statement that in turn
generates RDF triples when executed in source DB. In special cases when table_link is
to be used in generation process more than once procedural language (java + jdbc) can
be applied. However, that is not the case in the example discussed in this paper.

4.1	 OWL Class Instance Generation

Link between tables owl_class and class_map is used to generate RDF triples for
OWL class instances. Unique URI for these instances are formed concatenating fields
ontology.xl_base, owl_class.rdf_id and value derived from evaluating the expression
described in id_column_expr in source DB. To generate triples for OWL class instances
that are based on real tables (having foreign key from class_map to class2table) we
need to create SQL select statement based on tables ontology, owl_class, class_map
and class2table. If source data comes from database view or temporary table then query
needs to be modified (class2view/class2temp_table instead of class2table).

OWL class mappings are listed in the next table. In the example only the mappings
to database tables are used. Data from tables class_map and referenced tables owl_class,
class2table is listed below.

Table 7

OWL class mappings to database tables

class_
map_
id

OWL class
(rdf_id)

table_
name

filter_expr id_
column_
expr

instance_
uri_
prefix

generate_
instances

1 Teacher teacher teacher_id Teacher 0
2 Assistant teacher level_code=

'Assistant'
teacher_id Teacher 1

3 AssocProfessor teacher level_code=
'Associate Professor'

teacher_id Teacher 1

4 Professor teacher level_code=
'Professor'

teacher_id Teacher 1

5 Student student student_id Student 1
6 Course course course_id Course 0
7 MandatoryCourse course required=1 course_id Course 1
8 OptionalCourse course required=0 course_id Course 1
9 PersonID teacher idcode PersonID 1
10 PersonID student idcode PersonID 1
11 AcademicProgram program program_id Program 1

106 Computer Science and Information Technologies

Most of the class mappings are used for the real OWL class instance generation.
There are, however, a few class mappings that are not used in the class instance
generation, but which will be further referenced in datatype property mappings.

With an SQL statement it is possible to generate another SQL statement which,
when executed in sample DB, would generate instance RDF triples. Executing script
OWL_instance_gen.sql (see Appendix for code) against our sample data, we obtain row
set with generated SQL statements, one of which is:

SELECT '<http://lumii.lv/ex#Course'
 || course.course_id || '>' as subject,
 '<type>' as predicate,
 '<lumii#MandatoryCourse>' as object
FROM course
WHERE required=1

Executing all generated statements in our sample source DB we obtain the following
triples, with duplicates removed. The duplicates in the example come from the fact
that one teacher table row and one student table row have the same idcode value (the
same person being student and teacher at the same time). In Table 8 we use the prefix
“lumii” to denote “http://lumii.lv/ex”, and the predicate notation “type” to stand for
http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

Table 8

Generated OWL class instance RDF triples

Subject Predicate Object
< lumii #Course1> <type> <lumii#OptionalCourse>
< lumii #Course2> <type> <lumii#MandatoryCourse>
< lumii #Course3> <type> <lumii#MandatoryCourse>
<lumii#Course4> <type> <lumii#OptionalCourse>
<lumii#PersonID123456789> <type> <lumii#PersonID>
<lumii#PersonID345453432> <type> <lumii#PersonID>
<lumii#PersonID555555555> <type> <lumii#PersonID>
<lumii#PersonID777777777> <type> <lumii#PersonID>
<lumii#PersonID987654321> <type> <lumii#PersonID>
<lumii#PersonID999999999> <type> <lumii#PersonID>
<lumii#Program1> <type> <lumii#AcademicProgram>
<lumii#Program2> <type> <lumii#AcademicProgram>
<lumii#Student1> <type> <lumii#Student>
<lumii#Student2> <type> <lumii#Student>
<lumii#Student3> <type> <lumii#Student>
<lumii#Student4> <type> <lumii#Student>
<lumii#Teacher1> <type> <lumii#Professor>
<lumii#Teacher2> <type> <lumii#Professor>
<lumii#Teacher3> <type> <lumii#Assistant>

107G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

4.2	 OWL Datatype Property Instance Generation

Table datatype_property_map allows to specify for each owl_datatype_propery
several possible value generation mappings, each based on some class_map. This
linking allows to obtain domain instance URIs for an OWL datatype property. The
property range values are obtained from table columns or expressions thereof. In
the simplest case when range is to be mapped to column in the same table specified
through datatype_property_mapclass_map, we use column column_expr. If
the property range is mapped to table column (or column expression) in a linked
table, we specify the link expression in table table_link (the source_column_expr,
target_column_expr and mid_table_name columns encode the linking (table join)
conditions). There is no table_link usage for OWL datatype property generation in
the example.

Table 9 represents data in table datatype_property_map and referenced tables class_
map and owl_datatype_property in case when no table link is used (no table_link table
usage). One can compare the first column in Table 7 and Table 9 below. For example,
property personName is linked to class_map_id=1 and class_map_id=5 that correspond
to class maps for OWL classes Teacher and Student. Instances are not directly generated
for Teacher class (generate_instances=0). Class instances are generated for subclasses
Professor, AsocProfessor and Asistant classes. As instance_uri_prefix, table_name
and id_column_expr have the same value in the class map for superclass (Teacher in
this case), it enables correct generation of the subject part of triples for OWL datatype
properties. There is no need to make class map for each subclass. As to correctness of
the mapping, the class map to super class should have the same filtering as union of all
subclasses. In the case of Teacher it has no filter (filter_expr is empty for class_map_
id=1) but filters for sub-class maps (class_map_id:2,3,4) are level_code='Assistant',
level_code='Associate Professor' and level_code='Professor'. All these together
produce all teacher rows and Teacher class map with no filtering corresponding to the
same row set.

Table 9

OWL datatype property class mappings to database table column expressions
(data from tables datatype_property_map and referenced class_map, class2table

and owl_datatype_property)

class_map_id OWL_datatype_
property

table_name column_expr filter_expr

6 courseName Course name
11 programName Program name
1 personName Teacher name
5 personName Student name
9 IDValue Teacher idcode
10 IDValue Student idcode

Executing script generate_sql4datatype_props.sql (see Appendix for the code) against
our sample data, we obtain row set with generated SQL statements, one of which is:

108 Computer Science and Information Technologies

SELECT
 '<lumii#optionalCourse'
 || course.course_id || '>' as subject,
 '<lumii#courseName>' as predicate,
 name as object
FROM course
WHERE required=0

Executing all generated statements in our sample source DB, we obtain the following
triples, duplicates removed (note the abbreviations, as in Table 8).

Table 10

Generated OWL datatype property instance RDF triples

Subject Predicate Object
<lumii#Course1> <lumii#courseName> Programming Basics
<lumii#Course2> <lumii#courseName> Semantic Web
<lumii#Course3> <lumii#courseName> Computer Networks
<lumii#Course4> <lumii#courseName> Quantum Computations
<lumii#PersonID123456789> <lumii#IDValue> 123456789
<lumii#PersonID345453432> <lumii#IDValue> 345453432
<lumii#PersonID555555555> <lumii#IDValue> 555555555
<lumii#PersonID777777777> <lumii#IDValue> 777777777
<lumii#PersonID987654321> <lumii#IDValue> 987654321
<lumii#PersonID999999999> <lumii#IDValue> 999999999
<lumii#Student1> <lumii#personName> Dave
<lumii#Student2> <lumii#personName> Eve
<lumii#Student3> <lumii#personName> Charlie
<lumii#Student4> <lumii#personName> Ivan
<lumii#Teacher1> <lumii#personName> Alice
<lumii#Teacher2> <lumii#personName> Bob
<lumii#Teacher3> <lumii#personName> Charlie
<lumii#Program1> <lumii#programName> Computer Science
<lumii#Program2> <lumii#programName> Computer Engeneering

4.3	 OWL Object Property Instance Generation

Rows in object_property_map specify how to generate instances for OWL object
properties. The references to class_map through foreign keys domain_class_map and
range_class_map determine source DB tables for subject and object of generated
triples for property instances. The class_map rows in column filter_expr determine
filtering on these tables. These tables are joined by column expressions specified in
source_column_expr and target_column_expr. They are joined directly or by using one
or more intermediate table joining steps. The latter require usage of one or more rows
in table_link.

First we shall discuss direct joining of domain table to range table without table_
link. An OWL datatype property can have several mappings – several rows in object_
property_map. In this case the triple generation will process all of them. In the process of

109G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

triple generation for OWL object properties (also for OWL datatype properties) the class_
map column generate_instances is not used. This field is only for OWL class instance
generation. URI for subject and object part of triple are determined by concatenation of
ontology.xml_base, class_map.instance_uri_prefix and evaluation of id_column_expr in
source DB. URI of predicate part of generated triples are determined by concatenation
of ontology.xml_base and owl_object_property.rdf_id. Table 11 represents data from
object_property_map, and referenced owl_object_property, as well as two class_map
rows for subject and object and corresponding class2table rows. See Table 7 for more
details on referenced class_map rows.

Table 11

Owl object property mappings to database tables pairs for domain and range

class_
map_id
(domain)

class_
map_id
(range)

object_
property

table_
name
(domain)

table_
name
(range)

source_
col_expr

target_
col_expr

11 6 includes program course program_id program_id
5 10 personID student student student_id student_id
1 9 personID teacher teacher teacher_id teacher_id
5 11 enrolled student program program_id program_id
1 6 teaches teacher course teacher_id teacher_id

Reading the data, we can see that OWL object properties generally map to table
pairs corresponding to domain and range class pair. PersonID object property is an
exception because it has Person class as domain and PersonID class as range and
both these classes have mappings to 2 tables: student and teacher. For this property
two mappings exist (object_property_map rows), one of which maps student table for
domain to student table for range. The mapping is based on student_id column (source_
column_expr, target_column_expr). The second row maps teacher table to teacher table
based on teacher_id column in a similar way.

To generate RDF triples for OWL object property instances the data represented
in Table 11 above can be used. A framework of SQL for main information retrieval for
generation process is as follows.

SELECT
 <domain_table>_1.<domain_class_map_idclass_map.id_column_expr>,
 <range_table>_2.<range_class_map_idclass_map.id_column_expr>
FROM <domain_table> AS <domain_table>_1
 INNER JOIN <range_table> AS <range_table>_2
 ON <domain_table>_1.<domain_column_expr>
 = <range_table>_2.<range_column_expr>

The suffixes _1 and _2 are added here to prevent name collision. For example, in
the case of mapping for PersonID property (for student) query joins student table to
itself because object_property_map table specifies two tables via domain_class_map
and range_class_map although the tables are the same.

SELECT student_1.student_id, student_1.program_id
FROM student AS student_1
INNER JOIN student AS student_2
ON student_1.student_id = student_2.student_id

110 Computer Science and Information Technologies

For enrolled property the query is
SELECT student_1.student_id, program_2.program_id

FROM student AS student_1
INNER JOIN program AS program_2
ON student_1.program_id = program_2.program_id

An SQL script for OWL object property instance generation can be defined in
a similar way as it was done for OWL class and OWL datatype property instance
generation.

Executing script generate_sql4object_props.sql (see Appendix for code) against our
sample data, we produced row set with generated SQL statements, one of which was:

SELECT
 '<lumii#Program' || program_1.program_id || '>' as subject,
 '<lumii#includes>' as predicate,
 '<lumii#Course' || course_2.course_id || '>' as object
FROM program program_1 INNER JOIN course course_2
 ON program_1.program_id = course_2.program_id
WHERE 1=1 AND 1=1

Executing all generated statements in our sample source DB, we produced the
following triples (note the abbreviations, as in Table 8).

Table 12

Generated OWL object property instance RDF triples

Subject Predicate Object
<lumii#Student1> <lumii#enrolled> <lumii#Program1>
<lumii#Student2> <lumii#enrolled> <lumii#Program2>
<lumii#Student3> <lumii#enrolled> <lumii#Program1>
<lumii#Student4> <lumii#enrolled> <lumii#Program2>
<lumii#Program1> <lumii#includes> <lumii#Course4>
<lumii#Program1> <lumii#includes> <lumii#Course2>
<lumii#Program2> <lumii#includes> <lumii#Course1>
<lumii#Program2> <lumii#includes> <lumii#Course3>
<lumii#Student1> <lumii#personID> <lumii#PersonID123456789>
<lumii#Student2> <lumii#personID> <lumii#PersonID987654321>
<lumii#Student3> <lumii#personID> <lumii#PersonID555555555>
<lumii#Student4> <lumii#personID> <lumii#PersonID345453432>
<lumii#Teacher1> <lumii#personID> <lumii#PersonID999999999>
<lumii#Teacher2> <lumii#personID> <lumii#PersonID777777777>
<lumii#Teacher3> <lumii#personID> <lumii#PersonID555555555>
<lumii#Teacher1> <lumii#teaches> <lumii#Course2>
<lumii#Teacher2> <lumii#teaches> <lumii#Course3>
<lumii#Teacher2> <lumii#teaches> <lumii#Course4>
<lumii#Teacher3> <lumii#teaches> <lumii#Course1>

Now we shall discuss the table link usage. It is required for instance generation of
OWL object property takes which is between Student and Course OWL classes and
requires to join tables student and course through registration. Table object_property_

111G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

map links to class_map two rows for subject and object through domain_class_map_id
and range_class_map_id foreign keys. That produces pair of two relations (tables). To
join these tables source_column_expr and target_column_expr are used. If these tables,
cannot be joined directly, then table_link table is to be used. It stores information about
middle steps in table traversing. To support joining table t1 with t2 through middle table,
the table_link columns has these meanings:

mid_table_name- table name in the middle step,
source_column_expr- joins <mid_table_name> table to t1 by this column expr.,
target_column_expr- joins <mid_table_name> table to t2 by this column expr.,
filter_expr- additional filter expression on table <mid_table_name>,
next_table_link_id- foreign key to the same table to implement more intermediate

steps if needed (t1mid_table_1mid_table_2  … mid_table_nt2).
Table 13 and Table 14 represent OWL object property mapping data for properties

that need table links (object_property_map.table_link is not null). Data comes from
tables owl_object_property, object_property_map as well as their referenced table rows.
the corresponding table_link data follows. Filter_expr is not used in the example.

Table 13

Owl object property mappings to database tables pairs for domain and range
when table link is used

class_
map_id
(domain)

class_
map_id
(range)

object_
property

table_
name
(domain)

table_
name
(range)

source_
column_
expr

target_
column_
expr

5 6 takes student Course student_id course_id

Table 14

Table_link table data

mid_table_name source_column_expr target_column_expr next_table_link_id
registration student_id course_id

The join condition is:
<domain_table>.<source_column_expr>=

<mid_table_name>.<table_link.source_column_expr>
AND
<mid_table_name>.<table_link.target_column_expr>=
<range_table>.<target_column_expr>

In this case the exact condition is:
student.student_id=registration.student_id

AND
registration.course_id=course.course_id

Executing script generate_sql4object_props_table_links.sql (see Appendix for the
code) against our sample data, we obtain row set with generated SQL statements, one
of which is:

112 Computer Science and Information Technologies

SELECT
'<lumii#Student' || student_1.student_id || '>' as subject,
'<lumii#takes>' as predicate,
'<lumii#Course' || course_2.course_id || '>' as object
 FROM student student_1
INNER JOIN registration registration_3
 ON student_1.student_id = registration_3.student_id
INNER JOIN course course_2
 ON registration_3.course_id = course_2.course_id
WHERE 1=1 AND 1=1 AND 1=1 AND 1=1

Executing it in sample source DB we get the following triples.

Table 15

Generated OWL object property instance RDF triples when table_link table used

Subject Predicate Object
<lumii#Student1> <lumii#takes> <lumii#Course2>
<lumii#Student2> <lumii#takes> <lumii#Course4>
<lumii#Student3> <lumii#takes> <lumii#Course1>
<lumii#Student4> <lumii#takes> <lumii#Course3>
<lumii#Student5> <lumii#takes> <lumii#Course2>

4.4	 The result of RDF Triple Generation

When all generated SQLs were executed in our example database, we produced the
following triple set, essentially being data export from original relational database to
RDF format for target OWL ontology. Following the data is a union of data in Table 8,
10, 12 and 15 with shorthands “lumii” and “type” expanded.

<http://lumii.lv/ex#Course1>	 <http://lumii.lv/ex#courseName>	 Programming Basics
<http://lumii.lv/ex#Course2>	 <http://lumii.lv/ex#courseName>	 Semantic Web
<http://lumii.lv/ex#Course3>	 <http://lumii.lv/ex#courseName>	 Computer Networks
<http://lumii.lv/ex#Course4>	 <http://lumii.lv/ex#courseName>	 Quantum Computations
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#enrolled>	<http://lumii.lv/ex#Program1>
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#enrolled>	<http://lumii.lv/ex#Program2>
<http://lumii.lv/ex#Student3>	 <http://lumii.lv/ex#enrolled>	<http://lumii.lv/ex#Program1>
<http://lumii.lv/ex#Student4>	 <http://lumii.lv/ex#enrolled>	<http://lumii.lv/ex#Program2>
<http://lumii.lv/ex#PersonID123456789>	<http://lumii.lv/ex#IDValue>	 123456789
<http://lumii.lv/ex#PersonID345453432>	<http://lumii.lv/ex#IDValue>	 345453432
<http://lumii.lv/ex#PersonID555555555>	<http://lumii.lv/ex#IDValue>	 555555555
<http://lumii.lv/ex#PersonID777777777>	<http://lumii.lv/ex#IDValue>	 777777777
<http://lumii.lv/ex#PersonID987654321>	<http://lumii.lv/ex#IDValue>	 987654321
<http://lumii.lv/ex#PersonID999999999>	<http://lumii.lv/ex#IDValue>	 999999999
<http://lumii.lv/ex#Program1>	 <http://lumii.lv/ex#includes>	<http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Program1>	 <http://lumii.lv/ex#includes>	<http://lumii.lv/ex#Course4>
<http://lumii.lv/ex#Program2>	 <http://lumii.lv/ex#includes>	<http://lumii.lv/ex#Course3>
<http://lumii.lv/ex#Program2>	 <http://lumii.lv/ex#includes>	<http://lumii.lv/ex#Course1>
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID123456789>
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID987654321>
<http://lumii.lv/ex#Student3>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID555555555>
<http://lumii.lv/ex#Student4>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID345453432>
<http://lumii.lv/ex#Teacher1>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID999999999>
<http://lumii.lv/ex#Teacher2>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID777777777>
<http://lumii.lv/ex#Teacher3>	 <http://lumii.lv/ex#personID>	 <http://lumii.lv/ex#PersonID555555555>
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#personName>	 Dave
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#personName>	 Eve

113G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

<http://lumii.lv/ex#Student3>	 <http://lumii.lv/ex#personName>	 Charlie
<http://lumii.lv/ex#Student4>	 <http://lumii.lv/ex#personName>	 Ivan
<http://lumii.lv/ex#Teacher1>	 <http://lumii.lv/ex#personName>	 Alice
<http://lumii.lv/ex#Teacher2>	 <http://lumii.lv/ex#personName>	 Bob
<http://lumii.lv/ex#Teacher3>	 <http://lumii.lv/ex#personName>	 Charlie
<http://lumii.lv/ex#Program1>	 <http://lumii.lv/ex#programName>	 Computer Science
<http://lumii.lv/ex#Program2>	 <http://lumii.lv/ex#programName>	 Computer Engeneering
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course4>
<http://lumii.lv/ex#Student1>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course3>
<http://lumii.lv/ex#Student2>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course1>
<http://lumii.lv/ex#Student3>	 <http://lumii.lv/ex#takes>	 <http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Teacher1>	 <http://lumii.lv/ex#teaches>	 <http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Teacher2>	 <http://lumii.lv/ex#teaches>	 <http://lumii.lv/ex#Course3>
<http://lumii.lv/ex#Teacher2>	 <http://lumii.lv/ex#teaches>	 <http://lumii.lv/ex#Course4>
<http://lumii.lv/ex#Teacher3>	 <http://lumii.lv/ex#teaches>	 <http://lumii.lv/ex#Course1>
<http://lumii.lv/ex#Course1>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#OptionalCourse>
<http://lumii.lv/ex#Course2>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#MandatoryCourse>
<http://lumii.lv/ex#Course3>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#MandatoryCourse>
<http://lumii.lv/ex#Course4>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#OptionalCourse>
<http://lumii.lv/ex#PersonID123456789>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID345453432>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID555555555>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID777777777>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID987654321>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID999999999>	<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#Program1>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#AcademicProgram>
<http://lumii.lv/ex#Program2>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#AcademicProgram>
<http://lumii.lv/ex#Student1>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Student2>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Student3>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Student4>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Teacher1>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Professor>
<http://lumii.lv/ex#Teacher2>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Professor>
<http://lumii.lv/ex#Teacher3>	 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	 <http://lumii.lv/ex#Assistant>

We note that the RDF triple instances obtained here are the same, as obtained in [8]
by a manual translation SQL definition, or by D2RQ [2] mapping definition approach.
In our case the manual user work needed for the triple creation consists of filling in the
appropriate data in the tables class_map, object_property_map and datatype_property_
map, as well as table_link (see the data in Tables 7, 9, 11, 13, 14). If compared to D2RQ
solution of the same instance generation problem, as provided in [8], we note that we
have provided a more compact representation of input data by the user since a D2RQ
mapping cannot be made aware of the subclass relation in the target ontology. In the
example containing a 6-fold specification of instance generation for object property
‘teaches’ (3 subclasses of ‘Teacher’ times 2 subclasses of ‘Course’) a tremendous
increase of data volume occurs in case of ontologies with large subclass hierarchies
(the instance generation for object property ‘teaches’ is defined here as a single row
in Table 10). If compared to D2RQ [2] approach our method requires no custom SQL
writing for mapping definitions, except to define custom views in class2view which has
not been necessary in our example of source DB.

5	 Conclusions
In this paper we have demonstrated an example of how relational database itself

can be used to create mapping between a source relational database (legacy type) and

114 Computer Science and Information Technologies

target OWL ontology and to generate RDF triples for instance data. The work is still
in progress, which means new use cases are studied and the mapping schema is being
continuously improved. Next step in our research is to study possibilities for SPARQL
to SQL translation in correspondence to the defined mapping.

We plan to apply the current functionality to transform relational data to RDF
format in real life medical database [9, 10]. Although our RDB to OWL mapping
specification format and implementation can be used together with different end-user
mapping specification languages, we are working to define a language that would allow
defining the correspondence between target ontology and its corresponding RDB schema
elements in a user friendly way.

I would like to thank Karlis Cerans at the Institue of Mathematics and Computer
Science, the University of Latvia, for his support and assistance.

References
1.	 J. Barrasa, A. Gómez-Pérez. Upgrading relational legacy data to the semantic web. In: Proc. of the 15th

International World Wide Web Conference (WWW 2006), Edinburgh, United Kingdom, 23–26 May 2006,
pp. 1069–1070.

2.	 D2RQ Platform. Available: http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/spec/.
3. 	 C. Blakeley. RDF Views of SQL Data (Declarative SQL Schema to RDF Mapping). OpenLink Software,

2007.
4.	 OpenLink Virtuoso Platform. Automated Generation of RDF Views over Relational Data Sources.

Available: http://docs.openlinksw.com/virtuoso/rdfrdfviewgnr.html.
5.	 W. Hu, Y. Qu. Discovering Simple Mappings between Relational Database Schemas and Ontologies.

In: Proc. of the 6th International Semantic Web Conference (ISWC 2007), 2nd Asian Semantic Web
Conference (ASWC 2007), Busan, Korea, 11–15 November 2007, LNCS, 4825, pp. 225–238.

6.	 http://www.w3.org/2005/Incubator/rdb2rdf/.
7. 	 http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf.
8.	 G. Barzdins, J. Barzdins, K. Cerans. From Databases to Ontologies. Semantic Web Engineering in the

Knowledge Society. In: J. Cardoso, M. Lytras (eds.), IGI Global, 2008, pp. 242–266. ISBN: 978-1-60566-
112-4

9.	 G. Barzdins, S. Rikacovs, M. Veilande, M. Zviedris. Ontological Re-engineering of Medical Databases.
Proceedings of the Latvian Academy of Sciences, Section B, Vol. 63, No. 4/5 (663/664), 2009, pp. 20–30.

10.	 G. Barzdins, E. Liepins, M. Veilande, M. Zviedris. Semantic Latvia Approach in the Medical Domain.
In: H. M. Haav, A. Kalja, Proceedings of the 8th International Baltic Conference on Databases and
Information Systems. Tallinn University of Technology Press, 2008, pp. 89–102.

11. 	J. Barzdins, G. Barzdins, R. Balodis, K. Cerans et al. Towards Semantic Latvia. In: Proccedings of the 7th
International Baltic Conference on Databases and Information Systems, 2006, pp. 203–218.

12.	 Object Management Group MOF QVT Final Adopted Specification. Available: http://www.omg.org/cgi-
bin/apps/doc?ptc/05-11-01.pdf.

13.	 ATLAS Model Transformation Language. Available: http://www.eclipse.org/m2m/atl/.
14.	 MOLA resources. Available: http://mola.mii.lu.lv/.
15.	 Eclipse Modeling Framework Project (EMF). Available: http://www.eclipse.org/modeling/emf/.

Appendix
We provide listings of SQL scripts which, when executed in mapping DB, generate

SQL scripts which, in turn, when executed in source DB, generate RDF triples for
instances of OWL classes, OWL datatype properties, and OWL object properties.

115G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

They are not easily readable as two SQL levels are mixed. They show that mere SQL
statement can do the task. They generate SQL statements using string concatenation
function || as it is in Oracle DB. They also use Oracle DB functions NVL (null value
replacement), NVL2 (return value depends on parameter being null or not null). It is
easy to rewrite these SQLs for another DB if needed.

SQL script OWL_instance_gen.sql that generates SQL statement for RDF triple
generation for OWL class instances

SELECT 'SELECT '
 || '''<' || o.xml_base || cm.instance_uri_prefix || ''''
 || ' || '	 || c2t.table_name
 || '.' || cm.id_column_expr || ' || ''>'' as subject'
 || ',''' || '< http://www.w3.org/1999/02/22-rdf-syntax-ns#type >''
 as predicate'
 || ',''' || '<' ||o.xml_base || c.rdf_id || '>'' as object'
 || ' FROM ' || c2t.table_name
 || NVL2(cm.filter_expr,' WHERE ', '') || cm.filter_expr as sql4rdf
FROM ontology o,	 owl_class c, class_map cm, class2table c2t
WHERE o.ontology_id = c.ontology_id AND
 c.owl_class_id = cm.owl_class_id AND
 cm.class2table_id = c2t.class2table_id AND
 o.ontology_id=1 AND	 cm.generate_instances=1

SQL script generate_sql4datatype_props.sql that generates SQL statements for
RDF triple generation for OWL datatype property instances

SELECT 'SELECT '
 || '''<' || o.xml_base || cm.instance_uri_prefix || ''''
 || ' || ' || c2t.table_name
 || '.' || cm.id_column_expr || ' || ''>'' as subject'
 || ',''' || '<' || o.xml_base || dp.rdf_id || '>'' as predicate'
 || ',' || dpm.column_expr || ' as object'
 || ' FROM ' || c2t.table_name
 || NVL2(cm.filter_expr,' WHERE ', '') || cm.filter_expr
FROM
 owl_datatype_property dp, datatype_property_map dpm,
 class_map cm, class2table c2t, ontology o
WHERE dp.owl_datatype_property_id=dpm.owl_datatype_property_id AND
 dpm.class_map_id = cm.class_map_id AND
 cm.class2table_id = c2t.class2table_id AND
 dp.ontology_id = o.ontology_id AND o.ontology_id=1	

SQL script generate_sql4object_props.sql that generates SQL statements for RDF
triple generation for OWL object property instances without intermediate table link
usage

SELECT
 'SELECT '
 || '''<' || o.xml_base || cm_domain.instance_uri_prefix || ''''
 || ' || ' || c2t_domain.table_name || '_1'
 || '.' || cm_domain.id_column_expr || ' || ''>'' as subject'
 || ',''' || '<'|| o.xml_base || op.rdf_id || '>'' as predicate'
 || ','

116 Computer Science and Information Technologies

 || '''<' || o.xml_base || cm_range.instance_uri_prefix || ''''
 || ' || ' || c2t_range.table_name || '_2'
 || '.' || cm_range.id_column_expr || ' || ''>'' as object'

 || ' FROM '
 || c2t_domain.table_name || ' ' || c2t_domain.table_name || '_1'
 || ' INNER JOIN '
 || c2t_range.table_name || ' ' || c2t_range.table_name || '_2'
 || ' ON ' || c2t_domain.table_name
 || '_1.' || opm.source_column_expr
 || ' = ' || c2t_range.table_name || '_2.' || opm.target_column_expr
 || ' WHERE ' || NVL(cm_domain.filter_expr ,' 1=1 ')
 || 'AND ' || NVL(cm_range.filter_expr , ' 1=1 ')
 AS generated_SQL
FROM
 owl_object_property op,
 ontology o,
 object_property_map opm,
 class_map cm_domain,
 class_map cm_range,
 class2table c2t_domain,
 class2table c2t_range
WHERE
 op.ontology_id=o.ontology_id AND
 op.owl_object_property_id=opm.owl_object_property_id AND
 opm.domain_class_map_id =cm_domain.class_map_id AND
 opm.range_class_map_id =cm_range.class_map_id AND
 cm_domain.class2table_id=c2t_domain.class2table_id AND
 cm_range.class2table_id=c2t_range.class2table_id AND
 opm.table_link_id IS NULL AND op.ontology_id=1
ORDER BY 1

SQL script generate_sql4object_props_table_links.sql that generates SQL
statements for RDF triple generation for OWL object property instances with one
intermediate table link usage

SELECT
 'SELECT '
 || '''<' || o.xml_base
 || cm_domain.instance_uri_prefix || ''''
 || ' || ' || c2t_domain.table_name || '_1'
 || '.' || cm_domain.id_column_expr || ' || ''>'' as subject'

 || ',''' || '<'|| o.xml_base || op.rdf_id || '>'' as predicate'

 || ',' || '''<' || o.xml_base
 || cm_range.instance_uri_prefix || ''''
 || ' || ' || c2t_range.table_name || '_2'
 || '.' || cm_range.id_column_expr || ' || ''>'' as object'

 || ' FROM '
 || c2t_domain.table_name || ' ' || c2t_domain.table_name || '_1'
 || ' INNER JOIN '
 || tl.mid_table_name || ' ' || tl.mid_table_name || '_3'
 || ' ON ' || c2t_domain.table_name || '_1. '

117G. Bumans. Mapping between Relational Databases and OWL Ontologies: an Example

 || opm.source_column_expr
 || ' = ' || tl.mid_table_name || '_3.' || tl.source_column_expr
 || ' INNER JOIN '
 || c2t_range.table_name || ' ' || c2t_range.table_name || '_2'
 || ' ON ' || tl.mid_table_name || '_3.' || tl.target_column_expr
 || ' = ' || c2t_range.table_name || '_2.' || opm.target_column_expr
 || ' WHERE ' || NVL(cm_domain.filter_expr ,' 1=1 ')
 || 'AND ' || NVL(cm_range.filter_expr , ' 1=1 ')
 || 'AND ' || NVL(tl.filter_expr , ' 1=1 ')
 || 'AND ' || NVL(tl.filter_expr , ' 1=1 ')
 AS generated_SQL
FROM
 owl_object_property op,	 ontology o,
 object_property_map opm,	 class_map cm_domain,
 class_map cm_range, 				 class2table c2t_domain,
 class2table c2t_range,			 table_link tl
WHERE
 op.ontology_id=o.ontology_id AND
 op.owl_object_property_id=opm.owl_object_property_id AND
 opm.domain_class_map_id =cm_domain.class_map_id AND
 opm.range_class_map_id =cm_range.class_map_id AND
 cm_domain.class2table_id=c2t_domain.class2table_id AND
 cm_range.class2table_id=c2t_range.class2table_id AND
 opm.table_link_id=tl.table_link_id AND
 opm.table_link_id IS NOT NULL AND op.ontology_id=1

