
Ontology-Based Application for Domain Rules
Development

Diana Kalibatiene, Olegas Vasilecas
Information Systems Research Laboratory, Vilnius Gediminas Technical University

Saulėtekio av. 11, Vilnius, LT-10223, Lithuania
diana@isl.vgtu.lt, olegas@isl.vgtu.lt

While there is a great interest in rule-based systems and their development, none of the proposed
languages or methods has been accepted as a standard technology yet. Nowadays tools used
in process of information systems (IS) development are not extended and adapted enough for
modelling and implementation of application domain rules. A particular contingent of researchers
proposes using of ontology for development of intelligent IS, since ontology is suitable to represent
application domain knowledge. We are challenged in using ontology for the development of
application domain rules. In this paper we present a method for ontology axioms transformation
to application domain rules and describe how ontology-based development of application domain
rules is integrated through IS development life cycle.

Keywords: ontology, axiom, application domain rule, transformation, OCL, PAL.

1	 Introduction
Nowadays, ontologies representing application domain knowledge are used for the

development of modern information systems (IS). A number of authors believe that the
use of such ontologies, transformed and/or translated to IS components, help to 1) reduce
the costs of a conceptual modelling [1] and 2) assure the ontological adequacy of the
IS [1, 2, 3]; and allow to 3) share and reuse a domain knowledge across heterogeneous
software platforms [2, 4], and 4) cognise of an application domain. If the IS is a
traditional one, application domain knowledge will be just embedded in the standard
components of the IS. If it is going to be an ontology-driven (or ontology-based) IS, then
a separate component – application domain ontology – will be developed and included
in the IS [1].

In the step of an IS conceptual modelling, researchers are challenged to transform
application domain ontology to a conceptual data model, since their conceptualisation of
a real world is similar. Both see an application domain in terms of concepts, presenting
entities of an application domain, relationships between concepts, properties of concepts
and rules (in ontology axioms), presenting constrains of an application domain. While
a number of approaches and methods for the transformation of application domain
ontology to a conceptual data model have been proposed, like [3, 5, 6, 7, 8] etc, there
is lack of a formal theory and methods of ontology components transformation to
application domain rules.

In the IS development, there is a great interest in the development of the application
domain rules. Authors of [9, 10, 11] etc, organisations, such as the Object Management

Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 9–32 P.

D. Kalibatiene and O. Vasilecas
Ontology-based Application ..

10 Computer Science and Information Technologies

Group1 (OMG), have motivated the application of rules. Methods and languages
proposed for the development and implementation of application domain rules are:
Unified Modelling Language (UML) [12] with Object Constraint Language (OCL) [13],
Demuth et al. method [14], the Ross method [15], CDM RuleFrame [16], Semantic Web
Rule Language (SWRL) [17], etc.

However, the results of survey presented in [18] shows that a) a large part of
rule-based systems are created without any specific development process, b) almost
half of the respondents use an integrated development environment (IDE) (such as
the Ontostudio2, Ilog Rule Studio3, the Visual Prolog IDE4 or the SWRL tab [19] of
Protégé5) that allows to edit, load, debug and run rules. For editing rules the most widely
used tools are still textual editors (33%), a simple text editor or a textual rule editor with
syntax highlighting (28%) and graphical rule editors (26%); c) verification is dominated
by testing (90%) and code review (78%). 74% of respondents do testing with actual
data, 50% test with contrived data. Advanced methods of test organisation are used by a
minority, with only 31% doing regression testing and 19% doing structural testing with
test coverage metrics.

None of the proposed languages or methods have been accepted as a standard
technology yet, since they are not suitable for modelling all types of rules, as presented
in [20], or limit the opportunity for business people to change them because the
verbalization of formal languages is not mature enough. Only a few of them deal with
reuse of knowledge acquired in the analysis of a particular application domain and
automatic implementation of rules.

Current tools used for the development of IS are not extended and adapted
enough for modelling and implementing of rules. For example, in MagicDraw6 OCL
is used for defining constraints. However, there is no suitable interface to facilitate
the definition of OCL constraints. User should be familiar with OCL. PowerDesigner7
is suitable for modelling structural rules (using integrity constraints, foreign keys,
domains, checks) only. There is no mechanism for defining and validating of
dynamic rules.

In this paper we propose using a domain ontology for the development of
application domain rules and describe how ontology-based development of
application domain rules is integrated with IS the development life cycle. Therefore,
Section 2 overviews the related works according to application domain rules and
their implementation and a concept of an ontology, Section 3 presents the comparison
of ontology axioms with application domain rules, Section 4 describes ontology-
based development of application domain rules in IS life cycle, Section 4 presents
the application of the proposed in the previous section method of ontology axioms to
information processing rules and its implementation to the Axiom2OCL plug-in, and
Section 5 concludes the paper.

	 1	 http://www.omg.org/
	 2	 http://www.ontoprise.de/en/home/
	 3	 http://www.ilog.com/products/businessrules/
	 4	 http://www.visual-prolog.com/
	 5	 http://protege.stanford.edu
	 6	 http://www.magicdraw.com/
	 7	 http://www.sybase.com/products/modelingdevelopment/powerdesigner

11D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

2	 Development of Application Domain Rules
An enterprise system can be viewed as a three-layered system: the business systems,

the IS and the supporting software [21]. Any enterprise consists of several business
systems, e.g. it is doing several businesses. A business system consists of several IS,
e.g. an IS is created to support a business system. Finally, software systems are created
to support IS. Consequently, an enterprise system is effective only then all layers of this
system are integrated properly. Concepts should be mapped rightly from higher-level
system to lower level systems and lower level systems should be constrained by rules
governing processes in higher level systems. Therefore, the concept of a rule is analysed
according these three levels of abstraction: business system, IS, and software.

At the business system level, rules are statements that define or constrain some
aspects of a particular business domain in a declarative manner. For example, a
customer could not buy more than her / his credit limit permits. At the IS level, rules are
statements that define information processing rules using a rule-based language, like
OCL. Expressions of information processing rules are very precise, e.g. terms used in
expressions are taken from the particular data model [22]. For example, the following
OCL expression “context c: Company inv enoughEmployees: c.numberOfEmployees
> 50” constrains the number of employees in the Company that must always exceed 50.
At the software system level, rules are statements represented using language of a
specific execution environment, like Oracle 10g8, Microsoft SQL Server 20089, ILOG
JRules10, etc.

According to the presented definitions of rules and three levels of abstraction, rules
can be expressed in three different forms [10, 23]. They are:

•	 informal – rules are expressed using natural language;
•	 semi-formal – rules are expressed using rule templates, decision trees, decision

tables or a graphical modelling language, like UML or Object Role Modelling
(ORM) [24]. Ideally, this form is the basic from which to generate executable rule
code [10]. Unfortunately, there is no standard rule specification language. There
are various rule languages proposed as part of other modelling approaches;

•	 formal – rules are expressed using a particular formal language, like OCL, or a
rule execution language, like SQL in relational database management systems
(DBMS). Rules expressed in formal way can be processed automatically.

Rules expressed in the natural language are well understandable for business
people. However, these expressions are ambiguous and can be interpreted in different
ways. Authors of [10, 23] propose using rule templates, to avoid ambiguity. However,
they do not present any approach of implementing such rules and how rules expressed
by rule templates could be transformed to executable form. Nowadays, majority of
methods describe ways of transforming formal rules to executable rules. Therefore,
the main question is – which language is the most suitable for the development of the
complete and integral set of rules? Unfortunately, there is no standard describing rule
acquisition from the application domain, rule modelling by a suitable language and rule
implementation in an executable environment.

	 8	 http://www.oracle.com/technology/software/products/database/index.html
	 9	 http://www.microsoft.com/sqlserver/2008/en/us/overview.aspx
	 10	 http://blogs.ilog.com/brmsdocs/2008/06/15/ilog-jrules-6-for-architects-and-developers-2/

12 Computer Science and Information Technologies

According to the implementation perspective, it is proposed to classify application
domain rules as follows.

•	 Structural rules (terms, definitions, facts, and integrity constraints). Terms,
definitions and facts can be implemented by elements of a conceptual data
model, for example an entity in an entity-relationship model or a class in a UML
class model. Therefore, terms, definitions, facts can be regarded as concepts in an
ontology and not as rules. Integrity constraints can be implemented by integrity
constraints, like referential integrity constraints, cardinality constraints, and
mandatory constraints, of a conceptual data model and in case of UML models
expressed as OCL invariants. At software system level, integrity constraints can
be implemented like SQL assertions, checks, and foreign keys.

•	 Dynamic rules, which can be expressed by ECA rules and implemented using
language of a specific execution environment, like SQL triggers. A dynamic
rule is: 1) a dynamic constraint, which restricts transitions from one state of the
application domain to another, 2) a derivation rule, which creates new information
from existing information by calculating or logical inference from facts, or 3) a
reaction rule, which evaluates a condition and upon finding it true performs a
predefined action.

Since implementation of structural rules is defined quite precisely (it can be seen
from the precise definitions of integrity constraints in a conceptual data model, like
CHECK, DOMAIN, NOT NULL, referential integrity and other constraints), we
concentrate our research on the implementation of dynamic rules.

Methods and languages proposed to model and implement application domain rules
can be classified according to their drawbacks as follows.

1	 Non-existence of any graphical notation – languages and methods of this
category do not have any graphical notation. OCL and all OCL-based languages
and methods, like the method presented in [25], CDM RuleFrame environment
[16], have no graphical notation.

Nowadays UML is the most popular for modelling of business and information
systems [26]. UML has graphical notation, which gives a wide range of possibilities for
representing objects and their static and dynamic relationships. The most appropriate
diagram for describing structural rules is the class diagram. OCL is proposed as a
formal language to express dynamic rules, since UML diagrams are typically not refined
enough to express those rules explicitly. While UML with OCL satisfy the requirements
of formality, expressiveness, preciseness, and unambiguity, OCL does not have any
graphical notation and thus does not account for an easily comprehensible language.

Commercial organisations, such as Oracle8, also present their own methods and
languages for rules modelling. In [16] CDM RuleFrame environment is presented,
where special OCL subset called RuleSLang is developed to represent rules. Later this
representation is used for the automatic enforcement of rules using Oracle technologies.
The main drawback of this approach is the lack of a graphical notation (the same as with
pure OCL) and the tight coupling with commercial products of one vendor.

2	 Non-explicit implementation – languages and methods of this category do not
deal with a way rules be implemented (automated, semi-automated or manual).
It is expected that many rules specified by the proposed language will likely be
enforced in an automated way; and in such cases, the semi-formal or formal
language or method is proposed. The Ross method [15], rule templates presented

13D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

by [10] and OMG proposed “Semantics of business vocabulary and business
rules” (SBVR) [23] can be referred to this category.

The Ross method [15] proposes specific constructs for each of the rule families
together with a big number of accompanying constructs, such as special symbols,
invocation values, special interpreters, and special qualifiers. However, a big number of
modelling constructs makes the language quite complicated. Moreover, Ross does not
define any format for the rule model representation and interchange.

In [10] rules are expressed by rule templates, which are combination of rule clauses.
A simple rule clause is of the form <term1> <operator> <term2>. A term is a noun or
a noun phrase with an agreed-upon definition. These include a concept (for example, a
customer), a property of a concept (for example, customer-credit-rating-code), a value
(for example, female) and a value set (for example, Mon, Tues, Wed, Thurs, Fri). An
operator is any operator that makes sense for the particular term type. The subsequent
terms and operators will exist only if they make sense. According to [10], structural
rules are expressed using single rule clauses. For example, a fact can be presented
by the template <term 1> IS COMPOSED OF <term 2> (for example, Window IS
COMPOSED OF frames) and a mandatory constraint can be presented by the template
<term 1> MUST BE IN LIST <a, b, c> (for example, Gender MUST BE IN LIST <F,
M>). According to (von Halle 2002), a dynamic rule is a combination of rule clauses.
For example, reaction rule or action enabler can be presented as IF <rule clause> THEN
<action> (for example, IF ordering data = current data THEN insert new record).

The OMG in [23] “is focused on SBVR as a vehicle for describing businesses rather
than their information systems”. The OMG proposes to use logical formulations of rules
or logical rules, which provide abstract, language-independent syntax for capturing the
semantics of a body of shared meaning. These logical formulations are presented by
statements and definitions of structured English. Statements are recognised by being
fully expressed using the four font styles. For more details see [23]. However, authors of
[23] do not define the basic patterns or templates for rule definitions. They just suggest
which keywords should be used in rules and how expressions of application domain
rules should look like.

3	 Limited type of rules – languages and methods of this category is limited on
modelling a specific type of rules.

In [14] the templates of rules are presented to generate SQL views and triggers,
but the trigger action part is not automatically generated. A method presented in [25] is
suitable generating triggers from consistency rules defined using OCL, but the authors
limit the usage of method to consistency rules only.

4	 Suitable for rule implementation at the lower levels of abstraction – languages
and methods of this category deals with implementation of rules expressed
in a formal way. These methods do not deal with elicitation of rules from the
application domain. They use rules already expressed in a particular formal
language.

Authors in [27] briefly describe currently used methods for generating relational
database schemas, their limitations and drawbacks, and propose a method which advances
them by generating full-fledged relational database schemas from a conceptual model.
The proposed method consists of metamodel-based and pattern-based transformations.

14 Computer Science and Information Technologies

Principles of creating pattern-based transformations are defined for transformation of
OCL expressions to corresponding SQL code.

The particular methodologies were selected in [20] and compared according to the
possibility of rule modelling. Authors show that common methods are insufficient or
at least inconvenient for a complete and systematic modelling of rules. Some relevant
enhancements of these methods are more powerful but still emphasise only certain
aspects and types of rules.

In [28] authors present how rules can be managed in enterprises and propose the
managing scenario. Future works of authors are detailed design of the rule repository,
development of the necessary facilities for extraction of rules from organization’s
business model and specification of the necessary operations for integration of IS
repository with the rule repository.

In [29] authors identify the issues that they think are problematic in the context
of rule explicit manipulation and present challenges for future research. The focus
was put on five areas: the rule scope, acquisition, specification, implementation, and
management. For each of the areas authors pointed out the issues that present obstacles
for using rules as an approach to IS development.

2.1	 The Main Problems Concerned with Domain Rules Modelling

The process of developing the application domain rules involves two main
problems – determining the rules (their elicitation from the application domain) and
developing ECA rules (their implementation).

First of all, it is necessary to determine the rules of a domain and ensure that they are
appropriate. The process of determining which rules apply to a particular situation often
involves an open-ended search through multiple sources: business speech, documents,
laws, an application domain ontology, etc [11]. A set of application domain rules can
be defined using different approaches. The main of them are analysis of documents and
questionnaire of business employees. The consensus from all the domain stakeholders
should be obtained on the problem of which the rules and their meaning should be used.
It is suggested to use business vocabularies or application domain ontologies to ensure
the one meaning of an application domain and its rules. When the application domain
changes the rules should be properly adapted to new conditions. Capturing, documenting
and retaining the domain rules prevent the loss of knowledge when employees leave an
enterprise [30].

After the set of appropriate application domain rules is defined, it is necessary to
determine which rules will be implemented in a computerised IS. Not all application
domain rules are implemented in a supporting computerised IS. These rules are defined
in business’ documents. Application domain rules, which are going to be implemented
in a computerised IS, can be implemented in different ways: by information processing
rules and correspondent executable rules of software, as a part of a program code, using
rule engines, etc.

The large amount of works on application domain rules elicitation from a domain and
implementation in IS shows that this is an important and relevant topic in IS development.
However, the lack of a standard method or a language for application domain rules
modelling in IS development means that it is not a straightforward problem.

In this paper we propose using ontology for application domain rule modelling and
implementation.

15D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

2.2	 Ontology and Information Systems

Two main directions of this branch may be defined. One is about developing of
application domain ontologies and other is about using ontologies for the development
of IS. The first one is analysed in ontology engineering field and is not going to be
discussed in this paper.

According to [1], every IS has its own ontology, since it ascribes meaning to the
symbols used according to a particular view of the world. N. Guarino [1] distinguishes
two orthogonal dimensions in IS: a temporal dimension, concerning whether an ontology
is used at development time or at run time, and a structural dimension, concerning the
particular way an ontology can affect the main IS components, like application programs,
information resources like databases and/or knowledge bases, and user interfaces.

In this paper, the main attention is placed on the usage of ontology at IS development.
One of the major trends in this context is using ontology for conceptual data modelling,
since a conceptual data model and an ontology both include concepts, relationships
between them and rules (in ontology – axioms).

However, it is typically the case that in ontology-based conceptual data modelling
approaches the process of developing domain rules is not defined in a formal manner.

Ontology defines the basic concepts, their definitions and their relationships
comprising the vocabulary of an application domain and the axioms for constraining
relationships and interpretation of concepts [31]. Some authors, like [32], also distinguish
properties from concepts. In the simplest case [1], application domain ontology describes
a hierarchy of concepts related by particular relationships (e.g., is-a, part-of, etc). In
more sophisticated cases, constraints are added to restrict the values of concepts and
relationships, like cardinality constraints, possible length, etc. In the most sophisticated
cases, suitable axioms are added in order to express and restrict complex relationships
between concepts and to constrain their intended interpretation.

In mathematics [33], an axiom is any starting assumption from which other
statements are logically derived. It can be a sentence, a proposition, a statement or a
rule that enables the construction of a formal system. Axioms cannot be derived by
principles of deduction, because they are starting assumptions.

Following the terminology used in [32] and [34], axioms in ontology can be classified
as epistemological, consolidation, and derivation axioms. Epistemological axioms are
defined to show constraints imposed by the way concepts are structured. These include
all axioms which can be directly included by the use of modelling primitives and relations
that are used in a structural specification of ontology (e.g., is-a relation, part-of relations,
cardinality constraints). An example of epistemological axioms imposed by the most
basic form of a part-whole relation is: if exists x and y and x is a part of y, then y is not
a part of x (∀x,y partOf(x,y)→ ¬partOf(y,x)). Consolidation axioms impose constraints
that exclude unintended interpretations over the structure of the ontology specification.
An example of the consolidation axiom from a software quality ontology presented in
[35] is: if a product quality characteristic (qc) is decomposed in subcharacteristics (qc1),
then these subcharacteristics should also be a product quality characteristic ((∀qc,qc1)
(subqc(qc1,qc) ∧ prodqc(qc) → prodqc(qc1))(C1)). Finally, derivation axioms allow
new knowledge to be derived from the previously existing knowledge represented in the
ontology. Typically, derivation axioms are created in order to derive information which
can be used to answer the ontology competence questions. An example of a derivation

16 Computer Science and Information Technologies

axiom from [35] states that “if there is not a paradigm to which a quality characteristic
qc is applicable, than qc is paradigm-independent” ((∀qc) ¬(∃p)(applicability(qc,
p) → pdgInd(qc)).

If it is necessary, the fourth type of axioms can be defined in addition. They are
definitional axioms that define the meaning of concepts in ontology.

According to [36], implementation of axioms in ontology modelling environments
is:

•	 restricted in a framework of a description logics [37] or in some kind of logic
language, like Knowledge Interchange Format (KIF) [38] in Protégé ontology
[39] and SUMO [40], or

•	 axiom modelling is completely neglected in WordNet [41], which can be used as
a lexical ontology, Protégé ontologies (not all), ontologies presented by [42] and
[43], DBpedia [44].

This situation is detrimental to the modelling of large-scale ontologies, because it
aggravates engineering and maintenance of large sets of axioms [36].

Authors of [36] propose using of objects and categories to represent axioms.
They state that categorisation of axioms allows representing the semantics of
axioms, and specifying axioms like objects provides a compact, intuitively accessible
representation.

Authors of [45] attempt to reduce the difficulty of writing axioms by identifying
groups of axioms that manifest common patterns creating templates that allows users to
compose axioms by “filling-in-the-blanks”. The method for collecting the templates is
also presented in [45]. This method is implemented in Protégé ontology development
and management tool.

E. Sirin and J. Tao [64] inspired of growing usage of OWL analyse the possibilities
of defining integrity constraint semantics for OWL axioms. Authors implement the
proposal in the prototype using Pellet. Authors show that integrity constraints validation
can be reduced to SPARQL (Query Language for RDF) query answering using off-the-
shelf reasoning. They state that the obtained results show that the goal of using OWL
both as a knowledge representation and constraint language for data validation can be
achieved without too much effort.

The analysis of ontology development tools, like Protégé, and ontologies, like
SUMO, from the implementation perspective shows that epistemological axioms are
implemented by structuring concepts in an ontology; consolidation and derivation
axioms are not distinguished and they are implemented using some languages suitable
for this purpose, like Protégé Axiom Language (PAL) [46] or Ontology Web Language
(OWL) [8]. Some consolidation and definitional axioms are implemented by restricting
definition of concepts in a particular ontology.

3	 Ontology Axioms in Comparison with Application Domain Rules
Here we present differences between ontology axioms, application domain rules,

information processing rules, and executable rules, expressed in the form of event-
condition-action (ECA) rules. This comparison is necessary to define a correct mapping
of ontology axioms to application domain rules.

17D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

As stated in Section 2, at the IS level rules are statements that define information
processing rules using a rule-based language, like OCL, etc. They are taken from the
business system level and implement application domain rules. Information processing
rules should be precise and expressed as ECA rules to be implemented by executable
rules. Therefore, it is necessary to develop ECA rules, which define when the rule should
be applied, what should be checked and what to do after checking.

Application domain ontology axioms belong to a particular application domain.
They define admissible states of a domain. In particular cases axioms can have conditions
under which defined states should be taken.

Table 1 presents the comparison of rules and ontology axioms.
According to this comparison, the following conclusions could be done.
Since axioms can be formalised together with a domain ontology using a particular

language, it is reasonable to use this formalisation to automatically transform the
ontology axioms to information processing rules or even to executable rules.

Table 1

Ontology axioms in comparison with rules

Criteria of
comparison

Ontology
axiom

Application
domain rule

Information
processing rule

Executable rules

Level of
abstraction

Application
domain

Application
domain

Information system Software system
(executable
environment)

Level of
formality

Formal Informal Formal Formal

Languages
used to define

PAL, OWL,
logic

Natural
language

OCL, RuleML,
ORM, rule templates,
decision trees, decision
tables, etc.

A rule execution
language, like SQL in
relational DBMS

Event Holds in all
cases

Not defined Insert, update, delete,
select

Insert, update, delete,
select

Condition A predicate or
a query over
the ontology

Explicit or
implicit

A predicate or a query
over the data model

A predicate or a query
over the data model

Action No action Explicit or
implicit,

Data modification,
application specific
procedures, transaction
operations

Data modification,
application specific
procedures, transaction
operations

State Predicate
over the
ontology

Explicit or
implicit

No state No state

Definition Defined using
ontology
concepts

Defined
using natural
language

Defined using data
model terms

Defined using data
model terms

Protégé axioms and axioms from [35] and [46] were analysed and it was determined
that consolidation and derivation axioms have structure state or condition-state.

18 Computer Science and Information Technologies

A state axiom clearly defines a state in which a domain should be and which can be
transformed to the condition of an ECA rule. An action can be understood in two ways:

1	 if the condition is satisfied, then the transition from one state of the system to
another is admissible;

2	 if the condition is not satisfied, then the transition is forbidden.
An example of a state axiom, defined by PAL, is presented as follows. It constrains

that the number of pages in a newspaper should not exceed 30. This axiom defines a
possible state of a newspaper in a domain, i. e. it defines that for all instances of a class
newspaper an attribute number_of_pages should not exceed 30.

defrange ?Newspaper :FRAME Newspaper
	 forall ?Newspaper
(> (number_of_pages ?Newspaper) 30))

A condition-state axiom defines an admissible state of a domain under the defined
condition. In the sense of the ECA structure, a condition-state axiom can be transformed
into an ECA rule in two ways:

1	 the condition of an axiom is transformed to the condition of an ECA rule, the
state of an axiom is transformed to the action of an ECA rule;

2	 the condition-state axiom is transformed to an ECA rule as in the case of a state
axiom.

An example of a condition-state axiom, defined by PAL, is presented as follows. It
constrains that only finished Content (an article or an advertisement) can be included
in a Newspaper. This axiom defines a possible state of a newspaper under the defined
condition, i. e. it defines that content (an article or an advertisement) can be included in
a newspaper. However, it should satisfy a condition – it should be finished.

defrange ?Content :FRAME Content
defrange ?Content-SlotVal :FRAME Content 'published_in'
forall ?Content (forall ?Content-SlotVal
	 (=> (not('isFinished' ?Content \"must contain\"))
	 (instance-of ?Content-SlotVal Newspaper)))

Axioms hold in a domain in all cases. However, computer systems should have
information when they apply rules. Therefore, according to the structure of an ECA rule, it
is necessary to define important events and link them with corresponding rules during the
transformation of ontology axioms to information processing rules or executable rules.

4	 Ontology-Based Development of Application Domain Rules and
IS Life Cycle

This section presents the method of transforming ontology axioms into information
processing/executable rules and its mapping to IS development life cycle.

4.1	 Transforming Ontology Axioms into Information Processing/Executable Rules

According to the results obtained in Section 2, Fig. 1 presents the basis for ontology
axiom-based modelling of application domain rules. The comparison of ontology

19D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

axioms and application domain rules shows that a) consolidation axioms can be used
to model dynamic constraints and / or reaction rules; b) derivation axioms – derivation
rules, c) epistemological axioms – the structuring of entities in a conceptual data model,
and d) definitional axioms – definitions of entities.

Fig. 1. Ontology axiom-based modelling of application domain rules

The main steps of applying the method of transforming ontology axioms into
application domain rules are as follows (Fig. 2).

1	 Check if axioms are in an ontology. It warranties that axioms are in an ontology.
Otherwise, a user should define axioms.

Note that the creation of an ontology is not analysed here, since, it is not the topic
of this paper. The method is based on the assumption that a user of the method has a
necessary ontology.

2	 Find an axiom.
3	 Transform an axiom into a corresponding ECA rule:

3.1	 define an event of an ECA rule as insert, update or delete;
3.2	 determine the type of the axiom – is it a consolidation or a derivation

axiom?
3.2.1	 in the case of a consolidation axiom:

note that a consolidation axiom can be a state axiom or a condition-state axiom.
However, in the both cases it is transformed to the condition of an ECA rule.

3.2.1.1	 Transform an axiom to the correspondent condition of an ECA
rule;

3.2.1.2	 define an action as (a) if condition is true, then permit the
change of a state in a domain, (b) if condition is false, then
forbid the change of a state in a domain;

3.2.2	 in the case of a derivation axiom:
note that a derivation axiom, which derives new information from the existing

information, can be a state axiom or a condition-state axiom.
3.2.2.1	 In the case of a state axiom – transform an axiom to the

corresponding action of an ECA rule. A condition is always
true.

20 Computer Science and Information Technologies

3.2.2.2	 In the case of a condition-state axiom: (a) transform a
condition to the corresponding condition of an ECA rule, and
(b) transform a state to the corresponding action of an ECA
rule.

4	 End of transformation.
The method is independent of particular languages, which can be used for the

definition of axioms and application domain rules.

Fig. 2. The schema of the proposed method

The formal description of the method is presented in (Vasilecas et al., 2009) and is
not discussed here.

4.2	 The Mapping of the Proposed Method to IS Development Life Cycle

This sub-section presents the mapping of the proposed method to a system
development life cycle. Fig. 3 presents the mapping schema. Business system is presented

21D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

by application domain ontology, which is created from business documents, laws and
various knowledge sources [5]. This ontology with axioms is presented in a formal
way, e.g. a particular formal language, like OWL, is used to define the ontology with
axioms. Ontology axioms are used to present application domain rules, consolidation
axioms are used to model dynamic constraints and/or reaction rules, derivation axioms –
derivation rules, epistemological axioms – the structuring of concepts in the ontology,
and definitional axioms – definitions of concepts in the ontology.

The ontology with axioms is transformed into the conceptual data model with
information processing rules of an IS. The proposed method for transforming ontology
axioms into information processing rules is used in this step. The method, described in [5,
8, 47], can be used to transform the ontology into a conceptual data model. However, it
is necessary to integrate the obtained conceptual data model and information processing
rules. Moreover, if both methods, the method used for the ontology transformation to a
conceptual data model and the method used for the ontology axioms transformation to
information processing rules, use the same conceptualisation of ontology, then we make
an assumption that the obtained conceptual data model and information processing rules
will be integral.

Fig. 3. The mapping of the proposed method to the system development life cycle

At the next step, the conceptual data model with information processing rules is
transformed into the corresponding physical data model with executable rules. The
transformation of a conceptual data model into a physical data model is not analysed
here, since there exists a number of tools which support the automatic transformation of a
conceptual data model into a physical data model, for example, Sybase PowerDesigner7,
Oracle8, etc. However, it is important to discuss the possibility of transforming the
ontology axioms into executable rules. Since the ontology with axioms is presented in a
formal way, the proposed method can be adopted to transform the ontology axioms into
executable rules. Such type of the experiment is presented in [31]. However, we believe
that the transformation of ontology axioms into information processing rules is more

22 Computer Science and Information Technologies

complete and correct, since ontology, in general, is closer to a conceptual data model
than to a physical data model, but the transformation of ontology axioms to executable
rules is also useful. It helps to facilitate the development of rules and ensure the same
conceptualisation of rules at all levels of a system.

The obtained physical data model and executable rules can be implemented in an
executable environment.

5	 A Case Study of the Transformation of Protégé Axioms into
OCL Constraints

This section presents the application of the proposed method for transforming
ontology axioms into information processing rules.

5.1	 Choosing an Appropriate Ontology Development Tool

First, a suitable ontology development and management tool (ODMT) should be
chosen to apply the proposed method.

Currently there are more than 50 different ODMT. A number of authors, such as
[48, 49, 50] etc, propose their criteria to assess different ODMT. However, the earlier
proposed criteria of ODMT assessment are not enough, since they mainly concentrate on
the modelling capabilities of the structure of an ontology and user interfaces. Therefore,
according to the perspective of axioms, we select the following criteria, which will be
used to analyse existing ODMT.

1	 ODMT should support modelling of axioms:
1.1	 ODMT should support an axiom definition language.
1.2	 ODMT should support an axiom management language.
1.3	 ODMT should support syntactical checking of axioms.

2	 ODMT availability – ODMT should allow free open source software, which
can be installed locally.

3	 ODMT usage:
3.1	 ODMT should be user-friendly.
3.2	 ODMT should support graphical notation.
3.3	 ODMT software should be supported by an active project.

4	 ODMT should be extensible.
For a detailed study we chose the most popular WebODE [51, 52], OilEd [53,

54], Ontolingua [55, 56], Protégé, Chimera [57], OntoSaurus [58], OntoEdit [59] and
WebOnto [60, 61] tools. The results of the ODML assessment according to the chosen
criteria are presented in Table 2.

According to the results presented in Table 2, the Protégé ontology development
and management tool is chosen to support our statement that information processing
rules can be elicited from an ontology.

23D. Kalibatiene and O. Vasilecas. Ontology-based Application ..
Ta

bl
e

2

A
ss

es
sm

en
t o

f W
eb

O
D

E
, O

ilE
d,

 O
nt

ol
in

gu
a,

 P
ro

té
gé

, C
hi

m
er

a,
 O

nt
oS

au
ru

s,
O

nt
oE

di
t a

nd
 W

eb
O

nt
o

on
to

lo
gy

 d
ev

el
op

m
en

t a
nd

 m
an

ag
em

en
t t

oo
ls

O
D

T
M

C
ri

te
ri

a
W

eb
O

D
E

O
ilE

d
O

nt
ol

in
gu

a
Pr

ot
ég

é
C

hi
m

er
a

O
nt

oS
au

ru
s

O
nt

oE
di

t
W

eb
O

nt
o

A
xi

om
 d

efi
ni

tio
n

an
d

m
an

ag
em

en
t

la
ng

ua
ge

 (1
.1

, 1
.2

)

Ye
s

(W
A

B
)

Ye
s

(D
A

M
L

+
O

IL
)

Ye
s (

K
IF

)
Ye

s
(P

A
L

)
Ye

s
(K

IF
)

Ye
s

(K
IF

)
Ye

s
(F

 L
og

ic
)

Ye
s

(O
C

M
L

)

C
he

ck
in

g
of

ax

io
m

s (
1.

3)
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

Av
ai

la
bi

lit
y

(2
)

Fr
ee

 W
eb

A

cc
es

s
11

Fr
ee

 W
eb

A

cc
es

s
11

12
12

13
Fr

ee
 W

eb

A
cc

es
s

U
se

r-f
rie

nd
ly

 (3
.1

)
Ye

s
N

o
Ye

s
Ye

s
Ye

s
N

o
N

o
Ye

s
G

ra
ph

ic
al

 n
ot

at
io

n
(3

.2
)

14
N

o
15

14
14

N
o

N
o

14

A
ct

iv
e

pr
oj

ec
t (

3.
3)

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ex
te

ns
ib

le
 (4

)
N

o
N

o
N

o
Pl

ug
-in

s
Pl

ug
-in

s
N

o
Pl

ug
-in

s
N

o

	
11

	O
pe

n
so

ur
ce

, i
ns

ta
lle

d
lo

ca
lly

.
	

12
	O

pe
n

so
ur

ce
 a

nd
 fr

ee
 W

eb
 a

cc
es

s t
o

ev
al

ua
tio

n
ve

rs
io

n.
	

13
	F

re
e

W
eb

 a
cc

es
s t

o
fr

ee
 v

er
si

on
. O

nt
oE

di
t P

ro
fe

ss
io

na
l n

ee
ds

 so
ftw

ar
e

lic
en

ce
.

	
14

	G
ra

ph
ic

al
 ta

xo
no

m
y,

 g
ra

ph
ic

al
 v

ie
w.

	
15

	G
ra

ph
ic

al
 ta

xo
no

m
y,

 n
o

gr
ap

hi
ca

l v
ie

w.

24 Computer Science and Information Technologies

5.2	 Protégé Axiom Language (PAL)

Ontology axioms are implemented in Protégé ontology by the Protégé Axiom
Language (PAL) constraints [46]. PAL is a superset of the first-order logic, which is
used for writing strong logical constraints. PAL can be used to express constraints about
a knowledge base, and it can be used to make logical queries about the contents of a
knowledge base.

A PAL constraint (or a query) is a statement that holds on a certain number of
variables, which range over a particular set of values. Therefore, a constraint or a query
in PAL consists of a set of variable range definitions and a logical statement that must
hold on those variables. The language of PAL is a limited predicate logic extension of
Protégé that supports the definition of such ranges and statements.

The syntax of PAL is a variant of KIF. It supports KIF connectives, but not all KIF
constants, predicates (i. e. the theory of arithmetic is much smaller), and statements, like
(defrelation) and (deffunction).

PAL provides a set of special-purpose frames to hold the constraints that are
added to a Protégé knowledge base, respectively the :PAL-CONSTRAINT class. The
PAL constraint is an instance of the :PAL-CONSTRAINT class. The class has the
following slots:

•	 :PAL-name, which holds a label of the constraint;
•	 :PAL-documentation, which holds a natural language description of the

constraint;
•	 :PAL-range, which holds the definition of local and global variables that appear

in the statement;
•	 :PAL-statement, which holds the sentence of the constraint.
The main part of the PAL constraint is the PAL-statement, which can be mapped

to the information processing rule. The PAL-statement structure corresponds to the
state or condition-state axiom. It has a clearly defined condition and a state. All
constraints written by PAL define the state in which the domain should be. However,
no information is provided about what should be done to implement a desirable state.
The user triggers PAL constraints manually, when it is necessary. For more details
about PAL see [46].

The EZPal Tab plug-in [62, 63] is used to facilitate acquisition of PAL constraints
without having to understand the language itself. Using a library of templates based on
reusable patterns of previously encoded axioms, the interface allows users to compose
constraints using a “fill-in-the-blanks” approach.

5.3	 Object Constraint Language (OCL)

We use OCL to support our statement that ontology axioms could be transformed
into information processing rules, since UML is the most popular language for modelling
business and information systems. However, there is no suitable interface to facilitate
the definition of OCL constraints. User should be familiar with OCL. We attempt to
propose a transformation which simplifies writing OCL constraints.

A UML diagram, such as a class diagram, typically is not refined enough to
provide all the relevant aspects of a specification. There is a need to describe additional

25D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

constraints about the objects in the model. Therefore, OCL has been developed to
fill this gap. OCL is a specification language [13]. When an OCL expression is
evaluated, it simply returns a value. It cannot change anything in the model. This
means that the state of the system will never change because of the evaluation of
an OCL expression, even though an OCL expression can be used to specify a state
change (e.g., in a post-condition).

According to [13], the following components of OCL constraints are defined:

Context TypeName [statement_type] {constrain name}:
[OCL statement]

Context introduces the context for OCL constraint. The context can be a particular
class, attribute or method of a UML class diagram.

An OCL statement defines an OCL constraint. It is composed of a class, an attribute
or a method, which is associated by a mathematical operator with a class, an attribute, a
method or a value. An example of a statement is self.numberOfEmployees > 50, where
numberOfEmployees is an attribute and 50 is a possible value of this attribute. Note
that each OCL constraint is written in the context of an instance of a specific type. In
an OCL expression, the reserved word self is used to refer to the contextual instance.
For instance, if the context is the Company class, then self refers to an instance of the
Company class.

[Statement type] is a possible type of statements in OCL constraints. It defines
what kind of statement is used in an OCL constraint. Statement types can be stereotypes
(like invariant (inv), precondition (pre), and postcondition (post)), which define
stereotypes in an OCL constraint, an initial value (init), which is used to represent
the initial value in an OCL constraint, and derived value (derive), which is used to
represent the derivation rule.

5.4	 Mapping PAL with OCL

According to the results presented in the previous section, Table 3 presents mapping
of PAL to OCL.

Table 3

Mapping of PAL to OCL

Name of an element OCL PAL Are they
mapped?

Name of a constraint
(for example,
enoughEmployees)

Yes
Defined after the statement

type.

Yes
Defined after the

keyword %3APAL-
NAME in quotes.

Fully mapped

Description of a
constraint

Yes, but not necessary
Defined in quotes.

Yes, but not
necessary

Defined after the
keyword %3APAL-

DOCUMENTATION
in quotes.

Fully mapped.
However, it is

not the main part
of a constraint.

26 Computer Science and Information Technologies

Name of an element OCL PAL Are they
mapped?

Type of a constraint Invariant (inv) –
associated with a Classifier

Yes Fully mapped

Precondition (pre) –
associated with an
Operation or other
behavioural feature

No No. PAL has no
operations.

Postcondition (post) –
associated with an
Operation or other
behavioural feature

No No. PAL has no
operations.

Initial value (init) –
indicate the initial value of
an attribute or association

end

Yes Mapped. An
initial value of
an attribute can

be defined
Derived value (derive) –

indicate the derived
value of an attribute or

association end

Yes Mapped. A
derived value of
an attribute can

be defined
Class, to which a
constraint is attached
(for example,
Organization)

Yes
Defined after the context.

Yes.
Defined after the

keyword %3APAL-
RANGE in quotes.

Fully mapped

A statement of a
constraint

Yes
Defined after the statement
type or a name, if a name is
specified for the constraint.

For example, self.
numberOfEmployees > 50

Yes
Defined after the

keyword %3APAL-
STATEMENT in

quotes.

Fully mapped.
In both

constraints
classes,

attributes and
mathematical
operators are

used.
Condition of a
constraint statement

Yes
Defined after the keyword

if

Yes
Defined after the

symbol =>

Fully mapped

State part of a
constraint statement

Yes
Defined after the keyword

then

Yes
Any statement defined

after the condition

Fully mapped

As can be seen from Table 3, PAL constraints can be transformed into OCL
invariants, initial or derived values. Since an ontology and its elements, like classes, has
no methods, preconditions and postconditions cannot be presented in an ontology.

An example of the mapping of a PAL statement to an OCL constraint follows.
•	 This part of a PAL-statement defines that a value of a slot start_date of the

class Employee should be less than a value of a slot end_date of the same
class.

(< (‘start_date’ ?Employee) (‘end_date’ ?Employee)))

27D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

•	 The presented OCL constraint corresponds to the PAL-statement. ?Employee is
transformed into the context of an OCL constraint. All slots of the PAL statement
are transformed into the corresponding attributes in the OCL constraint. For
example, “end_date“ is transformed into “self.end_date”.

context Employee inv:
self.end_date > self.start_date

For more detailed explanations, we present the mapping of Protégé ontology to UML
class diagram in Table 4. It is used as a basis to define the mapping of PAL constraints
to OCL constraints.

Table 4

Mapping of Protégé ontology elements to UML class diagram elements

Elements of a Protégé ontology Elements of a UML class diagram
Protégé ontology UML class diagram
“Thing” Class
Class Class
Slot Attribute

Documentation Comment
Value Types: Data Types:

any not defined
boolean boolean

class relationship with appropriate class
float float

instance relationship with appropriate class
integer int
string char

symbol enumeration
Required Multiplicity: 1

Minimum Multiplicity:
Maximum Multiplicity:

Default Values Default Value
is-a relation
(directed-binary-relation)

Generalization

PAL constraint OCL constraint

5.5	 An Example of Transforming PAL Constraints into OCL Constraints

The prototype of the Axiom2OCL plug-in is created to implement the proposed
method of transforming PAL constraints into OCL constraints and to support the statement
of authors that ontology axioms could be used for the development of information
processing rules. The plug-in is developed according to the proposed mapping of PAL
to OCL (Table 3).

The plug-in can be attached to MagicDraw UML 15.5 or Protégé 3.0 (or other
version). Fig. 4 presents the Axiom2OCL plug-in attached to Protégé 3.4.

28 Computer Science and Information Technologies

In this prototype the user should denote the input file, in which PAL constraints
are stored, and may denote the output file, where OCL constraints will be stored. If
the user does not denote the output file, the plug-in creates a default output file. After
the denoting the input and output files, all PAL constrains from the input file will be
automatically transformed into OCL constraints.

The plug-in is created in the Java development environment.

Fig. 4. The Axiom2OCL plug-in attached to Protégé 3.4

An example of transforming a PAL constraint, restricting that the Employee end
date should be after the start date, into the corresponding OCL constraint, follows.

•	 A PAL constraint

(%3APAL-NAME "editor-employees-salary-constraint")
(%3APAL-RANGE "(defrange ?editor :FRAME Editor)\n(defrange
?employee :FRAME Employee responsible_for)")
(%3APAL-STATEMENT "(forall ?editor (forall ?employee\n (=>
(and \n (responsible_for ?editor ?employee)\n (own-slot-not-
null salary ?editor) \n (own-slot-not-null salary ?employee))
\n (> (salary ?editor) (salary ?employee)))))"))

•	 A corresponding OCL constraint

context Editor inv editor-employees-salary-constraint:
IF (self.responsible_for->notEmpty() AND self.salary ->
notEmpty() AND self.employee.salary -> notEmpty())
THEN (self.salary>self.responsible_for.salary) endif

The corresponding OCL constraint is attached to the part of a newspaper class
diagram (Fig. 5), which is generated from the newspaper ontology using UMLBackend
plug-in [47].

29D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

Fig. 5.Part of a newspaper class diagram

At this moment the prototype is not suitable for transforming all PAL constraints
into the corresponding OCL constraints. Therefore, in the future it should be refined and
adapted for the transformation of more difficult constraints.

The proposed transformation of PAL constraints into OCL constraints is applied
in the High Technology Development Program Project “Business Rules Solutions for
Information Systems Development (VeTIS)”16 by extending MagicDraw tool to generate
OCL constraints from PAL constraints.

6	 Conclusions
The analysis of the related works shows that application domain rules are presented

in ontology by axioms. However, the majority of authors analyse the use of ontology for
the development of a conceptual data model, neglecting or not emphasising ontology
axioms as a possible source for business rules development. The comparative analysis
of ontology axioms and rules at the level of information systems let us to argue that
ontology axioms can be used for modelling rules and consecutive implementation of
such rules at the level of software systems.

Syntactic expressions of ontology and a conceptual data model were analysed and
it was concluded that consolidation and derivation axioms, expressed in a particular
language, can be mapped to dynamic rules, epistemological and definitional axioms – to
the structure of a conceptual data model.

Thus, the method for transforming ontology axioms into OCL constraints, which can
be defined as a part of a UML class diagram and which are most suitable for representing
rules at intermediate level, and next to implementation level should be developed. Such
a method is proposed in the paper.

The application of the method for transforming the Protégé ontology axioms
(expressed as PAL constraints) to OCL constraints and their implementation in the
Axiom2OCL plug-in shows that the method can be used for automatic generation of
OCL constraints from ontology axioms.

The next step of the research is extending the developed plug-in.

References
1.	 N. Guarino. Formal Ontology and Information Systems. In: Proc. of FOIS’98. Amsterdam: IOS Press,

1998, pp. 3–15.

	 16	 http://www.verslotaisykles.lt/VeTIS/

30 Computer Science and Information Technologies

2.	 M. Jarrar, J. Demey, R. Meersman. On Using Conceptual Data Modeling for Ontology Engineering. In:
S. Spaccapietra et al. (eds.), Journal on Data Semantics. LNCS, Vol. 2800. Berlin/Heidelberg: Springer,
2003, pp. 185–207.

3.	Y . Wand, V. C. Storey, R. Weber. An ontological analysis of the relationship construct in conceptual
modeling. ACM Transactions on Database Systems (TODS), Vol. 24(4), 1999, pp. 494–528.

4.	 T. R. Gruber. Toward Principles for the Design of Ontologies for Knowledge Sharing. International
Journal of Human and Computer Studies, Vol. 43(4–5), 1995, pp. 907–928.

5.	 J. Trinkunas, O. Vasilecas. Ontology Transformation: from Requirements to a Conceptual Model. Acta
Universitatis Latviensis [Latvijas Universitates Raksti], Computer Science and Information Technologies,
Vol. 751. University of Latvia, 2009, pp. 54–68.

6.	 E. Bozsak et al. KAON – Towards a Large Scale Semantic Web. In: K. Bauknecht et al. (eds.), Proc.
of the Third International Conference on E-Commerce and Web Technologies (EC-Web 2002). LNCS,
Vol. 2455. London: Springer-Verlag, 2002, pp. 304–313.

7.	 M. A. Goncalves, L. T. Watson, E. A. Fox. Towards a Digital Library Theory: A Formal Digital Library
Ontology. International Journal on Digital Libraries, Vol. 8(2), 2008, pp. 91–114.

8.	 OMG: OntologyDefinition Metamodel, 2005. Available: http://www.omg.org/docs/ad/05-08-01.pdf.
Accessed September, 2008.

9.	 T. Morgan. Business Rules and Information Systems: Aligning IT with Business Goals. Boston: Addison-
Wesley, 2002.

10.	 B. von Halle. Business Rules Applied: Building Better Systems Using the Business Rules Approach. New
York: John Wiley & Sons, 2002.

11.	 R. G. Ross. Principles of the Business Rule Approach. Addison Wesley, 2003.
12.	 OMG: Unified Modeling Language Specification. Version 1.4.2, ISO/IEC 19501:2005(E) (2005)

Available: ftp://ftp.omg. org/pub/docs/formal/05-04-01.pdf. Accessed September, 2008.
13.	 OMG: UML 2.0 OCL Specification, 2003. Available: http://www.omg.org/docs/ptc/03-10-14.pdf.

Accessed September, 2008.
14.	 B. Demuth, H. Hussmann, S. Loecher. OCL as a Specification Language for Business Rules in Database

Applications. In: M. Gogolla, C. Kobryn (eds.), Proc. of the 4th International Conference on the Unified
Modeling Language, Modeling Languages, Concepts, and Tools (UML 2001). LNCS, Vol. 2185. London:
Springer-Verlag, 2001, pp. 104–117.

15.	 R. G. Ross. The Business Rule Book. Classifying, Defining and Modeling Rules. Houston: Business Rules
Solutions Inc., 1997.

16.	 L. Boyd. CDM RuleFrame – the Business Rule Implementation Framework That Saves You Work. In:
Proc. of ODTUG 2001. Available: http://www.dulcian.com/odtug_conference.htm. Accessed November,
2006.

17.	 I. Horrocks, P. F. Patel-Schneider, H. Boley et al. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. W3C document, 2004. Available: http://www.w3.org/Submission/SWRL/. Accessed
September, 2009.

18.	 V. Zacharias. Technical Report: Development and Verification of Rule Based Systems – a Survey of
Developers. Technical Report, 2008. Available: http://vzach.de/papers/2008_SurveyTechReport.pdf.
Accessed May, 2009.

19.	 C. Golbreich, A. Imai. Combining SWRL rules and OWL ontologies with Protégé OWL plugin, Jess and
Racer. In: Proc. of the 7th International Protégé Conference, 2004. Available: http://galimed.med.univ-
rennes1.fr/lim/doc_92.pdf. Accessed May, 2009.

20.	H . Herbst et al. The Specification of Business Rules: A Comparison of Selected Methodologies. In:
A. A. Verrijn-Stuart, T. W. Olle (eds.), Methods and Associated Tools for the Information System Life
Cycle. New York: Elsevier, 1994, pp. 29–46.

21.	 A. Caplinskas, A. Lupeikiene, O. Vasilecas. Shared Conceptualisation of Business Systems, Information
Systems and Supporting Software. In: H.-M. Haav, A. Kalja (eds.), Databases and Information Systems II.
The 5th International Baltic Conference «BalticDB&IS'2002», Selected Papers. Dordrecht/Boston/
London: Kluwer Academic Publishers, 2002, pp. 109–120.

22.	 D. C. Hay. Requirement Analysis. From Business Views to Architecture. New Jersey: Prentice Hall PTR,
2003.

23.	 OMG: Semantics of Business Vocabulary and Business Rules (SBVR). Version 1.0, 2008. Available:
http://www.omg.org/docs/formal/08-01-02.pdf. Accessed December, 2008.

24.	 T. Halpin. Object-Role Modeling: an Overview. 1998. Available: http://www.orm.net/pdf/ORMwhitePaper.
pdf. Accessed November, 2009.

31D. Kalibatiene and O. Vasilecas. Ontology-based Application ..

25.	 M. Badawy, K. Richta. Deriving Triggers from UML/OCL Specification. In: M. Kirikova (ed.),
Information Systems Development: Advances in Methodologies, Components and Management. New
York: Kluwer Academic/Plenum Publishers, 2002, pp. 305–316.

26.	 G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User Guide. Addison-Wesley,
2000.

27.	 A. Armonas, L. Nemuraite. Using Attributes and Merging Algorithms for Transforming OCL Expressions
to Code. Information Technology and Control, Vol. 38(4). Kaunas: Technologija, 2009, pp. 283–293.

28.	 M. Bajec, M. Krisper. Managing business rules in enterprises. Electrotechnical Review, Vol. 68(4),
Ljubljana, 2001, pp. 236–241.

29.	 M. Bajec, M. Krisper. Issues and challenges in business rule-based information systems development.
In: D. Bartmann, F. Rajola, J. Kallinkos (eds.), Proc. of the 13th European Conference on Information
Systems (ECIS 2005). Regensburg: Institute for Management of Information Systems, 2005, pp. 1–12.

30.	 I. Valatkaite, O. Vasilecas. On Business Rules Approach to the Information Systems Development. In:
H. Linger et al. (eds.), Proc. of the 12th International Conference on Information Systems Development
(ISD'2003). New York: Springer, 2004, pp. 199–208.

31.	 O. Vasilecas, D. Kalibatiene, G. Guizzardi. Towards a Formal Method for Transforming Ontology Axioms
to Application Domain Rules. Information Technology and Control, Vol. 38(4). Kaunas: Technologija,
2009, pp. 271–282.

32.	 R. A. Falbo, C. S. Menezes, A. R. C. Rocha. A Systematic Approach for Building Ontologies. In:
H. Coelho (ed.), Proc. of the 6th Ibero-American Conference on AI (IBERAMIA’98). LNAI, Vol. 1484.
Berlin Heidelberg: Springer, 1998, pp. 349–360.

33.	 E. Mendelson. Introduction to mathematical logic. Belmont: Wadsworth & Brooks, 1987.
34.	 G. Guizzardi, R. A. Falbo, J. G. Pereira Filho. Using Objects and Patterns to Implement Domain

Ontologies. Journal of the Brazilian Computer Society, Special Issue on Software Engineering, Vol. 8(1),
2002. Available: http://www.scielo.br/scielo.php?pid=S0104-65002002000100005&script=sci_
arttext&tlng=en. Accessed September, 2008.

35.	 R. A. Falbo, G. Guizzardi, K. C. Duarte. An Ontological Approach to Domain Engineering. In: Proc. of
International Conference on Software Engineering and Knowledge Engineering (SEKE’02). New York:
ACM, 2002, pp. 351–358.

36.	 S. Staab, A. Maedche. Ontology Engineering beyond the Modeling of Concepts and Relations. In:
N. Guarino et al. (eds.), Proc. of the ECAI’2000 Workshop on Application of Ontologies and Problem-
Solving Methods. IOS Press, 2000, pp. 15–21.

37.	 D. McGuinness, P. Patel-Schneider. Usability issues in knowledge representation systems. In: J. Mostow,
C. Rich (eds.), Proc. of AAAI-98. Madison, Wisconsin: American Association for Artificial Intelligence,
1998, pp. 608–614.

38.	 M. R. Genesereth. Knowledge Interchange Format (KIF). 2006. Available: http://logic.stanford.edu/kif/
kif.html. Accessed October, 2006.

39.	 N. F. Noy, R. W. Fergerson, M. A. Musen. The knowledge model of Protégé-2000: combining
interoperability and flexibility. In: R. Dieng, O. Corby (eds.), Proc. of the 12th International Conference
on Knowledge Engineering and Knowledge Management (EKAWÕ00). LNAI, Vol. 1937. Berlin: Springer,
2000, pp. 17–32.

40.	 SUMO: Suggested Upper Merged Ontology (SUMO). 2008. Available: http://www.ontologyportal.org/.
Accessed December, 2008.

41.	 WordNet: Cognitive Science Laboratory. Princeton University, 2006. Available: http://wordnet.princeton.
edu/. Accessed December, 2008.

42.	 R. Culmone, G. Rossi, E. Merelli. An Ontology Similarity Algorithm for BioAgent. In: S. Ercolani,
M. A. Zamboni (eds.), NETTAB Workshop on Agents and Bioinformatics. Bologna, 2002. Available:
http://www.bioagent.net/WWWPublications/Download/NETTAB02P1.pdf. Accessed March, 2007.

43.	 S. Lin et al. Integrating a Heterogeneous Distributed Data Environment with a Database Specific Ontology.
In: E.H.M. Sha (ed.), Proc. of the International Conference on Parallel and Distributed Systems, 2001
(ICPADS'01). Washington: IEEE Computer Society Press, 2001, pp. 430–435.

44.	 C. Bizer. DBpedia. 2008. Available: http://dbpedia.org/About. Accessed December, 2008.
45.	 C. S. J. Hou, N. F. Noy, M. A. Musen. A Template-Based Approach toward Acquisition of Logical

Sentences. In: M. A. Musen, B. Neumann, R. Studer (eds.), Proc. of the Conference on Intelligent
Information Processing (IIP-2002). Montreal: Kluwer, 2002, pp. 77–89.

46.	 W. Grosso, M. Crubezy. The Protégé Axiom Language and Toolset («PAL»). Stanford Medical
Informatics, Stanford University, 2008. Available: http://protegewiki.stanford.edu/index.php/Protege_

32 Computer Science and Information Technologies

Axiom_Language_%28PAL%29_Tabs. Accessed December, 2008.
47.	H . Knublauch. UMLBackend. Stanford Medical Informatics, Stanford University, 2007. Available: http://

protege.cim3.net/cgi-bin/wiki.pl?UMLBackend. Accessed December, 2008.
48.	 X. Su, L. Ilebrekke. A Comparative Study of Ontology Languages and Tools. In: A. B. Pidduck et al.

(eds.), Proc. of the 14th International Conference CaiSE. LNCS, Vol. 2348. London: Springer-Verlag,
2002, pp. 761–765.

49.	 O. Corcho, M. Fernandez-Lopez, A. Gomez-Perez. Methodologies, tools and languages for building
ontologies. Where is their meeting point? Data & Knowledge Engineering, Vol. 46(1), 2003, pp. 41–64.

50.	 L. Casely-Hayford. A comparative analysis of methodologies, tools and languages used for building
ontologies. CCLRC Daresbury Laboratories, 2005. Available: http://epubs.cclrc.ac.uk/bitstream/894/
OntologyReport.pdf. Accessed June, 2008.

51.	 J. C. Arpiirez, O. Corcho, M. Fernandez-Lopez, A. Gomez-Perez. WebODE: a scalable ontological
engineering workbench. In: Y. Gil, M. Musen, J. Shavlik (eds), First International Conference on
Knowledge Capture. New York: ACM, 2001, pp. 6–13.

52.	 A. Gómez-Pérez, M. Fernández-López, O. Corcho. WebODE Ontology Engineering Platform. WebODE
Development Group, 2003. Available: http://webode.dia.fi.upm.es/WebODEWeb/index.html. Accessed
June, 2008.

53.	 S. Bechhofer. OilEd Ontology Editor. University of Manchester, 2000. Available: http://xml.coverpages.
org/oilEdANn20001204.html. Accessed June, 2008.

54.	 S. Bechhofer, I. Horrocks, C. Goble, R. Stevens. OilEd: a reasonable ontology editor for the Semantic
Web. In: F. Baader, G. Brewka, T. Eiter (eds.), Proc. of the Joint German/Austrian Conference on Artificial
Intelligence (KIÕ01). LNAI, Vol. 2174. London: Springer-Verlag, 2001, pp. 396–408.

55.	 A. Farquhar, R. Fikes, J. Rice. The Ontolingua Server: A Tool for Collaborative Ontology Construction.
International Journal of Human-Computer Studies, Vol. 46(6), 1997, pp. 707–727.

56.	 Ontolingua: Ontolingua – Software Description. Stanford University, 2005. Available: http://www.ksl.
stanford.edu/software/ontolingua/. Accessed June, 2008.

57.	 D. L. McGuinness et al. The Chimaera Ontology Environment. In: Proc. of the 17th National Conference
on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence. AAAI
Press/The MIT Press, 2000, pp. 1123–1124.

58.	 B. Swartout et al. Toward Distributed Use of Large-Scale Ontologies. In: B. Gaines, M. Musen (eds.),
Proc. of the 10th Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW'96), 1997.
Available: http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/Banff_96_final_2.html. Accessed April,
2009.

59.	Y . Sure et al. OntoEdit: collaborative ontology engineering for the semantic web. In: First International
Semantic Web Conference (ISWCO02). LNCS, Vol. 2342. Berlin: Springer, 2002, pp. 221–235.

60.	 J. Domingue. Tadzebao and Webonto: Discussing, Browsing and Editing Ontologies on the Web. In:
Proc. of the 11th Knowledge Acquisition Workshop (KAW98), 1998. Available: http://ksi.cpsc.ucalgary.
ca/KAW/KAW98/domingue/. Accessed December, 2008.

61.	 J. Domingue. WebOnto. 2008. Available: http://kmi.open.ac.uk/projects/webonto/. Accessed June, 2008.
62.	 C. S. J. Hou, N. F. Noy, M. A. Musen. EZPAL: Environment for composing constraint axioms by

instantiating templates. International Journal of Human and Computer Studies, Vol. 62(5), 2005,
pp. 578–596.

63.	 C. S. J. Hou. EZPAL. Stanford Medical Informatics, Stanford University, 2008. Available: http://
protegewiki.stanford.edu/index.php/EZPal. Accessed December, 2008.

64.	 E. Sirin, J. Tao. Towards Integrity Constraints in OWL. In: R. Hoekstra, P. F. Patel-Schneider (eds.), Proc.
of OWL: Experiences and Directions 2009 (OWLED 2009), 2009. Available: http://www.webont.org/
owled/2009/papers/owled2009_submission_35.pdf. Accessed March, 2010.

