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Higher-Order Transformations (HOTs) have become an important support of the development 
of model transformations in various transformation languages. Most frequently HOTs are used 
to synthesize transformations from different kinds of models, for example, mapping models. 
This means that model-driven development (MDD) is successfully applied to transformations 
as well. The standard HOT solution is to create the transformation as a model using abstract 
syntax. However, for graphical transformation languages, a significantly more efficient solution 
would be to create the transformation using its graphical (concrete) syntax. An analogy here could 
be the textual template languages such as JET which directly create texts from a model in the 
concrete syntax of the target language. This paper introduces a new kind of language – a graphical 
template language for transformation synthesis named Template MOLA. This language is used 
for creation of transformations in the MOLA transformation language. Template MOLA is an 
adequate solution for many typical HOT applications. 

Keywords: higher order transformations (HOTs), model transformations, template-based 
language, Template Mola.

1 	 Introduction
Model-driven development (MDD) has recently become a widespread technology 

for various kinds of software development. In addition to modeling itself, the key support 
feature of this technology is model transformations. This has given rise to various model 
transformation languages, both textual and graphical. We can state that transformation 
development has become an essential part of software development, with transformation 
languages being a domain-specific development environment. This domain is 
characterized by the fact that it itself is well defined by models. Therefore, MDD can be 
naturally applied to transformation development, i.e., transformations are used to create 
transformations, as a rule, in the same language. This kind of transformations is named 
Higher-Order Transformations (HOTs). The idea of HOTs can be applied to virtually 
any model transformation language. However, the largest number of HOTs important 
in practice has been created in the ATL language [1], probably due to the fact that the 
largest known number of transformations has been created in ATL. Automatic creation 
of transformations from various mappings between two models is especially popular. A 
large set of such mappings have been obtained by applying the ATLAS Model Weaver 
(AMW) [2] – a special framework for defining a mapping between two models on the 
basis of their metamodels. The mappings obtained with AMW can be considered a sort 
of high-level specification of the required model transformation. However, the idea of 
obtaining a transformation from a mapping is in no way restricted to AMW and ATL and 
refers to other transformation languages as well.
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A comprehensive survey of HOT applications is given in [3]. They are classified 
into four types, according to the respective types of input and output models. One of the 
application types is transformation synthesis. This type is most relevant to the research 
presented in this paper. Transformation synthesis means transformation generation from 
different sources of information, including the model mappings mentioned above. 

In the HOT approach, transformations must be treated as models conforming 
to the relevant metamodel. There is such a transformation metamodel for almost all 
transformation languages. If we want to generate transformations in a transformation 
language, the metamodel of this language will be the target metamodel of the particular 
HOT. In [3] synthesis of ATL [1] transformations is considered. An ATL model is 
created and then extracted as a transformation text (since ATL is a textual transformation 
language). The same task could be performed for graphical transformation languages, 
for example, MOLA [4]. A MOLA transformation in abstract syntax (the MOLA 
transformation model) could be created easily in the same way as the abstract syntax 
of ATL transformations. The transformation visualisation task is harder since graphical 
MOLA diagrams have to be created. However, it is also technically feasible. At first a 
transformation to the corresponding presentation model (graphical diagram) should be 
executed. Then some auto-layout creation library for graph diagrams should be used. It 
should be noted that for transformation execution visual representation is not needed. 
Consequently, for graphical transformation synthesis, MOLA (or ATL) could be used as 
a HOT. However, a better solution is proposed in this paper. 

There are many template-based model-to-text languages. For example, popular 
languages are JET [5], mof2text [6], Xpand [7], Epsilon Generation Language [8]. The 
basic application of these languages is to create code (in Java, XML or in any other 
required language) from the PSM model in the standard MDD process. These languages 
typically contain facilities to navigate the given model according to its metamodel. 
However, the main advantage of these languages is the possibility to define the text 
fragment to be generated by the given rule as a textual template in the relevant concrete 
syntax (Java, XML or any other). The constant parts are fully defined by the template 
itself. The variable parts in the text to be generated are specified by means of template 
expressions which typically contain model class attributes and auxiliary variables. 
These languages have confirmed their practical applicability in code generation for 
several years.

Besides the approach described above, an ATL transformation text could also be 
created using some template-based model-to-text language. Since MOLA is a graphical 
transformation language and fundamentally model-based, textual template languages 
cannot be applied here. In this paper we address the problem of MOLA transformation 
synthesis using template-based mechanisms. 

A new graphical template-based language Template MOLA for MOLA transformation 
synthesis is proposed in this paper. In this language elements to be created in MOLA can 
be defined explicitly in syntax close to traditional MOLA statements. The generation 
logic in Template MOLA is described by traditional MOLA facilities. This part of the 
description is executed during the generation process. The elements to be placed in 
the created transformation are described in a MOLA extension consisting of template 
statements. This extension again is similar to traditional MOLA, but with a possibility 
to incorporate template expressions as well. During generation, these expressions are 
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replaced by the corresponding generation time values based on the elements of the 
source model. Thus, the idea of textual template languages is leveraged to a graphical 
language. The main advantages of the template approach are retained – adequate facilities 
to process and navigate the source model and concrete syntax-based descriptions of 
elements to be created as a result. The proposed solution is shown to be significantly 
more convenient for transformation generation than pure use of MOLA as a HOT.

A short description of MOLA is given in Sub-section 2.1. Sub-section 2.2 describes 
Template MOLA in general. Section 3 describes the metamodelling aspects of Template 
MOLA. Section 4 describes Template MOLA in detail. Section 5 outlines general 
implementation principles.

2	 A General Description 
The Template MOLA language is an adaption of template mechanisms used for 

textual template languages (of the model-to-text kind) to a graphical language. It is 
based on the model transformation language MOLA. Template MOLA is used for easy 
generation of transformations in MOLA from various input models – as a substitute for 
the classical HOT approach. 

All MOLA elements are retained in Template MOLA. Additionally, special template 
elements for easy MOLA transformation synthesis are included. With them it is possible 
to define explicitly in a graphical syntax which MOLA elements should be created.

Because of this close integration of MOLA and Template MOLA, we start this 
section with a short MOLA description. We continue with a description of basic Template 
MOLA concepts. 

2.1	 MOLA

MOLA [4] is a graphical transformation language developed at the University of 
Latvia. It is based on traditional concepts of transformation languages: pattern matching 
and rules defining how the matched pattern elements should be transformed. The formal 
description of MOLA as well as a MOLA tool can be downloaded at [9].

A MOLA program transforms an instance of a source metamodel into an instance 
of a target metamodel. The two metamodels are specified using the EMOF compliant 
metamodelling language (MOLA MOF). These metamodels, which may also coincide, 
are both part of a transformation program in MOLA. Mapping associations may be 
added to link the corresponding classes in source and target metamodels.

MOLA is the model transformation language which combines the imperative 
(procedural) programming style with declarative means of pattern specification. A 
transformation written in MOLA consists of several MOLA procedures where one of 
them is the main. An example of a MOLA procedure is given in Fig. 1. The execution of 
a MOLA program starts with the main procedure. Procedures in MOLA may be called 
from the body of another procedure using call statements. Like in most transformation 
languages, class instances, primitive and enumeration-typed variables can be passed on 
to the called procedures as parameters. There are other types of statements in MOLA 
as well, i.e. rule, foreach loop, text statement, etc. The execution of a MOLA procedure 
starts with the start statement. The next statement to be executed is determined by the 
outgoing control flow. 
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The rule in MOLA represents the classical branching (if-then-else) construct of 
imperative programming. A rule contains a declarative pattern that specifies instances 
of which classes must be selected and how they must be linked. Only the first valid 
pattern match is considered. The action part of a rule specifies which matched instances 
must be changed and what new instances must be created. The instances to be included 
in the search or to be created are specified using class elements in the MOLA rule. 
The traditional UML instance notation (instance_name:class_name) is used to identify a 
particular class element and specify the class the instance must belong to. Class elements 
included in a pattern may have attribute constraints – simple OCL-like expressions. 
Expressions are also used to assign values to variables and attributes of class instances. 
Additionally, the rule contains association links between class elements. A class element 
may represent an instance, matched previously by another pattern. Such class element is 
called a reference class element and is specified using the name of the referenced class 
element, prefixed with “@” symbol. 

Fig. 1. A MOLA diagram example. The loop is executed over all Property instances which have 
Primitive Type and belong to referenced Class instance if it is already mapped to an RDBTable

Typical transformation algorithms require iteration through a set of the instances 
satisfying given constraints. In order to accomplish this task, MOLA provides the 
foreach loop statement. The loophead is a special kind of rule used to specify a set of 
instances to be iterated in the foreach loop. The pattern of the loophead is given using 
the same pattern mechanism used by an ordinary rule, but with an additional important 
construct. It is the loop variable – the class element that determines the execution of the 
loop. The foreach loop is executed for each distinct instance that corresponds to the loop 
variable and satisfies the constraints of the pattern. In fact, the loop variable plays the 
same role as an iterator in classical programming languages.

The above example demonstrated the concrete graphical syntax of MOLA. 
The MOLA language also has an abstract syntax defined by means of a metamodel 
containing several packages (see the MOLA reference manual available in [9]). The 
abstract syntax of MOLA MOF is defined in the Kernel package, with elements Class, 
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Type, Property, Association and others (actually, it is a subset of a UML 2 class diagram 
metamodel). The abstract syntax of MOLA procedures is defined in the MOLA package 
(containing Rule, ClassElement, AssocLink, etc). In the next sections, this abstract 
syntax is referenced where necessary, for example, Kernel::Class means a metamodel 
(MOLA MOF) class. 

2.2	 Template MOLA

In this sub-section, the basic constructs of Template MOLA are described. The 
proposed Template MOLA language contains two kinds of MOLA statements: generation 
statements and template statements.

Generation statements are executed during the transformation generation process. 
They are used to define the logic of generation process on the basis of the provided input 
metamodel. All ordinary MOLA statements may be used as the generation statements. 

Template statements are meant to be “copied” to the generated “MOLA code” (in 
fact, model) with template expressions replaced by the appropriate generation time 
values. Template statements look similar to ordinary MOLA statements but can be 
distinguished by their graphical style – green color. The most used template statements 
are template rule and template loop; however, other MOLA statements may be used as 
template statements too.

Statements in Template MOLA are organized into procedures in the same way as in 
the traditional MOLA described in the previous section. A procedure may contain both 
generation and template statements; however, the generation statements alone should 
constitute a valid MOLA procedure. Template statements may be interspersed between 
generation statements. Thus, the general idea of Template MOLA is that the “generation 
part” of a procedure is executed in the same way as the traditional MOLA. The only 
difference is that template statements to be executed in this process are copied to the 
resulting traditional MOLA procedures (instead of directly executing them). Certainly, 
there are some more complex situations to be described further, but at the first glance, 
Template MOLA means exactly that. 

The most used template statement is template rule. In generation time it is copied 
to the generated “code” (i.e., to the relevant generated MOLA procedure). Elements of 
the template rule may contain variable textual parts – template expressions (expressions 
enclosed in angle brackets followed (preceded) by a percent sign). These expressions 
are replaced by the corresponding generation time values. 

Example of a template rule can be seen in Fig. 2. In this rule, the constraint in 
class element b:Class2 contains the template expression <%@p.name%> where @p 
is a known generation time reference (defined in the procedure containing this rule). 
Another kind of a variable part in a rule is a template expression specifying the class of a 
class element (here c:<%@tc:Class%>). The generation time reference @tc must point 
to an appropriate metamodel class, i.e., it must point to an instance of Kernel::Class 
(the ::Class suffix in the syntax emphasizes that), and it must be set before the rule 
under discussion is to be executed. In the resulting traditional MOLA rule, this template 
expression is replaced by the referenced class name. Association links may also be 
specified by a template expression in order to adapt to a variable class element at the 
end. This template expression (<%@assoc:Association%> in Fig. 2) must reference an 
association in the metamodel. The value of this reference must certainly be set correctly 
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during the generation; in the presented example only the association linking classes 
Class2 and Class3 is valid. In the generated rule, the standard MOLA notation for 
association links (both role names) is used.

Fig. 2. An example of a template rule and the MOLA rule generated from it

The lower part of Fig. 2 shows the generated MOLA rule obtained from the template 
rule above. Here we assume that the reference @p.name has a string value “Box”, the 
reference @tc points to the class Class3 and @assoc to the association with role names 
(class2, class3). 

Fig. 3. An example of a template loop

Similarly to rules, the loop constructed in MOLA – the foreach loop statement – also 
has its template form in Template MOLA. The template loop is copied to the generated 
procedure during the generation process, including its body (which may also contain 
generation statements, see an example in Section 4). The template loop in its loophead 
rule can use all the extensions introduced for the template rule. Fig. 3 shows an example 
of a template loop, a simple construct for creating copies of all instances of an arbitrary 
class. In the loophead of this loop, the class to be used in all class elements (including the 
loop variable orig) is defined by a template expression <%@type:Class%> which means 
that the reference @type must be set to the required class before the given template loop. 
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class before the given template loop. Then a traditional MOLA loop is generated from 
this template loop, and the generated loop performs instance copying for the given 
class. The additional class element orig_exists with NOT constraint is used as a NAC 
(negative application condition) preventing from copying the copies again. The 
example presents a very simple case of another area of typical application of hOTs 
for transformation generation in [3] – building a generic transformation for a 
previously unknown metamodel. 

Fig. 2. An example of a template rule and the MOLA rule generated from it 

The lower part of Fig. 2 shows the generated MOLA rule obtained from the 
template rule above. here we assume that the reference @p.name has a string value 
“Box”, the reference @tc points to the class Class3 and @assoc to the association 
with role names (class2, class3).  

Fig. 3. An example of a template loop 

Similarly to rules, the loop constructed in MOLA – the foreach loop statement – 
also has its template form in Template MOLA. The template loop is copied to the 
generated procedure during the generation process, including its body (which may 
also contain generation statements, see an example in Section 4). The template loop in 
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shows an example of a template loop, a simple construct for creating copies of all 
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Then a traditional MOLA loop is generated from this template loop, and the generated 
loop performs instance copying for the given class. The additional class element orig_
exists with NOT constraint is used as a NAC (negative application condition) preventing 
from copying the copies again. The example presents a very simple case of another area 
of typical application of HOTs for transformation generation in [3] – building a generic 
transformation for a previously unknown metamodel.

The body of the loop in Fig. 3 contains another template-related construct – a 
MOLA procedure call with arguments of previously unknown types (@orig and @
copy). The type of these arguments becomes known only during the generation process. 
The given procedure call contains one more argument – the reference to type itself. This 
last argument is a generation-time argument, which is not included in the generated 
invocation (it has no sense in that context). Yet for the generation of the procedure 
copyProperties, which has to perform copying of all attributes of arbitrary class, such 
a parameter could be of high value to define an appropriate generation time loop 
(traversing the attributes). 

The exact kind of procedure parameters is visible in its declaration. There are three 
types of parameters that can be declared in a Template MOLA procedure – template, 
generation and type parameters. Template parameters are created in a generated procedure. 
Generation parameters are used in the generation time and are not created in a generated 
procedure. Appropriate arguments must be passed in call statements for the template and 
generation parameters. The type parameters are also used in generation time, but they 
are inferred from other parameters instead of passing them explicitly. Since the types of 
parameters in MOLA are described using class Kernel::Type, type parameters may refer 
to instances of Kernel::Type (Class, PrimitiveType or Enumeration) only. 

We have already given an insight into template expressions used in Template 
MOLA; however, the example does not cover all possible use cases. Therefore, a short 
summary on template expressions follows. The most common elements where template 
expressions appear are class elements within a template rule. A template expression can 
be used to specify the class of the class element. In this case, the template expression 
must be a reference to Kernel::Class instance. If template expressions are used to 
specify the name of the class element, constraint or expressions in assignment, a string 
expression is used for this purpose. These expressions may contain generation time 
variables, parameters and attribute specifications, but not template element references. 
References to instances of appropriate classes can be used to specify the attribute to 
be assigned in a class element (a reference to Kernel::Property) and the association of 
an association link (reference to Kernel::Association). Template expressions can also 
be used in template text statements and in call statements to specify arguments which 
conform to template parameters of the called procedure.

The usage of template procedures in general is more widely discussed in Section 4.  
On the whole, the idea of generating template procedures in Template MOLA and 
providing appropriate naming conventions for them is based on principles similar to those 
in OOP languages such as C++ and Java, also containing some template mechanisms. 

2.3	 Template MOLA Compared to MOLA as a HOT

A question may arise for the reader, why is transformation synthesis in Template 
MOLA better than in traditional MOLA? Writing higher-order transformations for 
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transformation synthesis directly in MOLA requires to define creation of all MOLA 
metamodel elements explicitly (i.e., according to the abstract syntax of MOLA). To 
create one rule, we have to create the rule, all its class elements, all association links, 
all their sub-elements, and to map them to appropriate types from the metamodel of 
this transformation. Fig. 4 demonstrates a transformation for creation of one rule using 
traditional MOLA as a HOT language. Creation of the same rule in Template MOLA 
was demonstrated in Fig. 2. 

It is easy to see that the code for creation of this rule in Template MOLA is 
significantly more readable than in traditional MOLA. Firstly, the size of the rule 
creation pattern differs significantly. Note that in this example we considered creation of 
a very simple rule. For more complicated rules, the difference is even more significant. 
The same situation holds for loops since they mainly consist of rules. 

The same issue of complexity arises in regard to other transformation languages 
also usable for HOT tasks.

Template MOLA allows to implement the same HOT tasks with much less effort 
and with smaller amount of errors since the structure of the resulting MOLA statements 
is clearly visible already in the templates.

Fig. 4. Creation of the rule from Fig. 2 using MOLA as a HOT

3	 Metamodelling Issues
As in any other transformation language, transformations in MOLA are based on 

the appropriate metamodel definition, frequently containing the source and target part. 
The definition of a metamodel for Template MOLA is more complicated because the 
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the same time, the use of template statements requires that appropriate parts are present 
in the metamodel.

In order to have a deeper understanding of metamodelling issues in Template MOLA, 
we start with the comparison to the metamodel structure required for defining a traditional 
HOT in MOLA for synthesis of a MOLA transformation (an example of which was shown 
in Sub-section 2.3). Fig. 5 shows this metamodel structure. The source of the HOT is the 
source model (a mapping definition or something similar) corresponding to the source 
metamodel. The HOT must create a complete MOLA transformation definition consisting 
of a specific metamodel for this transformation (frequently containing the source and 
target parts) and the proper transformation (a set of MOLA procedures). Similarly, at 
the metamodel level, the definition of HOT is based on two metamodel parts  that serve 
as a target metamodel for this HOT. Firstly, there are MOLA metamodelling facilities 
named MOLA MOF MM (the Kernel package mentioned in 2.1). Secondly, the MOLA 
procedure metamodel (MOLA MM) is required. 

Fig. 5. Models to be used if higher order transformations are written in MOLA

A typical application of HOTs in general and Template MOLA in particular is 
the generation of transformations from mappings for metamodel-based graphical 
DSL tool building. The tool building platforms that really require it are METAclipse 
[10] and ViatraDSM [11]. However, the basic ideas can also be demonstrated in the 
popular Graphical Modeling Framework (GMF) [12] in Eclipse (we assume for a 
moment that transformations are generated in MOLA instead of Java for all actions). 
Fig. 6 illustrates the specialization of the metamodelling situation in Fig. 5, when 
MOLA transformations are generated by HOT for a DSL tool – i.e., we assume that 
the GMF generator is implemented as a HOT instead of being written in Java. The 
source metamodel now consists of several parts with different roles. A definition of 
DSL normally is based on the relevant domain metamodel (abstract syntax) using, in 
turn, a version of MOF as a metamodel (in particular, the MOLA MOF could be used in 
such a role). Another part of the metamodel used by GMF and similar platforms is the 
presentation type metamodel (named graphical definition metamodel in GMF) and the 
mapping metamodel. Together they provide the means for graphical syntax definition 
of a diagram and mapping definition from domain metamodel classes to presentation 
types in the diagram (by these means instances of the classes must be visualized). 
The generated transformations in runtime should use the same domain metamodel; 
therefore, this metamodel must be copied by the HOT to the generated transformation. 
There also is a constant part of the metamodel – the presentation metamodel (named 
notation metamodel in GMF) – which defines possible diagram elements at runtime. 
This constant part also should be created by the HOT. One of the tasks the generated 
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generation of transformations from mappings for metamodel-based graphical DSL 
tool building. The tool building platforms that really require it are METAclipse [10] 
and ViatraDSM [11]. however, the basic ideas can also be demonstrated in the 
popular Graphical Modeling Framework (GMF) [12] in Eclipse (we assume for a 
moment that transformations are generated in MOLA instead of Java for all actions). 
Fig. 6 illustrates the specialisation of the metamodelling situation in Fig. 5, when 
MOLA transformations are generated by hOT for a DSL tool – i.e., we assume that 
the GMF generator is implemented as a hOT instead of being written in Java. The 
source metamodel now consists of several parts with different roles. A definition of 
DSL normally is based on the relevant domain metamodel (abstract syntax) using, in 
turn, a version of MOF as a metamodel (in particular, the MOLA MOF could be used 
in such a role). Another part of the metamodel used by GMF and similar platforms is 
the presentation type metamodel (named graphical definition metamodel in GMF) and 
the mapping metamodel. Together they provide the means for graphical syntax 
definition of a diagram and mapping definition from domain metamodel classes to 
presentation types in the diagram (by these means instances of these classes must be 
visualized). The generated transformations in runtime should use the same domain 
metamodel; therefore, this metamodel must be copied by the hOT to the generated 
transformation. There also is a constant part of the metamodel – the presentation 
metamodel (named notation metamodel in GMF) – which defines possible diagram 
elements at runtime. This constant part also should be created by the hOT. One of the 
tasks the generated transformation should do in runtime is to create a visual diagram 
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transformation should do in runtime is to create a visual diagram element for a new 
domain class instance (according to the defined mapping). Thus, two important 
special features have appeared in this application: the use of the domain metamodel 
in two different roles (part of the HOT source and part of the created transformation 
metamodel), and the constant (independent of the source) presentation metamodel is 
included in the created transformation. In fact, the reuse of part of the HOT source as 
a variable part of the metamodel for the created transformation is quite typical when 
transformations are generated by HOTs from mappings. 

Fig. 6. Models in case MOLA is used as a HOT for tool building

Now we can show what the differences in metamodel structure are if Template MOLA 
is used instead of a standard HOT approach for the same tasks. Fig. 7 shows the general 
transformation synthesis by Template MOLA (an analogue of Fig. 5). The “runtime” 
metamodel for the generated transformation (more precisely, its variable part), as a rule, 
must also be provided as an input to the Template MOLA-based HOT implementation. 
This situation could certainly occur in the general case of Fig. 5, but in Fig. 7 this situation 
is clearly syntactically visible. It is due to the necessity to use template expressions for 
accessing classes of this variable metamodel part in template rules in a generic way (see 
Fig. 3). A typical example of such variable part is the domain metamodel for DSL definition 
(see Fig. 6). What is more different from Fig. 5 is the necessity to provide the constant 
part of this “runtime” metamodel for the definition of Template MOLA-based HOT. 
This is due to the fact that classes of this constant part are used to define “constant” class 
elements in template rules. Therefore, these classes must be defined before the definition of 
Template MOLA rules. Although this constant part of the metamodel is clearly an instance 
of MOLA MOF metamodel, in order to be referenced in “constant” Template MOLA 
elements, it must be provided alongside the MOLA MOF metamodel itself. Metamodel 
packages included in a complete transformation definition in Template MOLA belong to 
two adjacent metalevels. However, it is not confusing since the usage of their elements is 
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Finally, we analyse the application-to–metamodel-based tool building in Template 
MOLA (Fig. 8). The main difference from Fig. 6 is that the presentation metamodel 
plays the role of the constant part of the metamodel for transformation. Therefore, it 
must be provided before the definition of Template MOLA. Note that classes for 
mappings and presentation types can only be used in the generation (non-template) 
rules and loops of Template MOLA (they play the role of the source metamodel). The 
domain metamodel is clearly the variable part of the metamodel for transformation. 
An example of this kind of application is presented in Sub-section 4.1. 
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Fig. 8. Metamodels and models used to define transformations in Template MOLA for tool 
building

Now let us remark on the permitted use of metamodel elements in Template 
MOLA constructs. Source metamodel elements can be used directly only in 
generation (non-template) statements of Template MOLA. They can also be used 
inside template expressions in template statements. Elements of the variable part of 
the metamodel for transformation (the “runtime” metamodel) can be referenced via 
corresponding classes of the MOLA MOF in generation statements as well. The same 
elements can be referenced in template statements only via template expressions for 
types. The elements of the constant part of the metamodel for transformation can only 
be used in “constant” class elements in template rules.  

 4 Template MOLA examples 

In this section, we will demonstrate Template MOLA constructs on examples. In [3] 
two types of transformation synthesis are considered. We will present an example of 
each type. 

The first is mapping implementation. It means we have some kind of a mapping 
model to describe dependencies between models. We can generate transformations to 
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4.1	 Transformation Synthesis from Mappings 

In this sub-section, a simplified example of tool building is presented. Graphical 
domain-specific languages (DSL) are widely used nowadays. Several tool building 
environments have been introduced to support tool building for graphical DSLs, 
for example, GMF [12], MS DSL [13], GrTP [14], METAclipse [10]. In GMF a 
domain metamodel for DSL is defined in the first step. Then presentation types (in 
GMF terminology the graphical definition models) and tooling models are defined. 
Presentation types describe different graphical elements used in the graphical syntax 
of the language. The tooling models describe palette elements. Then a mapping 
model that links all these models together is defined. These models are used to 
generate the JAVA source of the DSL tool. This Java source precisely defines the tool 
behaviour. Alternatively, a DSL tool-building environment can be transformation-
based, i.e., transformations are used to describe the tool behaviour, as it is, for 
example, in METAclipse. However, there are approaches that combine mappings and 
transformations [15]. In this case, mappings are used to generate transformations. Since 
transformation synthesis is needed there, it is a perfect opportunity for application of 
Template MOLA.

In this section, we use a specific task from the tool-building field as an example. 
We assume that we have instances of some graphical DSL in abstract syntax (a domain 
model), and we want to generate the corresponding visualisation (instances of the 
presentation metamodel). We can certainly write manuallya MOLA transformation, 
solving the task for this concrete DSL. 

In our tool building environment we have means for domain metamodel definition 
as well as for mapping and presentation type definition; therefore, visualisation 
transformation for each DSL can be created in a generic way. It means we can build 
a generic transformation in Template MOLA from which the transformation for 
visualisation creation in a concrete DSL can be generated automatically.

To write the transformation, we need the corresponding metamodels (built 
according to the general schema in Fig. 8). A simplified metamodel version is used 
in this example. The domain metamodel is defined using a small subset of UML (see 
the upper left side of Fig. 9). Presentation types and a mapping metamodel are also 
needed. Instances of this metamodel are used as input in the generation time. Here 
we present a very simple integrated mapping and presentation type metamodel where 
minimal information on the intended graphical form is included directly in the mapping 
definition (see Fig. 9, upper right side). Instances of a domain class can be visualised as 
a box (ClassToBox) or as a line (ClassToLine). If the class is visualised as a box it may 
contain several text fields. In these fields, values of some class properties are usually 
displayed (PropertyToField).

During the visualization of classes, the generated transformation has to create 
instances of a fixed presentation metamodel supported by the tool (see the lower 
part of Fig. 9). These instances appear only in generated transformations. Therefore, 
the presentation metamodel is the constant part of the metamodel for the generated 
transformation (compare to Fig. 7 and 8). It describes a graph diagram with Nodes 
and Edges. There are CompositeNodes containing other Nodes and Labels for text 
visualization. 
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When metamodels and their roles are specified, we can move on to transformation 
definition in Template MOLA (see Fig. 10). We remind that the proper input for this 
generation transformation is a specific domain metamodel and a related mapping 
model. The transformation starts with the loop iterating through all instances of class 
to box mapping. This loop is a generation loop and is executed in the generation time. 
As a result, a traditional MOLA procedure is built, containing a loop for each such 
mapping instance (generated from the template loop which constitutes the body of the 
generation time loop). The generated loops simply follow each other linked by control 
flows. The template loop contains the loop variable with the name being generated. 
The loop variable name is the concatenation of letter “i” and the name of appropriate 
class given by template expression <%@c.name%>. The type of the loop variable is 
defined by the template expression <%@c:Class%>. In each generated loop the type 
(@c) is replaced with the concrete domain class corresponding to the mapping instance 
this loop is generated from. In each loop the value assigned to shapeType attribute is 
explicitly defined. This value is calculated in generation time using the corresponding 
mapping data (the template expression <%@cm.boxType%> directly references the 
boxType attribute of the current mapping instance). Now in runtime each generated 
loop iterates over all instances of the corresponding domain class and creates a box for 
each of them.

Fig. 9. A simplified domain (upper left side), mapping (upper right side) and presentation (lower 
part) metamodel

Fig. 9. A simplified domain (upper left side), mapping (upper right side) and 
presentation (lower part) metamodel 

During the visualization of classes, the generated transformation has to create 
instances of a fixed presentation metamodel supported by the tool (see the lower part 
of Fig. 9). These instances appear only in generated transformations. Therefore, the 
presentation metamodel is the constant part of the metamodel for the generated 
transformation (compare to Fig. 7 and 8). It describes a graph diagram with Nodes
and Edges. There are CompositeNodes containing other Nodes and Labels for text 
visualization.  
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We must also generate transformations to create fields and set their values. 
Therefore, a rule for processing each field has to be generated in the loop body. To 
ensure this, in the template loop a generation time loop is included. This loop checks 
which field mappings are included into the given class mapping. For each such field, a 
rule is created. This rule adds a label to the box and sets its value. To set the value of 
the label, the relevant property value of the runtime instance should be used. To access 
this property, the template expression <%@p.name%> is used within the assignment in 
the template rule. During generation the generation time loop ensures that the template 
expression is replaced with the relevant property each time. It is not difficult to see that 
the generated sequence of rules will do exactly the required label creation. The structure 
of the generated procedure is shown in Fig. 11.

Fig. 10. Mapping implementation for tool building in Template MOLAFig. 10. Mapping implementation for tool building in Template MOLA 
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Fig. 11. A MOLA procedure generated for Fig. 10

4.2	 Transformations for Generic Metamodels

Template MOLA can be used to write transformations for generic metamodels (the 
metamodel is unknown at the time of writing). For example, we can write a generic 
instance cloning procedure. More precisely, in Template MOLA we can write an instance 
cloning generator, then execute it for a concrete metamodel and run the generated 
traditional MOLA to clone instances of this metamodel.

Such approach can be used to create reusable transformation libraries. Model 
transformation reuse has been considered an important topic [16]. One of the obstacles 
is the complete dependency of transformation definition on the used metamodel. 
Generic transformations (transformation generators) in Template MOLA could be used 
to create a reusable library of common metamodel independent algorithms for model 
processing. 

This approach is less important if the transformation language contains features 
for work with several meta-levels at a time. However, it is useful for transformation 
languages like MOLA (and most of others that include the OMG standard MOF QVT 
[17]), which have no support for work with different meta-levels. 

Generic Template MOLA procedures can be combined with traditional MOLA. The 
analogy with C++ templates and Java generics is used here. For example, it is also 
possible to write such a template based cloning procedure in C++: 

template <class T> void Clone (T orig, T& copy) {...}.

In C++ this template procedure can be called with parameters of a concrete type. To 
process this template procedure, the preprocessor generates an instance of this procedure 
for every type it is called with. The same idea is used to combine MOLA with Template 
MOLA. This feature is required if we want to invoke reusable transformations from a 
transformation library. 

Calls to template procedures can be used in ordinary MOLA transformations. In 
Fig. 12 calls to the template procedure Clone are demonstrated. The same preprocessor 
technology is kept when combining MOLA with Template MOLA as in C++ when 
generating procedures for each type they are called with.

(@c) is replaced with the concrete domain class corresponding to the mapping 
instance this loop is generated from. In each loop the value assigned to shapeType
attribute is explicitly defined. This value is calculated in generation time using the 
corresponding mapping data (the template expression <%@cm.boxType%> directly 
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Fig. 12. An example of combining traditional MOLA with Template MOLA. A MOLA 
procedure calling a template procedure Clone from Fig. 13 is shown

Since several MOLA procedures should be generated from one template procedure, 
the procedure names should be generated too (several procedures with the same 
name are not allowed in MOLA). For a template procedure, it is possible to define an 
expression of how procedure name should be generated exactly, but default naming 
conventions are also provided. One of the preprocessor tasks in combining MOLA 
and Template MOLA is to replace calls to template procedure with calls to appropriate 
generated procedures.

Fig. 13 demonstrates the content of the template procedure Clone. It contains two 
template parameters. It means that two parameters will be created in the generated 
procedure. Instead of type, these parameters contain the template expression <%@
type:Class%>. This template expression is evaluated in generation time and replaced 
with the appropriate values in generated procedures. This procedure contains one more 
kind of parameter – a type parameter (parameter @type). This parameter has an analogy 
to C++ code, where a template parameter T was explicitly defined in procedure definition. 
In the same way as in C++, the value of the parameter is not defined in call but it is 
inferred from other parameters. Note that this type of parameter is used for this type of 
transformations only (transformations for generic metamodels) and is not required for 
typical HOT use cases. Since this template procedure is invoked from ordinary MOLA, 
the referenced metamodel must be MOLA MOF itself (the Kernel package).

Fig. 13. The Clone procedure
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This approach is less important if the transformation language contains features for 
work with several meta-levels at a time. however, it is useful for transformation 
languages like MOLA (and most of others that include the OMG standard MOF QVT 
[17]), which have no support for work with different meta-levels.  

Generic Template MOLA procedures can be combined with traditional MOLA. 
The analogy with C++ templates and Java generics is used here. For example, it is 
also possible to write such a template based cloning procedure in C++:  
template <class T> void Clone (T orig, T& copy) {...}. 

In C++ this template procedure can be called with parameters of a concrete type. 
To process this template procedure, the preprocessor generates an instance of this 
procedure for every type it is called with. The same idea is used to combine MOLA 
with Template MOLA. This feature is required if we want to invoke reusable 
transformations from a transformation library.  

Calls to template procedures can be used in ordinary MOLA transformations. In 
Fig. 12 calls to the template procedure Clone are demonstrated. The same 
preprocessor technology is kept when combining MOLA with Template MOLA as in 
C++ when generating procedures for each type they are called with. 

Fig. 12. An example of combining traditional MOLA with Template MOLA. A 
MOLA procedure calling a template procedure Clone from Fig. 13 is shown 

Since several MOLA procedures should be generated from one template 
procedure, the procedure names should be generated too (several procedures with the 
same name are not allowed in MOLA). For a template procedure, it is possible to 
define an expression of how procedure name should be generated exactly, but default 
naming conventions are also provided. One of the preprocessor tasks in combining 
MOLA and Template MOLA is to replace calls to template procedure with calls to 
appropriate generated procedures. 

Fig. 13 demonstrates the content of the template procedure Clone. It contains two 
template parameters. It means that two parameters will be created in the generated 
procedure. Instead of type, these parameters contain the template expression 
<%@type:Class%>. This template expression is evaluated in generation time and 
replaced with the appropriate values in generated procedures. This procedure contains 

one more kind of parameter – a type parameter (parameter @type). This parameter 
has an analogy toC++ code, where a template parameter T was explicitly defined in 
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Fig. 13. The Clone procedure 

Fig. 14. The copyProperties procedure 

In the Clone procedure one rule and one call is generated. In the rule, the template 
expressions (which specify types of class elements) are replaced with their generation 
time values in the same way as in template parameters. The call statement contains 
one type parameter and two template parameters. The template parameters are kept in 
the generated call. Actually, instead of a call to the template procedure, a call to the 
appropriate instance of procedure generated from template procedure is created 
(taking into account the name generation). 
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Fig. 14. The copyProperties procedure

In the Clone procedure one rule and one call is generated. In the rule, the template 
expressions (which specify types of class elements) are replaced with their generation 
time values in the same way as in template parameters. The call statement contains 
one type parameter and two template parameters. The template parameters are kept 
in the generated call. Actually, instead of a call to the template procedure, a call to the 
appropriate instance of procedure generated from template procedure is created (taking 
into account the name generation).

The template procedure in Fig. 14 generates the procedure to copy instance 
properties. It contains two template parameters and one generation time parameter. 
The generated procedure will have two parameters created from template parameters. 
Generation time parameters are only used in generation time. 

The copyProperties procedure contains two generation time loops. The first loop 
(on the left in Fig. 14) iterates through all direct attributes of the class. For each attribute, 
it generates a rule containing a class element with assignment in it. The value of the 
same attribute in the instance orig is assigned to this attribute. In the generated class 
element, all template expressions are replaced with their values. Template expressions 
are used for the class element type, for the attribute to be assigned and for the assigned 
expression. Here is a remark on template expression syntax: the left hand side of the 
assignment must be an attribute reference in MOLA. Formally, both the notation @p 
(the reference to the attribute) and @p.name (a string expression equal to the attribute 
name) could be used here. Our choice is @p since it expresses more directly that the left 
hand side is a reference (it is preferred for implementation as well). 

The second loop (on the right in Fig. 14) iterates trough all immediate superclasses 
of this class. For each superclass, it generates a call to a procedure that copies direct 
attributes of this superclass. In this way, using recursion in Template MOLA, values of 
all attributes are finally copied. It should be noted that the generated MOLA procedures 
are not recursive due to the fact that procedure names are generated when several 
MOLA procedures are created from one template procedure. Fig. 16 and 17 explain this 
situation in an example.

one more kind of parameter – a type parameter (parameter @type). This parameter 
has an analogy toC++ code, where a template parameter T was explicitly defined in 
procedure definition. In the same way as in C++, the value of the parameter is not 
defined in call but it is inferred from other parameters. Note that this type of 
parameter is used for this type of transformations only (transformations for generic 
metamodels) and is not required for typical hOT use cases. Since this template 
procedure is invoked from ordinary MOLA, the referenced metamodel must be 
MOLA MOF itself (the Kernel package). 

Fig. 13. The Clone procedure 

Fig. 14. The copyProperties procedure 

In the Clone procedure one rule and one call is generated. In the rule, the template 
expressions (which specify types of class elements) are replaced with their generation 
time values in the same way as in template parameters. The call statement contains 
one type parameter and two template parameters. The template parameters are kept in 
the generated call. Actually, instead of a call to the template procedure, a call to the 
appropriate instance of procedure generated from template procedure is created 
(taking into account the name generation). 
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Now let us consider MOLA procedures generated from the Clone algorithm 
described above using Template MOLA. We will demonstrate the generated result for 
the first call of the Clone procedure in Fig. 12. The type of the instance to be cloned 
is Company::IndividualCustomer. The metamodel for this fragment is described in 
Fig. 15 (the package containing the fragment is assumed to be Company). This could 
be a simplified metamodel describing the information processed by a company. Fig. 16 
presents the code generated form the template procedure Clone. The type parameter 
value is the type of the instance the call statement was invoked with. In this case, it is the 
class Company::IndividualCustomer. In the generated code, the type parameter @type 
is replaced with this class. The procedure call is replaced with a call to the generated 
procedure with appropriate types. Note that procedure names are generated in Template 
MOLA as well (according to default name generation rules, which can be modified if 
required). The procedure name here will be appended by the class name from the type 
parameter. The procedure name generation is necessary because the generated procedure 
code depends on the type (or generation) parameter value (as shown in Fig. 17). The 
type parameter itself is not included in the generated code.

Fig. 15. A metamodel example describing information processed by a company. The class 
IndividualCustomer is used to describe the generated code in Fig. 16 and 17

Fig. 16. A MOLA procedure generated from the template procedure Clone

Fig. 15. A metamodel example describing information processed by a company. The class 
IndividualCustomer is used to describe the generated code in Fig. 16 and 17 

Fig. 16. MOLA procedure generated from the template procedure Clone 

Fig. 17. A MOLA procedure generated from the template procedure copyProperties 

Fig. 17 presents the structure of a MOLA procedure generated from the 
copyProperties procedure in Fig. 14 when the class specified by the generation time 
parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_ 
IndividualCustomer). The left side shows two of the generated rules for assigning 

Fig. 15. A metamodel example describing information processed by a company. The class 
IndividualCustomer is used to describe the generated code in Fig. 16 and 17 

Fig. 16. MOLA procedure generated from the template procedure Clone 

Fig. 17. A MOLA procedure generated from the template procedure copyProperties 

Fig. 17 presents the structure of a MOLA procedure generated from the 
copyProperties procedure in Fig. 14 when the class specified by the generation time 
parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_ 
IndividualCustomer). The left side shows two of the generated rules for assigning 
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Fig. 17. A MOLA procedure generated from the template procedure copyProperties

Fig. 17 presents the structure of a MOLA procedure generated from the 
copyProperties procedure in Fig. 14 when the class specified by the generation time 
parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_ 
IndividualCustomer). The left side shows two of the generated rules for assigning 
direct attribute values of the IndividualCustomer class (to attributes level and 
loyaltyCardNumber). Attribute assignments are followed by calls to copy procedures 
generated for the superclasses of IndividualCustomer (calls for superclasses Person and 
Customer are shown). Note that the generated names of the procedures include the class 
name from the type parameter: thus, there is no recursion in the generated code. 

In this example the generated MOLA source is a kind of spaghetti code. However, it 
would be sufficient to have one class element containing assignments for each property. 
Yet in the current version of Template MOLA, there are no facilities for creation of a 
variable number of assignments in one class element. This is an open avenue for further 
research.

5	 Implementation Principles
To implement Template MOLA, we have to consider two aspects – editing and 

processing of Template MOLA. 
The Template MOLA Editor was built in a METAclipse framework using the 

MOLA Editor as a basis. Model transformations which implement the traditional 
MOLA language within a METAclipse framework have been extended to support the 
desired functionality in the new editor. Since Template MOLA reuses the syntax from 
the traditional MOLA language, many of the MOLA procedures implementing the 
editing actions can be reused. The template elements can be regarded as subclasses 
of their related “regular” elements, thus inheriting all their required editing behaviour. 
A template text statement, for example, is almost equivalent to the traditional text 
statement from the editor’s point of view. New and unique functionality can be easily 
included where appropriate. So even though a substantial number of new diagram 

Fig. 15. A metamodel example describing information processed by a company. The class 
IndividualCustomer is used to describe the generated code in Fig. 16 and 17 

Fig. 16. MOLA procedure generated from the template procedure Clone 

Fig. 17. A MOLA procedure generated from the template procedure copyProperties 

Fig. 17 presents the structure of a MOLA procedure generated from the 
copyProperties procedure in Fig. 14 when the class specified by the generation time 
parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_ 
IndividualCustomer). The left side shows two of the generated rules for assigning 
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elements have been introduced, the volume of the code has not grown proportionally, 
but much less than that. In addition, the subclassing approach eliminates any need for 
non-trivial migration when converting pure MOLA transformation models to Template 
MOLA transformation models. 

Another aspect is the execution of Template MOLA. Several solutions were 
considered, including an interpreter and a Template MOLA preprocessor. The chosen 
solution was to use the preprocessor that converts Template MOLA to traditional MOLA 
with later reuse of the MOLA compiler to obtain transformations for generation. This 
approach is similar to preprocessing of macros in C++ environments. The preprocessor 
replaces Template MOLA statements with traditional MOLA rules which create 
corresponding instances of MOLA statements. For example, the template rule in Fig. 2 
is replaced with the MOLA rule in Fig. 4. The newly-created MOLA transformation is 
compiled using the compiler of the traditional MOLA language. Finally, the obtained 
transformation is used as a HOT. Evaluation has shown that the preprocessor solution 
requires less effort to be implemented.

Another issue for consideration is the readability of MOLA sources generated 
using Template MOLA. The easiest solution is to create transformations using only 
the abstract syntax of MOLA. Abstract syntax is enough if we want to execute these 
transformations without manual extension. However, to obtain concrete graphical 
syntax for generated transformations, an abstract-to-concrete syntax transformation 
and an automatic diagram layout generator must be used. Note that transformations in 
Template MOLA actually contain some layout information for MOLA procedures to be 
generated. For example, the layout of elements in a template rule could be reused in the 
generated transformation. However, this issue requires further research.

6	 Related Work
The necessity to use Higher-Order Transformations (HOTs) to support many MDD-

related tasks was already discussed in the introduction. A comprehensive survey of HOT 
applications is presented in [3]. Although [3] shows that the classical HOT approach to 
synthesis of transformations is applicable in practice, it is not always the best solution. 
Sub-section 2.3 demonstrates how complicated it is to describe creation of a simple 
MOLA rule directly in MOLA. Creation of transformations in ATL [1] using ATL as a 
HOT discussed in [3] frequently is similarly difficult. In transformation languages such 
as Viatra [18], where the metamodelling facilities support simultaneous work at various 
meta-levels, the usage of HOTs is not required for work with generic metamodels. 
However, they do not solve transformation synthesis from mappings. In most of other 
transformation languages, transformation synthesis is even more important. 

Therefore, a graphical template language-based solution for transformation synthesis 
was proposed in this paper. To a great extent, this solution has been inspired by textual 
template-based model-to-text languages – [5, 6, 7, 8] and many others.

The idea of using a graphical template language for transformation synthesis is 
new, as far as we know. The comprehensive survey in [19] of various features used 
for model transformation definition briefly mentions the template-based approach for 
model-to-model transformations as well. However, the only reference in [20] mentioned 
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as related to this approach is of templates applied for a very specific task of how to select 
prefabricated fragments of a target model on the basis of the existence of appropriate 
elements in the source model. 

One more recent approach in transformation development somewhat similar to the 
approach described in this paper is the use of concrete graphical syntax to define a 
graph transformation [21, 22]. A graph transformation is defined from the graphical 
representation of the source model to the graphical representation of the target model. 
However, the approach is limited and there is no clear application of these ideas to the 
HOT-related tasks discussed in this paper. 

7	 Conclusions
A new graphical template based language Template MOLA for MOLA trans

formation synthesis is proposed in this paper. This language leverages the advantage of 
template-based model-to-text languages – easy specification of language elements to be 
generated – on to graphical languages. The graphical template statements of Template 
MOLA – template rules and template loops – are transferred to the new transformation 
to be generated. They can contain variable elements – template expressions replaced 
in the generation process. The generation process itself, which depends on the input 
model, is defined by means of generation statements – ordinary MOLA statements 
included in Template MOLA. These generation statements are executed in a standard 
way during the generation process. 

It is shown that it is much easier to specify a transformation synthesis task in 
Template MOLA than to specify the same task in a traditional HOT style (using MOLA 
as a HOT).

Several application areas for Template MOLA arise, firstly, metamodel-based tool 
building for graphical DSLs. More precisely, it is the generation of transformations that 
determine the tool behaviour according to mappings that define the tool functionality in 
a static way (as, for example, in GMF). Some research on that has already begun. This 
paper also provides a small example. 

A related application could be generation of transformations from a more general 
kind of mappings between models. This is the area where HOTs are widely used, 
especially in ATL.

Another important application is the building of transformations for unknown 
metamodels. This way, reusable transformation libraries for performing typical model 
processing tasks could be created. Then transformations from such libraries could 
be used in ordinary MOLA transformations for a specific metamodel. A very simple 
example from this area is also provided in this paper.

A future research direction could be to extend Template MOLA for defining 
templates in other graphical languages, for example, UML activity diagrams. The 
corresponding template statements then would be defined by the graphical syntax of the 
generated language. Generation statements controlling the generation process certainly 
would remain in MOLA. For example, various process generators could be built. This 
requires more research because implementation could turn out to be more complicated 
than for Template MOLA. 
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