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There are different algorithms for reconstruction of a one-dimensional function
from its zero-crossings. However, none of them is stable and computable in real
time. Methods for one-dimensional function reconstruction from its generalized
zero-crossings based on cubic spline interpolation are introduced in this paper.
The main goal is to build an algorithm which is able to reconstruct a smooth
function from the generalized zero-crossings as close to the original function as
possible. The three main advantages of the approaches described in this paper
are reliability, stability, and linear time processing.
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1 Introduction

In this paper we are going to explore the task of one argument function recon-
struction from its zero-crossings. In literature, a one-dimensional function is of-
ten called one-dimensional signal. The only argument of the function most often
represents time or space. Compression and further reconstruction of a one dimen-
sional function is required in optics, acoustics, crystallography, vision, and many
other fields [1]. The literature on this problem describes different approaches to
function reconstruction from its zero-crossings - see [1,2,3,4,5].
Venkatesh [1] has attempted to use generalised Hermite polynomials for recon-
struction of an unknown function from zero-crossing information. He has also
introduced a computational implementation of the algorithm. However, as the
author states, it is very unlikely that a real-time solution to a practical recon-
struction problem can be achieved with the algorithm. Thus, these results are
interesting, but unfortunately unusable in practice.
Boufounos and Baraniuk [2] have assumed that the input data are a sparse
signal, and formulated the reconstruction problem as minimization of sparsity.
The authors state that the presented algorithm converges in typical cases and
produces the correct solution with a very high probability. Yet the method is
unstable, and return of a correct answer is not guaranteed.
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Mallat [4] proposed to use wavelet zero-crossing representation as a complete
signal description. He introduced a reconstruction algorithm based on alternate
projections and very accurate reconstruction results were obtained. Later Mallat
and Zhong [6] introduced the wavelet maxima representation as an alternative to
the wavelet zero-crossing representation. Quite accurate reconstruction results
were also demonstrated. Unfortunately, both approaches are unstable, i.e., is the
algorithms are not guaranteed to process any kind of input data and return an
acceptable answer in real time.

We introduce an algorithm based on the cubic spline interpolation method for
function reconstruction. We also explore its several modifications, ranging from
the basic, when a small amount of data are extracted from the original function,
to more precise and efficient approaches.

In existing reconstruction algorithms, only x values are stored for zero-crossings
of the function. In contrast, we extract function value f(x) and sometimes its
derivative f (x) at these points. Zero-crossings usually stand for the points, where
the value of the function is 0. We extend this notion. In our interpretation, zero-
crossings stand for the points where the value of the function f(x) or the value
of its derivative of any order f (n)(x) is 0. Obviously, these extensions give us
high reconstruction precision potential.

2 Notations and Definitions

We are going to denote derivatives of the function f(x) in the following way:

f (1)(x) = f (x) – first-order derivative of the function f(x);
f (2)(x) = f (x) – second-order derivative of the function f(x);
...
f (n)(x) – n-order derivative of the function f(x).

(1)

We will call points of one-argument function f at which the function value or
its derivative of any order is equal to 0 zero-crossings.

Zero-crossings of f(x) = {x | f(x) = 0 or f (n)(x) = 0, n = 1, 2, ...} (2)

Moreover, we will call points at which the first-order derivative of the function
is equal to 0 first-order zero-crossings, and points at which the second-order
derivative of the function is 0 - second-order zero-crossings, and so on:

{x | f(x) = 0} – zero-order zero-crossings of f(x);
{x | f (x) = 0} – first-order zero-crossings of f(x), also local extrema;
{x | f (x) = 0} – second-order zero-crossings of f(x);
...
{x | f (n)(x)} – n-order zero-crossings of f(x).

(3)
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3 Reconstruction with Modified Spline Interpolation

In this section we present algorithms for one argument function reconstruction
from its zero-crossings. Three different approaches will be used – from the basic
approach, trying to remember less information, to extended approaches when
a larger amount of data are extracted from the original function. With all the
approaches we remember end points data concerning and data on first-order zero-
crossings. In extended methods, second-order zero-crossings are also considered.
It is possible to exploit higher order zero-crossings and slightly improve the
quality of reconstruction, but that influences the amount of zero-crossing data;
therefore, this kind of extension will not be considered.

3.1 Obtaining Function Zero-Crossings

If the function is given analytically, then we can calculate its derivatives in a
straightforward way. If the function f is discrete, i.e. given as a set of pairs (x, y),
we will use numerical differentiation for obtaining the derivatives of the function
[7,8]. We assume that points of the function f are distributed evenly, i.e. , the
interval between any two adjacent points is a constant value. After calculating
all the required function derivatives for each point x, we can compare adjacent
values. If the sign of the derivative of the function is changing at the point x, it
is considered a zero-crossing point.

xi is a zero− crossing of order n ↔
↔ f (n)(xi) · f (n)(xi−1) < 0 and |f (n)(xi)| < |f (n)(xi−1)|

xi−1 is a zero− crossing of order n ↔
↔ f (n)(xi) · f (n)(xi−1) < 0 and |f (n)(xi)| ≥ |f (n)(xi−1)|

(4)

3.2 The Cubic Spline Interpolation Method

First of all, we briefly describe plain cubic spline interpolation method. For an
explicit explanation of the cubic spline interpolation method, see [9]. The aim
of the method is to find a cubic spline S(x) which interpolates the given points
x1, x2, ..., xn and the values of the original function at points f(x1), f(x2), ..., f(xn).
The cubic spline S(x) is defined as the combination of cubic polynomials Si(x).

S(x) =





S1(x) = a1x
3 + b1x

2 + c1x + d1, if x1 ≤ x ≤ x2

S2(x) = a2x
3 + b2x

2 + c2x + d2, if x2 ≤ x ≤ x3

...

Sn−1(x) = an−1x
3 + bn−1x

2 + cn−1x + dn−1(x), if xn−1 ≤ x ≤ xn

(5)

There are 4 unknown variables in each equation, so we have in total 4n − 4
coefficients which we have to determine to specify the function S(x). If the coef-
ficients are chosen in a way that S(x) interpolates n given points and S(x), S(x)



210 Computer SCienCe and information teChnologieS

and S(x) are continuous at points x2, x3, ..., xn−1, then we get an interpolating
curve S(x), which is called a cubic spline.

The following requirements are used to calculate the coefficients of the function
S(x) with the cubic spline interpolation method.

For the inner points xi, i = 2, ..., n− 1

S1.1. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
S1.2. S(x) is continuous at xi: Si−1(xi) = Si(xi)
S1.3. S(x) is continuous at xi: S


i−1(xi) = S

i(xi)
S1.4. S(x) is continuous at xi: S


i−1(xi) = S

i (xi)

For the end points x1 and xn

S2.1. S1(x1) = f(x1) and Sn−1(xn) = f(xn)
S2.2. S

1(x1) = f (x1) and S
n−1(xn) = f (xn)

The second requirement for the end points (S2.2) expresses the idea of the so-
called clamped cubic spline, when function derivatives are known at the end
points. Both end points give us 4 equations and each inner point gives 4 equa-
tions. Thus, we get 4n − 4 equations in total, which is enough to calculate the
unknown coefficients of the cubic spline S(x).

The cubic spline interpolation method almost ideally suits our aim, except for one
defect. The fact that all the given points (with the exception of the end points)
are generalized zero-crossings of the function is not considered in the method.
Let us see an example where all the inner points are local extrema (first-order
zero-crossings). The method searches for a curve which interpolates the given
points. We can get inappropriate results like in the example shown in Fig. 1. As
algorithm does not take into account local extrema, the reconstructed function
can be completely different; however, it interpolates the given points. That is
why the cubic spline interpolation method cannot be used without changing it.

Fig. 1. Reconstruction with the plain spline interpolation method can cause
inappropriate results
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3.3 Function Reconstruction

Let us decide which points and which values at these points we are going to
extract from the original function. We take first-order zero-crossings, i.e. local
maxima and minima of the function. We remember x value and function value
f(x) at these points.

{xi, f(xi)|f (xi) = 0, 1 ≤ i < n} (6)

With the extended approaches, we also take second-order zero-crossings. For
these points, we remember three values: x value, function value f(x) and first
derivative value f (x). Although not all values will be used in some approaches.

{xi, f(xi), f
(xi)|f (xi) = 0, 1 ≤ i < n} (7)

As far as end points are concerned, it is enough to extract three values for each
end point – x value, function value f(x), and first derivative value f (x). Thus,
we assume that we extract the following values.

x1, f(x1), f
(x1), xn, f(xn), f (xn) (8)

However constructing the algorithm we can get rid of some if they are redundant
We now introduce three different approaches for function reconstruction from
its zero-crossings.The first is a basic approach and only first-order zero-crossings
are considered. The second-order zero-crossings are taken into account in the
extended approaches also introduced.

Approach 1 (Basic). The following data of the local extrema of the original
function and its end points were extracted from the original function:

{xi, f(xi)|f (xi) = 0, 1 ≤ i < n} – data of the local extrema,
x1, f(x1), f

(x1), xn, f(xn), f (xn) – data of the end points.

In the basic approach we define spline requirements in a slightly different way
than in the plain cubic spline interpolation method. Instead of the requirement
(S1.4) for the inner points in the plain cubic spline interpolation method that
S(x) is continuous differentiable – S

i (xi) = S
i−1(xi), we will require the first

derivative at local extrema to be 0 (B1.3): thus, these points really are minima
or maxima. Thus, the requirements we set for the polynomials are the following.

For the first-order zero-crossings (local extrema)

B1.1. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
B1.2. S(x) is continuous at xi: Si−1(xi) = Si(xi)
B1.3. S(x) is 0 at xi: S


i(xi) = S

i−1(xi) = 0

For the end points x1 and xn

B2.1. S1(x1) = f(x1) and Sn−1(xn) = f(xn)



212 Computer SCienCe and information teChnologieS

B2.2. S
1(x1) = f (x1) and S

n−1(xn) = f (xn)

Both end points give us 4 equations and each first-order zero-crossing point gives
us 4 equations. Obviously, the number of first-order zero-crossings is n−2. Thus,
the total count of equations is 4n−4, which is the same as the count of unknown
variables (cubic spline coefficients).
To obtain the coefficients of the polynomials, we use a linear equation solver.
For a small amount of data, the Gaussian elimination method can be used. If
the linear equation system is large, an iterative method for sparse linear systems
[10] can be used to solve it.

Approach 2 (Extended). The following data of the first- and second-order
zero-crossings of the original function and its end points were extracted from the
original function:

{xi, f(xi)|f (xi) = 0, 1 ≤ i < n} – data of the local extrema,
{xi|f (xi) = 0, 1 ≤ i < n} – data of the second-order zero-crossings,
x1, f(x1), f

(x1), xn, f(xn), f (xn) – data of the end points.

We use the same algorithm described in the basic approach but with different re-
quirements. In addition we extract data about second-order zero-crossings. We
search for a cubic spline S(x) defined as a combination of cubic polynomials
Si(x). For the second-order zero-crossings, we take all the same requirements as
in the basic cubic spline interpolation algorithm, but the requirement (S1.1) for a
precise function value at points S(xi) = f(xi) is replaced with the requirement
that second derivative of the function at these points is 0 (E2.3). We assume
that function value at these points is not as essential as the information that the
second derivative of the function is 0.

For the first-order zero-crossings (local extrema)

E1.1. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
E1.2. S(x) is continuous at xi: Si−1(xi) = Si(xi)
E1.3. S(x) is 0 at xi: S


i(xi) = S

i−1(xi) = 0

For the second-order zero-crossings

E2.1. S(x) is continuous at xi: Si−1(xi) = Si(xi)
E2.2. S(x) is continuous at xi: S


i(xi) = S

i−1(xi)
E2.3. S(x) is continuous and equal to 0: S

i (xi) = S
i−1(xi) = 0

For the end points x1 and xn

E3.1. S1(x1) = f(x1) and Sn−1(xn) = f(xn)
E3.2. S

1(x1) = f (x1) and S
n−1(xn) = f (xn)

Both end points give us 4 equations, each first- or second-order zero-crossing
also gives us 4 equations. Thus, we get a system of 4n− 4 equations where the
unknown variables are the coefficients of the spline polynomials. When the linear
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equation system is solved, it gives us the coefficients of the spline and allows to
define the function S(x).

Approach 3 (Extended Precise). The following data of the first- and second-
order zero-crossings of the original function and its end points were extracted
from the original function:

{xi, f(xi)|f (xi) = 0, 1 ≤ i < n} – data of the local extrema,
{xi, f(xi), f

(xi)|f (xi) = 0, 1 ≤ i < n} – data of the second-order zero-crossings,
x1, f(x1), f

(x1), xn, f(xn), f (xn) – data of the end points.

This approach is very similar to the previous approach. But here instead of re-
quiring that the second derivative of the function S(x) is continuous and equal
to 0 at the second-order zero-crossings (E2.3), we give the exact value of the
function (P2.3) and the exact value of the first derivative of the function (P2.4)
at these points.

For the first-order zero-crossings (local extrema)

P1.1. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
P1.2. S(x) is continuous at xi: Si−1(xi) = Si(xi)
P1.3. S(x) is 0 at xi: S


i(xi) = S

i−1(xi) = 0

For the second-order zero-crossings

P2.1. S(x) is continuous at xi: Si−1(xi) = Si(xi)
P2.2. S(x) is continuous at xi: S


i(xi) = S

i−1(xi)
P2.3. S(x) interpolates the point (xi, f(xi)): Si(xi) = f(xi)
P2.4. S(x) interpolates the point (xi, f

(xi)): S

i(xi) = f (xi)

For the end points x1 and xn

P3.1. S1(x1) = f(x1) and Sn−1(xn) = f(xn)
P3.2. S

1(x1) = f (x1) and S
n−1(xn) = f (xn)

Similarly as in the previous approaches, each inner point gives us 4 equations,
but each end point gives 2. Thus, the total count of equations is 4n− 4. Having
solved this linear system, we get the values of the coefficients of the polynomials
and hence the definition of the function we are looking for – S(x).

3.4 Analysis of the Approaches

The extended and extended precise approaches are expected to be more precise
as they demand more information about the original function. Nevertheless, now
we see that actually the basic approach is more reliable because it guarantees
that all the local extrema of the reconstructed function are exactly the same
as the local extrema of the original function. The extended approaches cannot
guarantee such accuracy.
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Theorem 1. Let f(x) be the original function and S(x) – the function recon-
structed from its zero-crossings with the basic approach. Then for x ∈ [x2, xn−1],
the local extrema of the function S(x) are exactly the same as the local extrema
of the original function f(x), i.e., if x ∈ [x2, xn−1], then

(a) S(x) = 0 ⇔ f (x) = 0,
(b) S(x) = 0 ⇒ S(x) = f(x).

(9)

Proof. (a) The proof is acquired in two parts. Let us start with f (x) = 0 ⇒
S(x) = 0. As x is a first-order zero-crossing x = xi for some i, the linear equation
system contains the following equation.

S
i(xi) = S

i−1(xi) = 0 (10)

Then from Equation 10 and the definition of the cubic spline S(x) it follows that
S(x) = 0.
Now let us prove the second part – that if x ∈ [x2, xn−1], then S(x) = 0 ⇒
f (x) = 0. From the definition of the basic approach we know that all inner
points are first-order zero-crossings:

f (xi) = S
i(xi) = 0 for i = 2, ..., n− 1. (11)

This means that each function Si(x) for i = 2, ..., n − 1 has two local extrema
points – one at xi and the other at xi+1. Since all the functions Si(x) are cubic
polynomials, they cannot contain more than 2 local extrema. This means that the
only local extrema in each interval [xi, xi+1] are xi and xi+1. All these intervals
form the interval [x2, xn−1]. Thus, we can conclude that the only points where
S(x) = 0 are the points where f (x) = 0 (the end points of the subintervals).
Thus, for all x ∈ [x2, xn−1] : S(x) = 0 ⇒ f (x) = 0.
(b) We have proven that S(x) = 0 ⇒ f (x) = 0 in (a). Therefore, if S(x) = 0,
then x is a first-order zero-crossing of the original function - x = xi for some i,
and the linear equation system contains the following equation.

Si(xi) = Si−1(xi) = f(xi) (12)

Then from Equation 12 and the definition of the cubic spline S(x) it follows that
S(xi) = f(xi). 
Theorem 1 states that in almost all of the domain (apart from two end subinter-
vals), all the local extrema of the function reconstructed with the basic approach
are exactly the same as the local extrema of the original function. Thus, the basic
approach guarantees that the reconstructed function exactly reflects all the local
extrema of the original function.
Now let us analyze the performance of the approaches. Both basic and extended
precise approaches generate a large linear equation system. Instead, a set of
linear equation systems of a constant size could be generated. For each first- and
second-order zero-crossing and for the end points, we give a precise value of the
function and a precise value of the derivative with both approaches.

Si−1(xi) = Si(xi) = f(xi)
S
i−1(xi) = S

i(xi) = f (xi)
(13)
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Thus, the coefficients of every two adjacent polynomials Si−1(x) and Si(x) do
not depend on each other. That is why a separate linear equation system can
be generated for each polynomial Si(x). Hence, each of these linear equation
systems is of a constant size and can be computed in a constant time. It is
obvious that the whole set of linear equation systems can be solved in linear
time O(n), where n is the count of the first- and second-order zero-crossings.
Thus, there are linear time algorithms in both the basic approach and extended
precise approach.
In the extended approach, the polynomials are connected to each other at the
second-order zero-crossings. Nevertheless, the linear equation system can still
be split into several small systems – one for each interval from one first-order
zero-crossing to the next.

3.5 Results

In this sub-section we present the examples of function reconstruction using all
three approaches. Different functions, starting with smooth analytically defined
functions up to more complex functions, are reconstructed with the approaches
described above. The reconstruction accuracy of each approach is discussed and
compared to others.

f(x) = (x − 2)(x − 9)(x − 15) The function is smooth and simple, it has
only two local extrema points since it is a cubic polynomial. This function is
interesting because it is defined in the same way as the function we get from
reconstruction. That is why we can expect that the reconstruction quality will
be very high. The results of the reconstruction are shown in Fig. 2. In figures
below the original function is drawn black, reconstructed functions – gray, first-
order zero-crossings (local extrema) are shown as black points, and second-order
zero-crossings as gray points. The reconstruction quality in this case appeared
to be ideal with each approach because of the fact that the data were extracted
from the function of the same nature as the function we are trying to construct.

f(x) = (2x− 13)(sin x
5
+ 2 cos x

3
− 3 cos(x

2
− 3)) Let us take a little more

complex, however, also a smooth function. As shown in Fig. 3, there is a slight
difference in the results of the approaches. The basic approach gives a slight
deviation from the original function, but the extended precise approach – the
best result. However, the difference between them is very small. Again all three
methods give us good results.

f(x) = e−x2

Let us take a Gaussian function whose nature is far from the
nature of polynomial functions. The results of the three approaches are shown
in Fig. 4. The difference between all three is remarkable. The extended precise
approach gives a very good result in this case. The other two approaches also give
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Fig. 2. Reconstruction of the function f(x) = (x−2)(x−9)(x−15) at x ∈ [0, 16]
with the basic approach, extended approach, and extended precise approach

Fig. 3. Reconstruction of the function f(x) = (2x−13)(sin x
5 +2 cos x

3−3 cos(x2−
3)) at x ∈ [0, 16] with the basic approach, extended approach, and extended precise
approach
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acceptable results; however, the reconstructed functions are a little smoothed out
in comparison to the original function.

Fig. 4. Reconstruction of the function f(x) = e−x2

at x ∈ [−3, 3] with the basic
approach, extended approach, and extended precise approach

f(x) = e−x4

We also take a modification of a Gaussian function with a flat-
tened top. As we see in Fig. 5, all the approaches again give good results, yet
the result of the extended precise approach is the most accurate.

A function with sharp angles. Let us also see the example of reconstruction
of a broken-line function. This function has very little in common with polyno-
mial functions; therefore, not very impressive results were expected. However,
Fig. 6 shows that even such case is processed with a good precision. Again the
extended precise approach gives the most accurate result. Nevertheless, the ex-
tended approach and the basic approach give almost the same result; thus, in
this case the extended approach is not a significant improvement on the basic
approach.

The examples above show that the quality of reconstruction is improving with
an increasing amount of data stored. The most accuracy is achieved with the
extended precise approach. However, we have seen in the analysis section that the
extended approaches do not guarantee that all the local extrema will be identical
to the local extrema of the original function. Therefore, we recommend to use
the basic approach due to its reliability and stability.
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Fig. 5. Reconstruction of the function f(x) = e−x4

at x ∈ [−2, 2] with the basic
approach, extended approach, and extended precise approach

Fig. 6. Reconstruction of the broken line function with the basic approach, ex-
tended approach, and extended precise approach
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4 Conclusion

We have introduced three approaches for function reconstruction from its zero-
crossings. The most interesting among them is the basic approach since it is
precise, stable, and computable in linear time. Previously known approaches
focus on a particular type of functions, and the algorithms work well with this
particular type of functions. However, in general, they are unstable and usually
do not guarantee return of the result in real time.
Three main advantages of the basic approach can be pointed out. First, it guar-
antees return of the result in linear time. Second, the approach is precise, it
perfectly reconstructs all the local extrema of the original function. Third, the
approach is stable: it always gives the result even if the input data contain errors,
i.e., the approach is tolerant to input data inaccuracy.
The presented approaches can also be extended for two-dimensional functions.
Accurate reconstruction of two-dimensional functions from a relatively small
set of data is useful in the area of image compression because any image can
be represented as a two-argument function or a combination of several two-
dimensional functions.
Reconstruction of two-dimensional functions from zero-crossings should be ex-
plored in further research. A wide range of research papers, for example, [11,12,13]
are dedicated to two-dimensional function reconstruction from zero-crossings, ac-
tually from the so-called edges and ridges. The results of these methods are very
good, yet the stability of the algorithms has not been proven.
The methods for reconstruction of one-dimensional functions presented in this
paper appeared to be very efficient and practically useful. Therefore, we ex-
pect that these methods can most definitely be successfully extended for two-
dimensional functions.

References

1. Y. V. Venkatesh. Hermite polynomials for signal reconstruction from zero-crossings.
Part 1: One-dimensional signals. IEE Proceedings I of Communications, Speech and
Vision, vol. 139 (6), 1992, pp. 587–596.

2. P. T. Boufounos, R. G. Baraniuk. Reconstructing sparse signals from their zero
crossings. IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2008), pp. 3361–3364.

3. Z. Berman, J. S. Baras. Properties of the multiscale maxima and zero-crossings
representations. IEEE Transactions on Signal Processing, vol. 41, 1993, pp. 3216–
3231.

4. S. Mallat. Zero-crossings of wavelet transform. IEEE Transactions on Information
Theory, vol. 37, 1991, pp. 1019–1033.

5. R. Hummel, R. Moniot. Reconstructions from zero crossings in scale space. IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 37, 1989, pp. 2111–
2130.

6. S. Mallat, S. Zhong. Characterization of signals from multiscale edges. IEEE Trans-
actions On Pattern Analysis and Machine Intelligence, vol. 14 (7), 1992, pp. 710–
732.



220 Computer SCienCe and information teChnologieS

7. A. Iserles. A First Course in the Numerical Analysis of Differential Equation/ Cam-
bridge Texts in Applied Mathematics, 2nd edition. Cambridge University Press, 2008.

8. J. H. Mathews, K. D. Fink. Numerical Methods Using Matlab, 4th edition. Prentice-
Hall Pub., 2004.

9. G. D. Knott. Interpolating Cubic Splines. Progress in Computer Science and Applied
Logic (PCS). Boston: Birkhäuser, 1999.
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