
Scientific Papers, University of Latvia, 2010. Vol. 756
Computer Science and Information Technologies	 139–149 P.

J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins
A Graph Diagram Engine ..

A Graph Diagram Engine
for the Transformation-Driven Architecture

Janis Barzdins, Karlis Cerans, Sergejs Kozlovics, Edgars Rencis, Andris Zarins
Institute of Mathematics and Computer Science, University of Latvia

Raina bulv. 29, LV-1459, Riga, Latvia
{janis.barzdins, karlis.cerans, sergejs.kozlovics, edgars.rencis, andris.zarins}@lumii.lv

The transformation driven architecture (TDA) is a system building (in particular, tool building)
approach that is based on model transformations, interface metamodels with corresponding engines,
and event/command mechanism. This paper describes a metamodel and the corresponding engine
for graph diagram presentations within TDA. The facilities of the metamodel and the engine
include static diagram presentations, as well as graph diagram animations.

Keywords: transformation-driven architecture, model transformations, metamodels, graph
diagrams, diagram animation, modeling tools.

1	 Introduction
The increasing variety of metamodel-based tools such as MetaEdit [1], Eclipse

GMF [2], Microsoft DSL Tools [3], DiaGen/DiaMeta [4] and METAclipse [5] has lead
to study of principles behind tool architecture. Metamodel-based tools allow domain data
to be represented in a graphical form according to some (perhaps, implicit) presentation
metamodel. In [6] we have developed an approach called the Transformation-Driven
Architecture (TDA), where not just one, but several presentation metamodels are
allowed. The link between domain and presentation models within a modeling tool is
established by means of model transformations.

Since a presentation model is not yet the end interface that can be presented to
the user, some engine is needed to construct the corresponding diagram itself from the
instance of the presentation metamodel. Presentation engines form an essential part of
the TDA.

Developing a presentation engine and the corresponding metamodel may be a non-
trivial task yet when implemented, the corresponding engine can be reused in several
tools built upon the TDA.

In this paper a metamodel for graph diagram presentations within TDA and the
corresponding engine for drawing/editing graph diagrams is presented. The metamodel
along with the engine is a further development based on previous authors’ work [7] by
fully elaborating the metamodel and putting it within the context of TDA. The graph
diagram animation facilities are also newly sketched here.

The paper is organized as follows. The next section lists some ideas of the TDA and
explains how the proposed Graph Diagram Engine can be integrated within the TDA
Framework. In Sect. 3 the Graph Diagram Metamodel and the Graph Diagram Engine
are explained. Sect. 4 presents a way of implementing animation mechanism for graph
diagrams. Finally, Sect. 5 concludes the paper.

140 Computer Science and Information Technologies

The short version of the concepts presented in this paper is published in [8]. This is
an extended version of [8] and can be presented as a technical report as well.

2	 The Essence of the Transformation-Driven Architecture
The Transformation-Driven Architecture [6] is a metamodel-based system (in

particular, tool) building approach, where the system metamodel consists of one or
more presentation metamodels served by the corresponding engines and the (optional)
Domain Metamodel. There is also the Core Metamodel (fixed) with the corresponding
Head Engine. Model transformations are used for linking instances of the mentioned
metamodels (see Fig. 1).

Fig. 1. Metamodels and engines in transformation-driven architecture

There is an Event class in the metamodel whose singleton subclasses correspond
to the actions the user may perform on a particular diagram and that are understood
by a number of engines. Upon observing a current event, engine invokes the event’s
transformation that is responsible for concrete tool’s “business logic” in response
to this event. The Command class describes the requests (commands) that the tool
transformations can issue for an engine. There may be several commands issued by a
single tool transformation.

The Head Engine is a special engine, whose role is to provide services for
transformations as well as for presentation engines. For instance, when in a presentation
engine a user event (such as a mouse click) occurs, the Head Engine may be asked to call
the corresponding transformation for handling this event. A transformation may give
commands to presentation engines. The Core Metamodel contains classes Event and
Command, and the Head Engine is used as an event/command manager.

TDA has its own framework that comes with the built-in Head Engine (serving the
Core Metamodel) and a number of predefined pluggable engines (the Graph Diagram
Engine is one of them). Other presentation engines may also be written and plugged-in,
as needed. The TDA framework is common to all the tools built upon the TDA. The
framework is brought to life by means of transformations. One can choose between
writing different transformations for different tools and writing one configurable
transformation covering several tools.

141J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

3	 Graph Diagram Metamodel and Graph Diagram Engine
In the course of time, the graph diagram metamodel has been evolving and providing

more and more new facilities. As a result, the physical amount of metamodeling
elements (classes, attributes, associations) has significantly increased and representing
the whole metamodel visually is a tricky thing to do now. Therefore, in this section, the
whole graph diagram metamodel is divided in several parts and each part is discussed
in a separate subsection. From here on – if the role name for some association is not
mentioned in a metamodel, it is assumed to be default, i.e., the same as the class name
with the first letter in lower case.

The graph diagram engine is responsible for visualizing instances of the Graph
Diagram Metamodel. The engine is developed on the basis of graphical engines for
GRADE tools family [9]. The engine relies on advanced graph layout algorithms [10,
11] as well as effective internal diagram representation structures allowing to handle the
visualization tasks efficiently even for large diagrams.

The purpose of the Graph Diagram Metamodel is to describe the graph diagramming
functionality that can be offered by the Graph Diagram Engine and that is common
to a wide range of graphical diagramming tasks that may go beyond any particular
domain specific tool, or even the task of domain specific tool building in general. Since
providing appropriate abstractions in the Graph Diagram Metamodel can considerably
ease the tool definition process on the basis of the Graph Diagram Engine, the design
emphasis of the Graph Diagram Metamodel has been on properly separating concerns
between “purely graphical” tasks that are to be handled by the Graph Diagram Engine
itself and tasks involving “logic” of tools using the engine.

3.1	 The Kernel of the Graph Diagram Metamodel

The visual elements of the presentation (see Fig. 2) correspond to the classes
GraphDiagram, Element and Compartment. Every graph diagram can consist of
elements of several distinct types – Node, Edge, Port, FreeBox or FreeLine. A port is a

Fig. 2. The kernel of the graph diagram metamodel

142 Computer Science and Information Technologies

small box that can not exist on its own but is instead attached to a Node. An edge always
contains exactly one start element and one end element as noted by associations start
and end. Free boxes and lines denote visual objects having no layout constraints to be
satisfied by the graph diagram engine. Compartments correspond to text fields that may
be placed inside nodes or attached to edges and ports. The value of the field is stored in
the input attribute, and the compartment itself can be made invisible by changing the
value of its attribute isInvisible.

Instances of the classes mentioned above are diagrams and graphical elements
created by the user. Every element and compartment has exactly one style (see classes
ElemStyle and CompartStyle) denoting the visual appearance of the element (or
compartment). Instances of classes ElemStyle and CompartStyle store the default styles
of elements and compartments, while the actual style is coded as a string and stored in
the style attribute of classes Element and Compartment. Graph diagram engine generates
the style string at element or compartment creation time accordingly to the style instance
attached to it. It is allowed to change the actual style at runtime (by changing the style
attribute) while the default style remains unmodified. Likewise, the location attribute of
Element is generated by the graph diagram engine.

In the case of GraphDiagram, the class GraphDiagramType is attached to it
containing both type and style information for the graph diagram. For classes Element
and Compartment, the type information is separated from the style information by
making classes ElemType and CompartType separately from classes ElemStyle and
CompartStyle. The type information goes beyond the scope of this paper and thus will
not be discussed in more detail here (see [12] for more details).

Navigation among diagrams can be made according to the metamodel by using
the “source – target” association between Element and GraphDiagram. The other
type of hierarchy is the compartment containing hierarchy implemented by the
“parentCompartment – subCompartment” association.

3.2	 GraphDiagram and Its Context

As was stated before, GraphDiagramType contains style information for the diagram.
This information is put in attributes of the class GraphDiagramType (see Fig. 3). When
a diagram is being made, one can copy the values of attributes to the attributes of the
particular GraphDiagram, thus giving it the default style. These values can, however, be
changed to assign an individual style to a diagram. The meaning of the style attributes
is explained in the next paragraph.

First, a diagram can have a caption that will be seen at the title of the diagram
window. Next, diagrams background color is coded in bkgColor and layoutMode and
layoutAlgorithm imply layout information, for example whether the layout mode is
automatic, semi-automatic or completely manual. Value of this attribute is coded as
integer 0, 1 or 2, respectively. Finally, screenZoom and printZoom are responsible for
the scale of the diagram.

Next, a set of active elements can be found in a graph diagram. Therefore, a class
Collection is present here. The active diagram itself can be found following the link
from the only instance of the singleton class CurrentDgrPointer.

Every GraphDiagram has its context defined by classes Palette, PopUpDiagram
and KeyboardShortcut and is attached to the diagram through GraphDiagramType.

143J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

Palette consists of PaletteElements, each of them being a line, a box, a port, a freeline
or a free box. Apart from id and caption, every palette element can have a picture (a path
to some graphical image) and an nr denoting the sequence in the palette.

Toolbars consisting of Tools can also be associated with the GraphDiagramType.
When the graph diagram is being activated, the corresponding toolbars are made visible.
Like palette elements, tools can also have an id, a caption, a picture and an nr. Moreover,
tools can be made invisible by setting the value of the attribute visibility to false. The
attribute procedure_name must contain the name of an existing procedure to be called
whenever the user presses the tool in the toolbar. It is assumed that a procedure with such
a name can be found in the default dynamic link library provided in the tool (main.dll). If
the procedure is contained in other dynamic link library than main.dll, the library name
must be specified as well (following the syntax “<dllName>#<procedureName>”).

The metamodel allows the user to specify a PopUpDiagram consisting of
PopUpElements. Usually this kind of menu is activated when the user clicks the right
mouse button. Depending on the context, two types of PopUpDiagrams can exist – one
for the right click in an empty spot of the diagram, and another for the right click on a set
of selected elements. Therefore, two associations between classes GraphDiagramType
and PopUpDiagram exist. As it was done before for tools, a calling procedure_name
must be specified here as well.

Finally, KeyboardShortcuts can be added to GraphDiagramType providing a
possibility to perform some actions using a keyboard. Shortcuts can be specified for
both cases – when a set of elements is or is not selected there. For every shortcut, a key
and a calling procedure_name must be specified.

Fig. 3. GraphDiagram and its context

144 Computer Science and Information Technologies

3.3	E lement and Compartment Styles

As mentioned above, instances of classes ElemStyle and CompartStyle contain the
default style information for elements and compartments, respectively. The style is a set
of several style attributes that can be seen in Fig. 4.

Most of the Element style attribute depend on the particular Element subclass,
and thus ElemStyle is divided in three subclasses as well. However, some attributes
are generic enough to be attached directly to the superclass. These are id, shapeCode,
shapeStyle, lineWidth, dashLength, breakLength, bkgColor and lineColor.

3.4	E vents and Commands

The Graph Diagram Metamodel defines engine-specific events and commands that
are subclasses of Event and Command (see Fig. 5 and 6, events and commands are
white classes). Every event and every command during tool runtime is placed within
the context defined by the metamodel. For example, the NewBoxEvent is attached to
the PaletteBox with which it is being created, and the Box in which it is being put (see
associations from class NewBoxEvent). All the events together with their context can be
seen in Fig. 5, while Fig. 6. represents the commands.

Fig. 4. Element and compartment styles

145J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

Fig. 5. Events and their context

146 Computer Science and Information Technologies

Fig. 6. Commands and their context

The meaning of events and commands is mostly inferable from their names. For
some events and commands, an additional attribute info is needed, i.e., the code of the
pressed key is stored in that attribute in the case of KeyDownEvent. The multiplicities of

Fig. 7. Engine-specific classes

147J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

roles is omitted in figures due to the similarities – the multiplicity is always “0..1” at the
event side of an association, and “1” at the other side (if some role does not match the
criteria, its multiplicity is noted separately).

The singleton class GraphDiagramEngine contains attributes that correspond to
engine’s events (see Fig. 7). In the beginning a transformation can assign values for
these attributes, each value representing the name of the transformation that has to be
called when the particular event occurs. In TDA, other singleton subclasses for other
engines exist there as well. In Fig. 7, class HeadEngine is represented together with its
attributes for its two events – OpenProjectEvent and CloseProjectEvent.

4	 Graph Diagram Animation
Although there are several approaches for metamodel-based handling of dynamic

multimedia objects that include animations (see, for instance, [13]), our goal here is
more specific — to provide simple animation facilities for graph diagrams explained in
Section 3. Complex interactive animations (such as animations that can be created in
Microsoft Silverlight [14] or Adobe Flash [15]) are beyond the scope of this approach.

In Fig. 8 we extend the metamodel of graph diagrams by classes for describing
graph diagram animations. The animation of graph diagrams is based on the concept of
token that is associated with some element (box or line) in a graph diagram. Tokens do

Fig. 8. Adding animation capabilities to the Graph Diagram Metamodel

148 Computer Science and Information Technologies

not imply any semantics, they are used only for managing the animation process. The
semantics is up to transformations.

A token is started by StartTokenCmd that also specifies its duration (how long the
token “lives”). There are also commands for starting, stopping, pausing and resuming
a token in the diagram, as well as pausing, resuming and stopping all tokens in the
diagram. The “end of life” of a token is determined by the presentation engine – at
that time it creates a corresponding EndTokenEvent. There can be several tokens living
concurrently in the diagram.

An explicit token is able to simulate the activity of the associated element for the
given duration. The visual effect of the simulation is determined by TokenStyle instance
associated with the token. If an ElementStyle instance is associated with the token style,
then the animation consists of changing the element style for the token’s lifetime. Other
options of animation consist of moving a bullet of certain size or some image along the
line in the diagram, or animating a box by a line moving across it in certain direction,
with or without leaving the trailing part in the specified color. In the case of AUTOMATIC
direction, the actual line flowing direction is determined by the presentation engine on
the basis of the placement of the actual outgoing line from the box. A hidden token does
not animate any element, it just “lives” for the specified amount of time. Hidden tokens
can be useful, e.g., for accounting the global animation time, or for creating certain
breakpoints during the animation when the control is transferred to transformations for
some semantic actions.

The implementation of animation facilities in our graph diagram engine is currently
under development.

5	 Conclusions
The Graph Diagram Engine has been successfully implemented in a recent version

of transformation-based tool building platform GrTP [7]. The GrTP tool is now being
transformed to the TDA framework, which should become publicly available soon. At
the moment, the TDA framework consists of two predefined engines (one of them is
the Graph Diagram Engine and the other is the Dialog Engine), and the interaction
between these engines and model transformations performed by means of commands
and events is working quite well. We are working on ameliorating the TDA framework
and its engines. One of the research topics here is adding advanced graph diagram
layout capabilities to the Graph Diagram Engine. We are also working on implementing
diagram animations within the Graph Diagram Engine for TDA.

Several diagram editors (such as class diagram editor and activity diagram editor)
have been successfully built using the Graph Diagram Engine. This engine has also been
used in [16] and [17]. We are looking forward for applying the TDA and its engines in
the Semantic Web domain.

Acknowledgments.

The authors would like to thank (alphabetically) A. Kalnins, L. Lace, R. Liepins,
A. Sprogis, R. Zarits and M. Zviedris for their efforts in implementing the concepts
presented in this paper.

149J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis and A. Zarins. A Graph Diagram Engine ..

References
1.	 MetaEdit+. Available: http://www.metacase.com.
2.	 A. Shatalin and A. Tikhomirov. Graphical Modeling Framework Architecture Overview. Eclipse Modeling

Symposium, 2006.
3.	 S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific Development with Visual Studio DSL Tools.

Addison-Wesley, 2007.
4.	 DiaGen/DiaMeta. Available: http://www.unibw.de/inf2/DiaGen.
5.	 A. Kalnins, O. Vilitis, E. Celms, E. Kalnina, A. Sostaks, J. Barzdins. Building Tools by Model

Transformations in Eclipse. Proceedings of DSM’07 Workshop of OOPSLA 2007, Montreal, Canada:
Jyvaskyla University Printing House, 2007, pp. 194–207.

6.	 J. Barzdins, S. Kozlovics, E. Rencis. The Transformation-Driven Architecture. Proceedings of DSM’08
Workshop of OOPSLA 2008. Nashville, USA, 2008, pp. 60–63.

7.	 J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A. Sprogis. GrTP:
Transformation-Based Graphical Tool Building Platform. Proceedings of MDDAUI Workshop of MoDELS
2007. Nashville, USA, 2007.

8.	 J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins. A Graph Diagram Engine for the Transformation-
Driven Architecture. Proceedings of MDDAUI’09 Workshop of International Conference on Intelligent
User Interfaces 2009, Sanibel Island, Florida, USA, 2009, pp. 29–32.

9.	 GRADE tools. Available: http://www.gradetools.com.
10.	 P. Kikusts, P. Rucevskis. Layout Algorithms of Graph-Like Diagrams for GRADE Windows Graphic

Editors. Proceedings of Graph Drawing ’95, LNCS, vol. 1027, Springer-Verlag, 1996, pp. 361–364.
11.	 K. Freivalds, P. Kikusts. Optimum Layout Adjustment Supporting Ordering Constraints in Graph-

Like Diagram Drawing. Proceedings of Latvian Academy of Sciences, Section B, vol. 55, no. 1, 2001,
pp. 43–51.

12.	 J. Barzdins, K. Cerans, S. Kozlovics, L. Lace, R. Liepins, E. Rencis, A. Sprogis, Z. Zarins. An MDE-
Based Graphical Tool Building Framework. This publication, pp 121–139.

13.	 A. Pleuss, A. Vitzthum, H. Hussmann. Integrating Heterogeneous Tools into Model-Centric Development
of Interactive Application. MoDELS 2007, LNCS, vol. 4735, Springer-Verlag, 2007, pp. 241–355.

14.	 Silverlight Animation Overwiew. MSDN, Microsoft Corp. Available: http://msdn.microsoft.com/en-us/
library/cc189019(vs.95).aspx.

15.	 Adobe Flash. Available: http://www.adobe.com/products/flash.
16.	 G. Barzdins, E. Liepins, M. Veilande, M. Zviedris. Semantic Latvia Approach in the Medical Domain. In:

H-M. Haav, A. Kalja (eds.), Proceedings of the 8th International Baltic Conference (Baltic DB & IS2008).
June 2–5, Tallin, Estonia. Tallinn University of Technology Press, 2008, pp. 89–102.

17.	 J. Barzdins, K. Cerans, A. Kalnins, M. Grasmanis, S. Kozlovics, L. Lace, R. Liepins, E. Rencis, A. Sprogis,
A. Zarins. Domain-Specific Languages for Business Process Management: a Case Study. Proceedings of
DSM’09 Workshop of OOPSLA 2009. Orlando, Florida, USA, 2009, pp. 34–40.

