
The Base Transformation Language L0+ and Its
Implementation

Sergejs Rikacovs

 University of Latvia, IMCS, 29 Rai�a blvd, R�ga, Latvia

sergejs.rikacovs@lumii.lv

Abstract. An efficient implementation of high level model transformation
languages is well known as a complex problem. It is believed that the most
appropriate way to implement transformation languages is bootstrapping.
However, bootstrapping is not possible without an efficient base language. In
this paper, a new low level model transformation language L0+ is proposed, for
which there exists an efficient implementation. This language can be used as a
base language in the bootstrapping process. L0+ does not have advanced pattern
definition facilities, but the expressive power of this language is comparable to
some more advanced languages. In spite of the fact that L0+ is quite a low level
language, it can also be used for the development of model transformations
directly. The presented paper is an extended version of the second chapter of
[1].

Keywords: model transformation language, compiler, bootstrapping.

1 Introduction

During the last few years a new approach to complex system building was developed
– MDA. Model transformations are considered to be one of the pillars of this
approach [2].

Model transformation languages are a comparatively new kind of languages. The
first standardization effort in this area was OMG MOF 2.0
Query/Views/Transformations (QVT) request for Proposal (RFP) [3]. In response to
this request, QVT specification was developed [4]. QVT defines the standard way of
defining transformations. According to this specification, source and target models
should correspond to the MOF metamodel. QVT consists of three sublanguages:

� Relations – a high level declarative language;
� Core – also a declarative language, but it is more verbose and does not

provide an implicit creation of trace instances, the semantics of the Relations
language is defined in terms of this language;

� Operational mappings – a language allowing either to define transformations
using a fully imperative approach (operational transformations), or to
complement relational transformations with imperative operations
implementing the relations (hybrid approach).

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 75.–102. lpp.

LURaksti733-datorzin.indd 75LURaksti733-datorzin.indd 75 2008.03.31. 15:05:482008.03.31. 15:05:48

There are several independent model transformation languages apart from QVT.
These languages can be divided into two groups: graphical and textual languages. It is
worth noting that QVT belongs to both groups, because of its dual forms: the
graphical and the textual one. While specifying transformations in a graphical form,
transformation developer has the opportunity to represent mappings between patterns
of source and target models in a direct and natural way. Graphical languages, such as
GReAT[5] or MOLA[6], define transformations as a set of transformation rules.
Every rule has a pattern part and an action part, in which the pattern specifies instance
sets to be processed according to transformations described in the rule action part.
The difference between various graphical transformation languages is in the
expressiveness of patterns and control flow structures. Typical representatives of
textual model transformation languages are [7, 8, 9]. Most of the textual model
transformation languages are declarative languages also having some kind of pattern
definition facilities. A recursion is usually used as the main control flow facility.

However, the research in the area of model transformations and effective
implementation of model transformation languages is still topical.

In this paper, a new low level model transformation language called L0+ is
proposed. This language has two important features:

� it is very simple, so being easy learnable by transformation developers;
� it has a very efficient implementation (principles of this implementation are

also described in this paper).
The main use case for this language is the implementation of higher level

languages (through the bootstrapping approach). The so called Lx language family is
implemented this way [10]. Despite the importance of the use case mentioned above,
several other use cases also exist. As an example (quite a significant one), the
Transformation Based Graphical Tool Building Platform [11] can be mentioned,
where L0+ is used as the main language for transformation development.

A more important feature of this language is that L0+ works not only with the
model as a significant part of model transformations do, but also with the metamodel
level (a notable example of a transformation language containing metamodel
processing facilities is Viatra [12]). More precisely, L0+ = L0 + MM, where L0 is
oriented towards model processing, and MM is oriented towards metamodel
processing.

2 The Base Transformation Language L0

2.1 Basic Ideas

The language L0 contains minimal but sufficient constructions for model
processing:

� creation/deletion of objects;
� getting/setting the value of an attribute of an object;
� creation/deletion of links;

76 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 76LURaksti733-datorzin.indd 76 2008.03.31. 15:05:492008.03.31. 15:05:49

� iteration through instances;
� low level control flow instructions;
� labels;
� unconditional control flow transfer operator;
� conditional control flow transfer operators.

2.2 Precise Definition of L0

To give a precise definition of L0 syntax and semantics, we should precisely fix the
allowed metamodeling constructs. OMG suggests using MOF 2.0 for such purposes
[13]. However, more simple approaches are usually used in practice. We will follow
this tradition and will use a subset of MOF 1.4[14] seen in Fig. 1. to define
metamodeling constructs to be allowed in metamodel definitions.

Attribute
name : String

Enumeration Literal
name : String

Data Type
name : String

self.isComposite impiles self.
Association.memberrEnd->first()=self

AssociationEnd
name : String
isOrdered : Boolean
isComposite : Boolean
lower : Integer
upper : UnlimitedNatural

Generalization

Class
name : String

Association

Primitive Type Enumeration

ownedLiteral
{ordered}

 *

specific
 0..1

1general
 *

 1

type 1
 1

 *
memberEnd
{ordered} 2

ownedAttribute
 *

opposite1 1

Fig. 1. Meta-metamodel

One can notice that packages are not present as an independent concept in this
metamodel. In L0+, packages are simulated through qualified names.

L0 transformation program contains the following elements:
� transformation header, i.e. transformation <transformationName>;
� global variable definition part;
� the “useMM” directive – a path to a metamodel definition file is given

through this directive. This file can contain following commands:
o class <className>;
 Defines a class with a given name.

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 77

LURaksti733-datorzin.indd 77LURaksti733-datorzin.indd 77 2008.03.31. 15:05:492008.03.31. 15:05:49

o attr <className>.<attrName>:<ElementaryTypeName>;
 Defines an attribute with a given name and type.
o assoc <className>.{ordered}<card><roleName>/

 <roleName><card>{ordered}.<className>;
Defines an association with corresponding properties.

o compos <compositeClassName>.{ordered}<card><roleName>/
<roleName><card>{ordered}.<partClassName>;

 Defines a composition with corresponding properties.
o rel <subClassName>.subClassOf.<superClassName>;

Defines a generalization relationship between given classes.
o enum <enumName>:{ <enumLiteral1> , < enumLiteral2>};

Defines an enumeration with given elements.
� A “native” subprogram (function or procedure) declaration part (headers of

C++ functions used in the transformation). Like in every programming
language, there can be some tasks for which L0 is not quite suitable (for
instance, string processing, text parsing, etc.). To deal with these situations in
L0, there exists a possibility to call a C++ function. For example, there is a
String data type in L0, but the language per se does not define some such
useful operations as Length, CharAt, and Substring on this type. If needed,
transformation developers can easily implement these functions in C++ and
then access them from L0 by using the concept of “native” subprograms.

� An L0 subprogram definition part (it is expected that exactly one subprogram
of this part is labeled with the reserved word main thus defining the entry
point for the transformation). An L0 subprogram definition also consists of
several parts:

o the subprogram header;
o local variable definitions;
o the keyword begin;
o the subprogram body definition;
o the keyword end;

� a transformation footer, i.e. endTransformation;

An elementary unit of any L0 transformation program is a command (an

imperative statement). Before giving a detailed description of individual commands, it
should be noted that the name of the meta-model element (i.e. class name, role name,
attribute name, enumeration name, and enumeration literal name) can be specified in
two different ways:

� as a String literal; for example, addObj x : Person;
� as a String variable; for example, addObj x : (s); In this case, the name of a

meta-model element will be equal to the value of the corresponding String
variable at the command execution time.

L0 contains the following commands:

1. transformation <transformationName>; Starts the transformation definition.
2. endTransformation; Ends the transformation definition.
3. pointer <pointerName> : <className>; Defines a pointer to an object of the

class <className>.

78 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 78LURaksti733-datorzin.indd 78 2008.03.31. 15:05:502008.03.31. 15:05:50

3.1. pointer <pointerName> : Void ; Void pointer can point to objects of an
arbitrary class.

4. var <varName> : <ElementaryTypeName>; Defines a variable of elementary
data type – Boolean, Integer, Real or String.

5. procedure <procName>(<formalPrmList>); Formal parameter list consists of
formal parameter definitions separated by “,”. A parameter definition consists of
its name, the parameter type (the type can be an elementary type, a class from the
meta-model or the reserved word Void), and the passing method (parameters can
be passed by reference or by value). If the parameter is passed by reference, its
type name is preceded by the & character.

6. function <funcName>(<formalPrmList>):<returnTypeName>; Return type name
can be an elementary type name, class name or the reserved word Void.

7. begin; Starts subprogram definition.
8. end; Ends subprogram definition.
9. return; Returns execution control to the caller.
10. return <identifier>; Returns the value of <identifier> to the caller. The type of

<identifier> must coincide with the return type of the function. <identifier> is an
elementary variable name or a pointer name. Instead of <identifier>, the reserved
word null can be used. In this case function return type must be class or Void.

11. call <subProgName>(<actualPrmList>); Actual parameter list can be empty.
It consists of binary expressions (<binExpr>) separated by “,”. More about
<binExpr> can be found in the item 23.

12. first <pointerName> : <className> else <labelName>; Positions
<pointerName> to an arbitrary [the first object (ordering is implementation dependent)]
object of <className>. Typically, this command is used in combination with
next command to traverse all objects of the given class. If <className> has no
objects, <pointerName> becomes equal to null, and execution control is
transferred to <labelName>. <className> in this command must be the same as
or a subclass of the class used in the pointer definition. If it is a subclass, the
value set of the pointer is narrowed (for the following executions of next).
12.1. first <pointerName> : (<stringVarClassName>) else <labelName>;

13. first <pointerName>1: <className> from <pointerName>2 by <roleName> else
<labelName>; Positions <pointerName>1 to an arbitrary [the first (object ordering is
implementation dependent)] object, which is reachable from <pointerName>2 by a link
<roleName>. Typically, this command is used in combination with the next
command to traverse all objects connected to the given object by a link with the
specified type. If there are no such objects, <pointerName>1 becomes equal to
null, and execution control is transferred to <labelName>. It should be noted that
this command specifies (narrows) the value set of the pointer, which is taken into
account when performing the next execution and assignment. After the command
is executed, the value set of the pointer is narrowed to those objects, which are
reachable from <pointerName>2 by links with the given type (specified by
<roleName>).
13.1. first <pointerName>1 : (<stringVarClassName>) from <pointerName>2 by

(<stringVarRoleName>) else <labelName>;
14. next <pointerName> else <labelName>; Gets the next object satisfying

conditions formulated during the execution of “first” command and not visited

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 79

LURaksti733-datorzin.indd 79LURaksti733-datorzin.indd 79 2008.03.31. 15:05:512008.03.31. 15:05:51

(iterated) with this variable yet. If there is no such object, <pointerName>
becomes null, and execution control is transferred to <labelName>.

15. goto <labelName>; Unconditionally transfers control to <labelName>.
<labelName> should be located in the current subprogram definition.

16. label <labelName>; Defines a label with the given name.
17. addObj <pointerName>:<className>; Creates a new object of the class

<className>.
17.1. addObj <pointerName>:(<stringVarClassName>);

18. addLink <pointerName>1.<roleName>.<pointerName>2; Creates a new link (of
type specified by <roleName>) between objects pointed to by <pointerName>1
and <pointerName>2 , respectively.
18.1. addLink <pointerName>.(<stringVarRoleName>).<pointerName>;

19. deleteObj <pointerName>; Deletes an object pointed to by <pointerName>.
20. deleteLink <pointerName>1.<roleName>.<pointerName>2; Deletes a link,

whose type is specified by <roleName>, between objects pointed to by
<pointerName>1 and <pointerName>2, respectively.
20.1. deleteLink <pointerName>1.(<stringVarRoleName>).<pointerName>2;

21. setPointer <pointerName>1=<pointerName>2; Sets <pointerName>1 to the
object pointed to by <pointerName>2. If the value set of <pointerName>1 does
not contain the object pointed to by <pointerName>2, then <pointerName>1 is set
to null. In place of <pointerName>2 null can be used. In this case
<pointerName>2 will not point to any object (it will point to null).

22. setPointerF <pointerName>=<funcName>(<actualPrmList>); Sets
<pointerName>1 to the object returned by <funcName>.

23. setVar <varName> = <binExpr>; <binExpr> is a binary expression consisting of
the following elements: elementary variables, subprogram parameters, literals,
attribute values (<pointerName>.<attrName>) and standard operators (+,-
,*,/,&&,||,!) of elementary types. Besides the traditional way (i.e.
<pointerName>.<attrName>) of getting/setting values of object attributes, there
is a special way to do it: <pointerName>.(<stringVarAttrName>). The result type
of this operation is String. For example, setVar <varName> =
<pointerName>.(<stringVarAttrName>). Here, the value of the attribute is stored
as a string in <varName>.

24. setVarF <identifier>=<funcName>(<actualPrmList>); This command can be
used to obtain the result value of the function of an elementary type. Identifier is
a name of a variable. Variable type must coincide with the return type of the
function.

25. setAttr <pointerName>.<attrName>=<binExpr>; Sets the value of the attribute
<attrName> of the object pointed to by <pointerName> to the value of
<binExpr>.
25.1. setAttr <pointerName>.(<stringVarAttrName>) = <stringExpr>;

26. type <pointerName> == <className> else <labelName>; If the type of the
object is identical to <className>, the control is transferred to the next
command, else the control is transferred to <labelName>. Instead of equality
symbol == inequality symbol != can be used. Inheritance is not taken into
account (i.e. this command works as oclIsTypeOf meaning the result of the
comparison will be true, if and only if types are identical).

80 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 80LURaksti733-datorzin.indd 80 2008.03.31. 15:05:522008.03.31. 15:05:52

26.1. type <pointerName> == (<stringVarClassName>) else <labelName>;
27. var <varName>==<binExpr> else <labelName>; If condition is not true, the

control is transferred to <labelName>. Instead of equality symbol, other (<, <=,
>, >=, !=) relational operators compatible with argument types can be used.

28. attr <pointerName>.<attrName> == <binExpr> else <labelName>; If condition
is not true, the control is transferred to <labelName>. Instead of equality symbol
other (<, <=, >, >=, !=) relational operators compatible with argument types can
be used.

29. link <pointerName>.<roleName>.<pointerName> else <labelName>; Checks
whether there is a link (which type is specified by <roleName>) between objects
pointed to by <pointerName>1 and <pointerName>2, respectively. If condition is
not true, the control is transferred to <labelName>.
29.1. link <pointerName>.(<stringVarRoleName>).<pointerName> else

<labelName>;
30. noLink <pointerName>.<roleName>.<pointerName> else <labelName>;

Checks whether there is no link (its type is specified by <roleName>) between
objects pointed to by <pointerName>1 and <pointerName>2, respectively. If
condition is not true, the control is transferred to <labelName>.
30.1. noLink <pointerName>.(<stringVarRoleName>).<pointerName> else

<labelName>;
31. pointer <pointerName>1==<pointerName>2 else <labelName>; Checks whether

objects pointed to by <pointerName>1 and <pointerName>2, respectively, are
identical. Instead of == inequality symbol != can be used. If condition is not true,
the control is transferred to <labelName>. Instead of <pointer2> null can be
used.

It is easy to see that the language L0 contains only the very basic facilities for
defining transformations. At the same time, it is obviously complete in the sense of
its functional capabilities. Namely, this is why L0 is called the base transformation
language.

2.2.1 Object-Oriented L0 constructs

L0 was designed as a low level language, and originally it was not supposed to be
used for direct development of transformations. However, experiments proved that it
is possible to use this language for direct development of transformations without
significant loss of development speed.

For example, L0 is used for development of transformations in the context of
Transformation Based Graphical Tool Building Platform. The total size of the source
code of transformations developed in this project exceeds 20000 lines of L0. It is clear
that it is becoming more and more difficult to ensure adequate modularization of code
base of such a size with the only modularization facility being the concept of sub
procedure.

Today the most popular code modularization method is OO. According to [15], OO
has several fundamental elements:

� Class
� Object

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 81

LURaksti733-datorzin.indd 81LURaksti733-datorzin.indd 81 2008.03.31. 15:05:532008.03.31. 15:05:53

� Method
� Message passing
� Inheritance
� Encapsulation
� Abstraction
� Polymorphism

It is easy to see that when we are working with model transformation language we
have many of these constructs readily available through the metamodel definition or
because of the fact that we are working with models. However, several important
concepts are absent (most notably the concepts of method, message passing and
polymorphism).

To let L0 users take advantages of OO approach, L0 is supplemented with the
notion of method. It can be defined in the following ways:

� procedure <ClassName>::<methodName>(<formPrmList>);
� function <ClassName>::<methodName>(<formPrmList>):<ReturnType>;

To reference to the object, this method is called on from the body of the method,
reserved word this can be used.

As it can be seen, the only difference between the method declaration and the
ordinary function or procedure declaration is the fact that method declaration is linked
to a certain class.

In a similar way constructs for method calling are introduced:
� call <pointerName>.<methodName>(<actPrmList>);
� setVarF <varName> = <pointerName>.<methodName>(<actPrmList>);
� setPointerF <pointerName> =

<pointerName>.<methodName>(<actPrmList>);
Every method call is polymorphic – it depends on the actual type of the object this

particular method is called on. An example of using these new constructs can be
found in section 2.3.

It should be noted that there are transformation languages providing much more
advanced constructs. For example, in QVT Operational Mappings it is allowed to
define the so called mapping operation. That can be defined in the following way:

mapping <dirkind> <contexttype>::<mappingname>
(<parameters>,) : <result-parameters>
when {<exprs>}
where { <exprs>}
{
init { … }
population { … }
end { … }
}

A mapping operation is syntactically described by a signature, a guard (a when
clause), a mapping body and a post-condition (a where clause). The init section
contains a code to be executed before the instantiation of the declared outputs. The
population section contains a code for populating the result parameters, and the end

82 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 82LURaksti733-datorzin.indd 82 2008.03.31. 15:05:542008.03.31. 15:05:54

section contains an additional code to be executed before exiting from the operation.
In its simplest case (in case when and where clauses are not used), a QVT mapping
operation is almost equivalent to an L0 method.

2.3 Example of an L0 Transformation

Let us consider oriented graphs. Fig. 2. presents one possible metamodel for

oriented graphs.

Fig. 2. Metamodel for oriented graphs

According to this metamodel, a graph in Fig. 3. corresponds to the instance found
in Fig. 4..

Fig. 3. An example of an oriented graph

Fig. 4. Instances of the metamodel for oriented graphs

Several other metamodels (for example, the one found in Fig. 5.) are also possible
for oriented graphs.

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 83

LURaksti733-datorzin.indd 83LURaksti733-datorzin.indd 83 2008.03.31. 15:05:552008.03.31. 15:05:55

Fig. 5. Another metamodel for oriented graphs

According to this metamodel, a graph found in Fig. 3. will correspond to the
instances found in Fig. 6..

Fig. 6. Instances of another metamodel for oriented graphs

As it can be seen from the examples, we get different instances (models) for one
and the same graph. At the same time it seems that these different models are quite
close to each other. A natural problem arises – how to define a transformation taking
a graph model corresponding to the metamodel A and producing a graph model
corresponding to the metamodel B. The basic idea is to create one BNode for every
ANode and to transform every AEdge to BEdge with corresponding Start and End.

To simplify this transformation we add a mapping association to the metamodel
between classes ANode and BNode.

84 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 84LURaksti733-datorzin.indd 84 2008.03.31. 15:05:552008.03.31. 15:05:55

AEdge

ANode BNode

Start End

BEdge

outgoing

startNode

 *

 1

incoming

endNode

 *

 1
connectedStart

node
 *

 1
connectedEnd

node
 *

 1

outgoing
 start
 1

 1
incoming

 end

 1

 1

mappedA
mappedB 1

 1

Fig. 7. Metamodel for oriented graphs with a mapping association

Transformation program in L0 implementing this algorithm can be found below.
transformation Graphs;
main procedure Graph2Graph();
 pointer a : ANode;
 pointer b : BNode;
 pointer aEd : AEdge;
 pointer bEd : BEdge;
 pointer edgeStart : Start;
 pointer edgeEnd : End;
 pointer aEdgeStNode : ANode;
 pointer aEdgeEnNode : ANode;
 pointer mapBNode : BNode;
begin;
//copy nodes;
 first a : ANode else aNodeProcessed;
label loo
 addObj

pANode;
 b : BNode;

 addLink a . mappedB . b;
 next a else aNodeProcessed;
 goto loopANode;
label aNodeProcessed;
//copy edges;
 first aEd : AEdge else aEdgesProcessed;
label loopAEdge;
 addObj bEd : BEdge;
 addObj edgeStart : Start;
 addObj edgeEnd : End;
 addLink bEd.start.edgeStart;
 addLink bEd.end.edgeEnd;
 //quit if not found;
 first aEdgeStNode : ANode from aEd by startNode
 else aEdgesProcessed;
 first mapBNode : BNode from aEdgeStNode by mappedB
 else aEdgesProcessed;

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 85

LURaksti733-datorzin.indd 85LURaksti733-datorzin.indd 85 2008.03.31. 15:05:562008.03.31. 15:05:56

 addLink edgeStart.node.mapBNode;
 first aEdgeEnNode : ANode from aEd by endNode
 else aEdgesProcessed;

first mapBNode : BNode from aEdgeEnNode by mappedB
else aEdgesProcessed;

 addLink edgeEnd . node. mapBNode;
 next aEd else aEdgesProcessed;
 goto loopAEdge;
label aEdgesProcessed;
end;
endTransformation;

This transformation can be rewritten to use object-oriented L0 constructs:

transformation graphsOO;

procedure ANode::mapToBNode();
 pointer b : BNode;
begin;
 addObj b :
 addLink

 BNode;
 this . mappedB . b;

end;

procedure AEdge::mapToBEdge();
 pointer bEd : BEdge;
 pointer edgeStart : Start;
 pointer edgeEnd : End;

 pointer aEdgeStNode : ANode;
 pointer aEdgeEnNode : ANode;
 pointer mapBNode : BNode;
begin;
 addObj bEd : BEdge;
 addObj edgeStart : Start;
 addObj edgeEnd : End;
 addLink bEd.start.edgeStart;
 addLink bEd.end.edgeEnd;

 first aEdgeStNode : ANode from this by startNode
 else quit;
 first mapBNode : BNode from aEdgeStNode by mappedB
 else quit;
 addLink edgeStart.node.mapBNode;
 first aEdgeEnNode : ANode from this by endNode
 else quit;
 first mapBNode : BNode from aEdgeEnNode by mappedB

86 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 86LURaksti733-datorzin.indd 86 2008.03.31. 15:05:572008.03.31. 15:05:57

 else quit;
 addLink edgeEnd . node. mapBNode;

 label quit;
end;

//main pr
procedure

ocedure Graph2Graph_OO();
 Graph2Graph_OO();

 pointer a : ANode;
 pointer aEd : AEdge;
begin;

//cop
first

y nodes;
 a : ANode else aNodeProcessed;

label loopANode;

 call a.mapToBNode();

 next a else aNodeProcessed;
 goto loopANode;
label aNodeProcessed;

//cop
first

y edges;
 aEd : AEdge else aEdgesProcessed;

label loopAEdge;

 call aEd.mapToBEdge();

 next aEd else aEdgesProcessed;
 goto loopAEdge;
label aEdgesProcessed;

end;
endTransformation;

It is obvious that the body of the procedure “Graph2Graph_OO” is now more

readable (and thus maintainable) than that of “Graph2Graph”.

2.4 L0 and Higher Level Model Transformation Languages

One of the main features of model transformation languages is pattern definition
facilities. In transformation languages, the pattern is used to select a set of objects
satisfying some known constraints (there are several kinds of constraints: type
constraints, attribute value constraints, and structure constraints). L0+ does not
provide pattern definition facilities. It is an intentional decision, because, on the one
hand, an efficient implementation of patterns is one of the main challenges in the

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 87

LURaksti733-datorzin.indd 87LURaksti733-datorzin.indd 87 2008.03.31. 15:05:572008.03.31. 15:05:57

implementation of transformation languages [16], and ,on the other hand, pattern
match can be relatively easily specified with the help of L0 imperative constructs.

Fig. 8. Example of MOLA pattern

For instance, an example of MOLA foreach loop containing a pattern can be seen
in Fig. 8.. Semantically this means to iterate through all the instances of the class
Person that satisfy the given attribute constraint (the value of the attribute “age” must
be greater than 20). Despite the fact that L0 does not have explicit pattern definition
facilities, the abovementioned MOLA pattern can be relatively easily specified in L0:

first p : Person else done;
 label loop_Person;
 var p.age > 20 else try_next_inst;
 //...;
 //process matched instance;
 //...;
 label try_next_inst;
 next p else done;
 goto loop_Person;
label done;

In more general terms, automatic pattern matching is a process that can be reduced

to iteration through instances and checking a list of elementary conditions. These
conditions are quite trivial – for example, check if the value of some attribute of the
given object is equal to the corresponding value in the pattern specification. Another
example – check whether or not there is a link with the given type between two
objects. Consequently, if a language allows iterating through instances and there are
conditional control flow operators, and it is possible to conduct abovementioned
checks, it is possible to select a set of objects that satisfies the given constraints in this
language. That allows us to assert that our language will be as powerful as a typical
transformation language, but certainly transformation specification will be more
verbose in this case.

88 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 88LURaksti733-datorzin.indd 88 2008.03.31. 15:05:572008.03.31. 15:05:57

3 An Extension of the Base Transformation Language L0 –
Metamodel Processing Constructs
There are use cases for model transformation languages where an access not only to a
model level, but also to a metamodel level is necessary. A substantial part of the
existing transformation languages does not allow to process entities found at the
metamodel level. To overcome this drawback, in the case of L0 we supplement it with
constructs for metamodel processing, thus obtaining the language L0+.

3.1 Choosing Metamodel Processing Constructs

To allow transformation developer to process metamodels, we provide constructs to
work with concepts defined in the metamodel found in figure 1. These are:

� classes
� attributes
� generalizations hierarchies
� associations
� enumerations and enumeration literals

Language users should have the possibility to create new, delete the existing and
iterate through the existing elements of the metamodel. To satisfy these requirements,
new commands for processing metamodel elements are introduced. These elements
are identified by their names or by combinations of names.

The first activity a metamodel processing usually starts from, is the creation of the
metamodel. While constructing the metamodel, the user can create classes, attributes
of these classes, and associations (including composition) between classes. It is
possible to create generalization hierarchies as well. In a similar way users can delete
classes, attributes, associations, and generalization hierarchies. Precise syntax for
these commands can be found in section 3.2.1.

The next group of commands deals with metamodel element scanning. Taking into
account the fact that metamodel elements are identified by their names or by
combinations of names, iterating through the elements of the metamodel actually
means to iterate through the names of these elements. For example, to traverse classes
of the metamodel, the commands firstClass and nextClass can be used. The
semantics of these commands is close to the semantics of the ordinary first and next
commands (again, precise syntax can be found in section 3.2.2.). Analogous
commands are introduced for scanning each kind of metamodel elements:

� associations starting from the given class
� direct associations starting from the given class
� attributes of the given class
� subclasses of the given class
� enumerations
� enumeration elements

With the word “direct” we understand associations and attributes that are defined
in the given class and not in superclasses of this class.

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 89

LURaksti733-datorzin.indd 89LURaksti733-datorzin.indd 89 2008.03.31. 15:05:582008.03.31. 15:05:58

Using the abovementioned L0+ constructs, it is possible to dynamically explore
and modify an arbitrary (potentially unknown at the compile time) metamodel. Now
let us get back to the model level.

When working with a model which corresponds to a metamodel, we are not limited
with only those metamodel elements that are known at the compile time. Since we
have the possibility to explore an arbitrary metamodel, we need to have a way both to
reference the name of an arbitrary element of this metamodel, and to reference objects
of an arbitrary class (this can be done with the help of a Void pointer). With such a
possibility it is sufficient to be able to process arbitrary models of an arbitrary
metamodel.

For example, with the abovementioned L0+ constructs it is possible to create a new
class at runtime and populate it with instances.

var currClassName : String;
pointer x : Void;
//...;
addClass (currClassName);
addObj x : (currClassName);
//...;

The situation with attributes is special in some way, because problems with

expression compilation can arise in case the attribute type is not known. One can
notice that the type of a dynamically created attribute is unknown only at the compile
time, but is known to the programmer creating this program. That is why the values of
dynamically created attributes can be manipulated only as strings. To get the value of
an attribute of a previously unknown type, a special form (in which the name of the
attribute is specified as a String variable) of the command getting the attribute value
should be used. For instance, setVar attrValStr = x.(attrNameStr); Here, x is a pointer
name and attrNameStr is a String variable containing the name of the attribute.
attrValStr is a String variable as well. After execution of this command, the value of
attrValStr will be equal to the value of the corresponding attribute of the object
encoded as a string. If attrNameStr value is equal to “weight” and x points to an
object for which the value of an Integer attribute named “weight” is equal to 10, then
attrValStr will be equal to a String value “10”.

It should be noted that for Void pointers it is the only way to receive the value of
an attribute. To simplify conversions between different representation forms of
values, special built-in functions are introduced:

� IsInt (str : String) : Boolean;
� IsReal (str : String) : Boolean;
� IsBool (str : String) : Boolean;
� StrToInt (str : String) : Integer;
� StrToBool (str : String) : Bool;
� StrToReal (str : String) : Real;
� IntToStr (i : Integer) : String;
� BoolToStr (b : Bool) : String;
� RealToStr (r : Real) : String;

90 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 90LURaksti733-datorzin.indd 90 2008.03.31. 15:05:592008.03.31. 15:05:59

3.2 The Definition of Metamodel Processing Commands

Before giving a precise definition of L0+ commands, it should be stressed that the
names of metamodel elements can be specified in two ways (a similar situation was
with the names of metamodel elements in the case of L0):

� as literals, for instance, addClass Person;.
� as String variables, for instance, addObj x : (s); In this case the name of the

metamodel element will be equal to the value of the corresponding String
variable.

3.2.1 Metamodel Building Commands

This part of language definition describes commands for dynamic meta-model
building.

1. addClass <clName>;
Dynamically creates a class with a specified name. If a class with specified name
already exists, a warning message is issued.

1.1. addClass (<strVarClName>);

2. addAttr <clName>.<attrName>:<ElementaryTypeName>;
Dynamically creates an attribute belonging to the specified class with a specified
name and type. If an attribute with specified properties already exists, a warning
message is issued.

2.1. addAttr (<strVarClName>).(<strVarAttrName>):
 (<strVarElemTypeName>);

3. addAssoc <clName>.{ordered}<card><roleName>/
 <roleName><card>{ordered}.<clName>;
Dynamically creates an association with specified properties. If an association
with specified properties already exists, a warning message is issued.

3.1. addAssoc (<strVarClName>).{ordered}<card>(<strVarRoleName>)/
 (<strVarRoleName>)<card>{ordered}.(<strVarClName>);

4. addCompos <compositeClName>.{ordered}<card><roleName>/
 <roleName><card>{ordered}.<partClName>;
Dynamically creates a composition with specified properties. If a composition
with specified properties already exists, a warning message is issued.

4.1. addCompos (<strVarClName>).{ordered}<card>(<strVarRoleName>)/
 (<strVarRoleName>)<card>{ordered}.(<strVarClName>);

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 91

LURaksti733-datorzin.indd 91LURaksti733-datorzin.indd 91 2008.03.31. 15:06:002008.03.31. 15:06:00

5. addRel <subClName>.subClassOf.<superClName>;
Dynamically creates a generalization relation between the specified classes. If a
generalization relation between these classes already exists, a warning message is
issued.

5.1. addRel (<strVarSubClName>).subClassOf. (<strVarSuperClName>);

6. deleteClass <clName>;
Deletes a class with a specified name.

6.1. deleteClass (<strVarClName>);

7. deleteAttr <clName>.<attrName>;
Deletes an attribute with the given properties.

7.1. deleteAttr (<strVarClName>).(<strVarAttrName>);

8. deleteAssoc <clName>.<roleName>.<clName>;
Deletes an association with a given role name between the given classes.

8.1. deleteAssoc (<strVarClName>).(<strVarRoleName>).(<strVarClName>);

9. deleteRel <subClName>.subClassOf.<superClName>;
Deletes a generalization relation between the specified classes.

9.1. deleteRel (<strVarSubClName>).subClassOf. (<strVarSuperClName>);

10. addEnum <enumName>:{ <enumElem1>, <enumElem2>, … };
Dynamically creates an enumeration with a specified name and specified
enumeration literals.

10.1. addEnum (<strVarEnumName>):{<enumElemName>,
(strVarEnumElemName),…};

11. deleteEnum <enumName>;
Deletes an enumeration with a specified name.

11.1. deleteEnum (<strVarEnumName >);

12. addEnumElem <enumElemName> to <enumName>;
Adds an enumeration literal to an enumeration.

12.1. addEnumElem (<strVarEnumElemNameIn>) to (<strVarEnumNameIn>);

13. deleteEnumElem <enumElemName> from <enumName>;
Removes an enumeration literal form an enumeration.

92 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 92LURaksti733-datorzin.indd 92 2008.03.31. 15:06:002008.03.31. 15:06:00

13.1. deleteEnumElem (<strVarEnumElemNameIn>) from
(<strVarEnumNameIn>);

3.2.2 Meta-Model Element Scanning Commands

This part of language definition describes commands for scanning meta-model
elements.

1. firstClass <strVarClNameOut> else <labName>;

Stores the name of the first class (ordering is implementation dependent) in the
<strVarClNameOut>. If there are no classes, then <strVarClNameOut> value is
not changed and execution control is transferred to <labName>. Typically, this
command is used in combination with the nextClass command to iterate through
all class names.

2. nextClass <strVarClNameOut> else <labName>;

Stores the name of the next class which has not yet been visited (iterated) in
<strVarClNameOut>. If there is no such class, <strVarClNameOut> value is not
changed, and execution control is transferred to <labName>.

3. firstAssoc <clName>.<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;
Stores the role name, inverse role name, and target class name of the first
association (ordering is implementation dependent) starting from <clName> in
<strVarRoleNameOut>, <strVarInvRoleNameOut> and <strVarClNameOut>,
respectively. If there are no associations starting from <clName>, then
<strVarRoleNameOut>, <strVarInvRoleNameOut> and <strVarClNameOut>
values are not changed and execution control is transferred to <labName>.
Typically, this command is used in combination with the nextAssoc command to
iterate through all associations starting from the given class (or from ancestors of
this class).
3.1. firstAssoc (<strVarClNameIn>).<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;

4. firstAssocDirect <clName>.<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;
This command is similar to the previous one, the difference is that it takes into
account only those associations which are defined exactly for this class and
ignores associations which are defined in ancestor classes.
4.1. firstAssocDirect (<strVarClNameIn>).<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;

5. nextAssoc <clName>.<strVarRoleNameOut>/
 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;
Stores the role name, inverse role name, and target class name of the next
association starting from <clName>, which has not yet been visited (iterated), in

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 93

LURaksti733-datorzin.indd 93LURaksti733-datorzin.indd 93 2008.03.31. 15:06:002008.03.31. 15:06:00

<strVarRoleNameOut>, <strVarInvRoleNameOut> and <strVarClNameOut>,
respectively. If there are no such associations, <strVarRoleNameOut>,
<strVarInvRoleNameOut>, <strVarClNameOut> values are not changed, and
execution control is transferred to <labName>.
5.1. nextAssoc (<strVarClNameIn>).<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;

6. nextAssocDirect <clName>.<strVarRoleNameOut>/
 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;
Similar to the previous one, but associations from ancestors are ignored.
6.1. nextAssocDirect (<strVarClNameIn>).<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;

7. firstAttr <clName>.<strVarAttrNameOut>.<strVarAttrTypeNameOut >
 else <labName>;
Stores the name and type name of the first attribute (ordering is implementation
dependent) of <clName> in <strVarAttrNameOut>, <strVarAttrTypeNameOut >,
respectively. If <clName> has no attributes, then <strVarAttrNameOut>,
<strVarAttrTypeNameOut > values are not changed and execution control is
transferred to <labName>. Typically, this command is used in combination with
the nextAttr command to iterate through all attributes of the given class
(including ancestor attributes).
7.1. firstAttr

(<strVarClNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut>
else <labName>;

8. firstAttrDirect <clName>.<strVarAttrNameOut>.<strVarAttrTypeNameOut >

else <labName>;
This command is similar to the previous one, the difference is that it takes into
account only those attributes which are defined exactly in this class and ignores
attributes which are defined in ancestor classes.
8.1. firstAttrDirect

(<strVarClNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut>
else <labName>;

9. nextAttr <clName>.<strVarAttrNameOut>.<strVarAttrTypeNameOut >

 else <labName>;
Stores the name and type name of the next attribute of <clName>, which has not
yet been visited (iterated), in <strVarClNameOut> and
<strVarAttrTypeNameOut>, respectively. If there are no such attributes,
<strVarClNameOut> and <strVarAttrTypeNameOut > values are not changed
and execution control is transferred to <labName>.
9.1. nextAttr

(<strVarClNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut>
else <labName>;

94 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 94LURaksti733-datorzin.indd 94 2008.03.31. 15:06:012008.03.31. 15:06:01

10. nextAttrDirect <clName>.<strVarAttrNameOut>.<strVarAttrTypeNameOut>
 else <labName>;
Similar to the previous one, the difference is that it takes into account only those
attributes which are defined exactly in this class and ignores attributes which are
defined in ancestor classes.
10.1. nextAttrDirect

(<strVarClNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut>
else <labName>;

11. firstSubClass <superClName>.<strVarSubClNameOut> else <labName>;

Stores the name of the first subclass (ordering is implementation dependent) in
<strVarSubClNameOut>. If there are no subclasses, then
<strVarSubClNameOut> value is not changed and execution control is
transferred to <labName>. Typically, this command is used in combination with
the nextSubClass command to iterate through all subclasses.
11.1. firstSubClass (<strVarSuperClNameIn>).<strVarSubClNameOut> else

<labName>;

12. nextSubClass <superClName>.<strVarSubClNameOut> else <labName>;
Stores the name of the next subclass of <superClName>, which has not yet been
visited (iterated), in <strVarSubClNameOut>. If there are no such classes,
<strVarSubClNameOut> value is not changed, and execution control is
transferred to <labName>.
12.1. nextSubClass (<strVarSuperClNameIn>).<strVarSubClNameOut> else

<labName>;

13. firstEnum <strVarEnumNameOut> else <labName>;
Stores the name of the first enumeration (ordering is implementation dependent)
in <strVarEnumNameOut>. If there are no enumerations, then
<strVarEnumNameOut> value is not changed and execution control is transferred
to <labName>. Typically, this command is used in combination with the
nextEnum command to iterate through all enumeration names.

14. nextEnum <strVarEnumNameOut> else <labName>;

Stores the name of the next enumeration which has not yet been visited (iterated)
in <strVarEnumNameOut>. If there are no such enumerations,
<strVarEnumNameOut> value is not changed and execution control is transferred
to <labName>.

15. firstEnumElem <enumName>.<strVarEnumElemNameOut> else <labName>;

Stores the name of the first <enumName> enumeration literal (ordering is
implementation dependent) in the <strVarEnumElemNameOut>. If there are no
enumeration literals in <enumName>, then <strVarEnumElemNameOut> value
is not changed and execution control is transferred to <labName>. Typically, this
command is used in combination with the nextEnumElem command to iterate
through all given enumeration literals.

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 95

LURaksti733-datorzin.indd 95LURaksti733-datorzin.indd 95 2008.03.31. 15:06:012008.03.31. 15:06:01

15.1. firstEnumElem (<strVarEnumNameIn>).<strVarEnumElemNameOut>
else <labName>;

16. nextEnumElem <enumName>.<strVarEnumElemNameOut> else <labName>;

Stores the name of the next <enumName> enumeration literal, which has not yet
been visited (iterated) in <strVarEnumElemNameOut>. If there are no such
enumeration literals, <strVarEnumNameOut> value is not changed and execution
control is transferred to <labName>.
16.1. nextEnumElem (<strVarEnumNameIn>).(<strVarEnumElemNameOut>)

else <labName>;

17. existsClass <className> else <labName>;
If a class with a specified name exists, execution control is transferred to the next
command, otherwise execution control is passed to <labName>.
17.1. existsClass (<strVarClassNameIn>) else <labName>;

18. existsEnum <enumName> else <label>;

If an enumeration with a specified name exists, execution control is transferred to
the next command, otherwise execution control is passed to <labName>.
18.1. existsEnum (<strVarEnumNameIn>) else <labName>;

19. existsEnumElem <enumName>.<enumElemName> else <label>;

If an enumeration with a specified name has an enumeration literal with a
specified name, execution control is transferred to the next command, otherwise
execution control is passed to <labName>.
19.1. existsEnumElem (<strVarEnumNameIn>).(<strVarEnumElemNameIn>)

 else <labName>;

20. existsAttr <clName>.<attrName>.<typeName> else <labName>;
If an attribute with specified properties exists, execution control is transferred to
the next command, otherwise execution control is transferred to <labName>.
20.1. existsAttr

(<strVarClNameIn>).(<strVarAttrNameIn>).(<strVarAttrTypeNameIn>)
else <labName>;

21. existsAssoc <clName>.<roleName>.<clName> else <label>;

If an association with specified properties exists, execution control is transferred
to the next command, otherwise execution control is transferred to <labName>.
21.1. existsAssoc

(<strVarClNameIn>).(<strVarRoleNameIn>).(<strVarClNameIn>) else
<labName>;

22. existsCompos <clName>.<roleName>.<clName> else <label>;

If a composition with specified properties exists, execution control is transferred
to the next command, otherwise execution control is transferred to <labName>.

96 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 96LURaksti733-datorzin.indd 96 2008.03.31. 15:06:022008.03.31. 15:06:02

22.1. existsCompos
(<strVarClNameIn>).(<strVarRoleNameIn>).(<strVarClNameIn>)
 else <labName>;

23. existsRel <subClName>.subClassOf.<superClName> else <label>;

If there is a generalization relationship between specified classes,execution
control is transferred to the next command, otherwise execution control is
transferred to <labName>.
23.1. existsRel (<strVarSubClNameIn>).subClassOf. (<strVarSuperClNameIn>)

else <labName>;

4 Implementation of L0+

4.1 Selection of the Runtime Environment

The implementation of a transformation language starts from the selection of a
runtime environment. The selection of the run-time environment is not limited to the
selection of a target language, because we have to provide a way of storing and
accessing persistent data (metamodel and its instances) while implementing a model
transformation language.

Quite natural choices in this situation are in-memory metamodel-based data stores
(repositories) [17, 18, 19].

For the implementation of L0 and L0+, the in-memory data store developed at the
IMCS was selected [19]. This repository proved to be reasonably efficient. For
instance, in [19] it is shown, that this data store is at least as efficient in typical
instance selection tasks as one of the most popular open-source RDF data stores
Sesame [20].

The API of the chosen repository is implemented as a library of C++ functions.
This library provides the following possibilities:

� a set of functions for creation and deletion of metamodel elements, as well as
iteration through them;

� model processing functions that can be divided into two subcategories:
o functions for creation and deletion of instances (objects and links) and

functions for getting/setting the value of an attribute, for example:
long CreateObject(long ObjectTypeId);
int DeleteObjectHard(long ObjectId);
int CreateLink(long LinkTypeId, long ObjectId1, long ObjectId2);
int DeleteLink(long LinkTypeId, long ObjectId1, long ObjectId2);

o efficient searching functions (these functions are based on
sophisticated indexing mechanisms):

int GetObjectNum(long ObjectTypeId);
long GetObjectIdByIndex(long ObjectTypeId, int Index);
int GetLinkedObjectNum(long ObjectId, long LinkTypeId);

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 97

LURaksti733-datorzin.indd 97LURaksti733-datorzin.indd 97 2008.03.31. 15:06:032008.03.31. 15:06:03

long GetLinkedObjectIdByIndex(long ObjectId, long LinkTypeId,
int Index);

The main advantage of the use of this repository is that there are close counterparts
for a substantial part of L0 and L0+ commands in the repository API. It means that it
will be quite easy to implement these commands, and there will be no substantial
difference (at least in the aspect of efficiency) between a hand-written and a compiler-
generated code.

Taking into account the fact that the selected repository provides a C++ API, C++
was chosen as a target language for L0 and L0+ compilation. Since effective C++
compilers are known, it is possible to generate a C++ code without thinking of its
extensive optimization, because all optimizations of the C++ code will be done by the
C++ compiler. Thus we can omit final phases of traditional compilers i.e.
intermediate code generation and optimization.

4.2 Compilation Schema

L0 and L0+ compilation process consists of four phases:
� Preprocessing phase, when compiler directives (for example, “useMM”) are

analyzed;
� Lexical analysis phase, when transformation program is divided into lexemes;
� Syntactical analysis phase, when the list of lexemes of the program is divided

into groups of lexemes corresponding to definite commands;
� Code generation phase, when C++ code is generated from a group of lexemes,

corresponding to a definite command.
L0 and L0+ languages do not contain recursive constructs. Moreover, the start and

the end of every command are easily identifiable. Because of these two facts,
syntactical and lexical analysis is quite simple and will not be described further.

C++ code generation seems to be more interesting. Let us start with some general
principles. Firstly we have to understand how to compile general constructs:
subprograms (with corresponding parameters passing mechanisms), control flow
commands, elementary variables and pointers to class instances. It is not difficult to
spot similarities between C++ functions and L0 subprograms, C++ elementary
variables and L0 elementary variables, C++ control flow possibilities, and L0 control
flow possibilities.

However, the situation with L0 pointers (references to class instances) is somewhat
more special, because in C++ there is no direct way of simulating them. To represent
L0 pointers in C++ program, we define a C++ class L0_Var_2 with operations
corresponding to L0 commands. This class has the following operations:

� bool moveNext();
� bool isNull();
� bool setFirstToRoot(const string & className),;
� bool setFirstFrom(const L0_Var_2 & rhs , const string & assocName);
� bool setStringAttributeValue(const string & attrName, const string &

newValue);
etc.

98 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 98LURaksti733-datorzin.indd 98 2008.03.31. 15:06:042008.03.31. 15:06:04

The implementation of the class L0_Var_2 is based on model processing functions
from the Repository API.

Now, when it is clear how individual constructs are compiled, an overall
compilation schema can be given:

� Every L0 subprogram is compiled to a corresponding C++ function;
� Every elementary L0 variable is compiled to a corresponding C++ variable;
� Every L0 pointer is compiled to an object of the C++ class L0_Var_2;
� Every L0 command call on a given L0 pointer is compiled to a corresponding

C++ method call on a C++ object.
The situation with L0+ commands is similar. Every L0+ command is mapped to a

C++ function that relies on the metamodel processing functions from the Respository
API.

4.3 Elementary Tracing Facilities

If a program flow is specified with conditional and unconditional control flow transfer
operators (i.e. structured programming constructs are not used), then it becomes rather
difficult to trace program execution flow (as a consequence, it is difficult to debug
these programs). L0 does not provide structured programming constructs. That is why
typical errors in L0 programs are related to incorrectly specified control flows. To
simplify L0 transformation debugging, L0 compiler can generate code in debugging
mode. When a program generated in this mode runs, it logs execution path and other
significant information. For example, the following program finds the least of three
numbers.

transformation traceDemo;

DEBUG_ON;
main procedure p();
 var i1 : Integer;
 var i2 : Integer;
 var i3 : Integer;
 var min: Integer;
begin;
 setVar i1 = 10;
 setVar i2 = 8;
 setVar i3 = 6;

 var i1 < i2 else i2LessThani1;
 var i1 < i3 else i3LessThani1;
 setVar min = i1;
 return;

 label i3LessThani1;

 setVar min = i3;

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 99

LURaksti733-datorzin.indd 99LURaksti733-datorzin.indd 99 2008.03.31. 15:06:042008.03.31. 15:06:04

 return;

 label i2LessThani1;

 var i2 < i3 else i3LessThani2;
 setVar min = i2;
 return;

 label i3LessThani2;

 setVar min = i3;
 return;
end;

endTransformation;

When running this program in debug mode, it will produce the following output:
 12 : procedure p

 18 : setVar i1 = 10
 i1 = 10
 19 : setVar i2 = 8
 i2 = 8
 20 : setVar i3 = 6
 i3 = 6
 22 : var i1 < i2 else i2LessThani1
 32 : label i2LessThani1
 34 : var i2 < i3 else i3LessThani2
 38 : label i3LessThani2
 40 : setVar min = i3
 min = 6
 41 : return
 Return from p

To implement this functionality, generated C++ code is appended with some code

fragments logging activities of the program.
For example, when L0 compiler receives a command “setVar i1 = 10;”, it

emits the following C++ code: “elemVar___p_i1_ = 10;”. But if L0 compiler
is generating debug code, it will emit substantially different code for the same L0
command:

„
Logger::inst().wrtLineNum(17);
 Logger::inst().wrtLine("setVar i1 = 10");
elemVar___p_i1_ = 10 ;
Logger::inst().wrtPref(); Logger::inst().wrt("i1 =
");

100 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 100LURaksti733-datorzin.indd 100 2008.03.31. 15:06:052008.03.31. 15:06:05

Logger::inst().wrtInt(elemVar___p_i1_);
Logger::inst().newLine();
”.

5 Conclusions

This paper was devoted to the problems of effective implementation of model
transformation languages. It was stated that direct implementation of high level
transformation languages is a difficult and costly process that does not guarantee
effectiveness of the obtained implementation. It is believed that a more optimal way
to implement high level model transformation language is to use bootstrapping.
Bootstrapping in its turn is not possible without an effective base language.

One of the main results of this paper is the definition of a new low level model
transformation language L0+, that can be used as a base language in bootstrapping
process. L0 is called a base language, because:

� it contains minimal, but sufficient model transformation constructs;
� an effective implementation for this language does exist.

One more reason justifying L0+ usage in bootstrapping process is the increased
portability of a high level language being compiled to L0+. L0+ naturally becomes a
kind of a repository abstraction layer, meaning that if we want to port an
implementation of a high level language to another target environment (that uses L0+
as a target language), it is sufficient to port only the implementation of L0+.

The second notable result of this paper is principles of an effective implementation
of this language. According to these principles, an effective implementation of L0+
was obtained.

L0+ was designed to be of as low level as possible to simplify its implementation,
and it does not contain some the of constructs (mainly, patterns) found in more
advanced languages. Nevertheless, this language is also used for a direct development
of model transformations.

References

1. J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs, Model Transformation Languages and
their Implementation by Bootstrapping Method, Pillars of Computer Science: Essays
Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, Arnon
Avron, Nachum Dershowitz, and Alexander Rabinovich, editors, Lecture Notes in
Computer Science, vol. 4800, Springer-Verlag, Berlin, 2008.

2. A.Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Architecture --
Practice and Promise, Addison Wesley, 2003.

3. Request for Proposal : MOF 2.0 Query / Views / Transformations RFP, URL:
http://www.omg.org/docs/ad/02-04-10.pdf

4. OMG, MOF 2.0 Query/View/Transformation Specification. URL:
http://www.omg.org/docs/ptc/07-07-07.pdf

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 101

LURaksti733-datorzin.indd 101LURaksti733-datorzin.indd 101 2008.03.31. 15:06:052008.03.31. 15:06:05

5. Agrawal A., Karsai G, Shi F.: Graph Transformations on Domain-Specific Models.
Technical report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-
03-403, November 2003.

6. A.Kalnins, J. Barzdins, E.Celms. Basics of Model Transformation Language MOLA. -
ECOOP 2004 (Workshop on Model Transformation and execution in the context of
MDA), Oslo, Norway, June 14-18, 2004.

7. ATL. URL: http://www.sciences.univ-nantes.fr/lina/atl/
8. MTF. URL: http://www.alphaworks.ibm.com/tech/mtf
9. Tefkat.URL: http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
10. E.Rencis. Model Transformation Languages L1, L2, L3 and their Implementation,

Scientific Papers. University of Latvia, “Computer Science and Information
Technologies”, 2008.

11. J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A. Sprogis,
GrTP: Transformation Based Graphical Tool Building Platform, MODELS 2007,
Workshop on Model Driven Engineering Languages and Systems, 2007.

12. VIATRA2 URL: http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/
VIATRA2/index.html

13. Meta Object Facility (MOF) Specification Version 2.0 URL : http://www.omg.org/
docs/formal/06-01-01.pdf

14. Meta Object Facility (MOF) Specification Version 1.4.1 URL : http://www.omg.org/
docs/formal/05-05-05.pdf

15. Deborah J. Armstrong, The quarks of object-oriented development, Communications of
the ACM, 2006.

16. A.Sostaks., A.Kalnins. The implementation of MOLA to L3 compiler, Scientific Papers
University of Latvia, “Computer Science and Information Technologies”, 2008.

17. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling
Framework. Addison Wesley, 2003.

18. Metadata Repository (MDR). URL: http://mdr.netbeans.org/
19. J. Barzdins, G. Barzdins, R. Balodis, K. Cerans, A. Kalnins, M. Opmanis, K. Podnieks.

Towards Semantic Latvia. Communications of the 7th International Baltic Conference on
Databases and Information Systems (Baltic DB&IS’2006 , 2006), pp. 203-218.

20. Sesame. URL: http://www.openrdf.org/

102 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 102LURaksti733-datorzin.indd 102 2008.03.31. 15:06:062008.03.31. 15:06:06

