
Technical Solutions for the Transformation-Driven
Graphical Tool Building Platform METAclipse

Oskars Vilitis1, Audris Kalnins

Institute of Mathematics and Computer Science, University of Latvia, 29 Rai�a blvd., R�ga,
LV-1459, Latvia, ph.: (+371) 6 7224 363

Oskars.Vilitis@gmail.com, Audris.Kalnins@mii.lu.lv

Abstract. The paper gives a detailed description of technical solutions
developed for the implementation of a metamodel-based graphical tool building
platform whose main area of application is the development of DSL editors. As
opposed to the well-known static-mapping-driven approach, the implementation
described here provides more flexible means for the definition of the
correspondence between the domain and presentation metamodels, using model
transformations. The solutions described in the paper form the basis of a newly
developed Eclipse plugin METAclipse that allows an easy use of
transformations and materializes the ideas of the transformation-driven tool
building platform. METAclipse has proven its flexibility and efficiency in the
development of a new generation graphical editor for the model transformation
language MOLA.

Keywords. DSL Editors, model transformations, metamodel-based graphical
tool building platform, transformation-driven, Eclipse

1 Introduction

Due to the increasing interest in the MDA approach and the growing popularity of
various domain-specific languages (DSLs), various graphical tool building
environments have gained continuously increasing attention in recent years. The first
simple generic metamodel-based tool environments, such as MetaEdit [1], Kogge [2]
and early versions of Dome [3] and [4], appeared already in the mid-nineties, but their
capabilities were quite limited.

The second generation of such metamodel-based environments with much wider
possibilities, such as MetaEdit+ [5], GME [6], and ATOM3 [7], appeared around
2000 (the first version of MetaEdit+ actually appeared much earlier [8]). They already
had domain metamodeling facilities close to MOF [9] and more advanced graphical
capabilities. Therefore the popular tool paradigm of a visual language being based on
a presentation-independent domain (as it is e.g., for UML [10]) could be supported.
But the presentation metamodel (the description of graphical elements) still had to be
close to the domain metamodel, only relatively simple mappings between them were

1 supported partially by ESF (European Social Fund),

project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0001/0063

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 179.–212. lpp.

LURaksti733-datorzin.indd 179LURaksti733-datorzin.indd 179 2008.03.31. 15:06:442008.03.31. 15:06:44

permitted, and everything else had to be defined by OOPL code (e.g., C++ in GME).
The previous tool framework by UL IMCS, the Generic Modeling Tool environment
[11], also belongs to this category.

A completely new generation of tool frameworks has emerged in recent years in
response to the need of the MDA community to make DSLs an everyday software
development practice. One such group of environments is based on the open-source
Eclipse platform. Eclipse, together with its EMF plugin [12], is a broadly used
metamodeling environment, close to MOF. In addition, the GEF plugin [13] is a basic
“diagram drawing engine.” Only something linking the two was required for a
complete tool building environment. The first and the most popular solution is the
static metamodel mapping-driven GMF platform [14]. Alternative solutions are
provided by the Pounamu/Marama [15] environment and the coming GEMS project
[16].

A popular alternative to Eclipse on a commercial basis is offered by Microsoft
DSL Tools [17] in Visual Studio 2005; however, the logical capabilities there are
quite close to GMF. The already mentioned MetaEdit+ has significantly evolved and
has also become a key player in this area.

The above-mentioned solutions are quite appropriate for relatively simple cases,
where the domain and presentation metamodels are close and no complicated
mapping logic is required. However, DSL support frequently requires much more
complicated and flexible mapping logic. Therefore a new approach has appeared: to
define this mapping by model transformation languages. Model mappings in tools
actually lie very close to the traditional MDA tasks, for which model transformation
languages were invented. Therefore they can be considered very appropriate DSLs for
metamodel-based tool building, yielding development efficiency that is an order of
magnitude higher when compared to that of OOPL.

The first frameworks using this approach to a degree are the Tiger project [18] and
the ViatraDSM framework [19]. Both are based on Eclipse and use GEF as a drawing
engine. The Tiger project is based on the graph transformation language AGG [20].
However, a specific domain modeling notation is used there, which still forces the
domain metamodel of a language to be close to the presentation metamodel. Standard
editing actions (create, delete, etc.) are specified by graph transformations, which act
on the domain model, and the presentation model is updated accordingly. The
ViatraDSM framework is based on the Viatra2 transformation language [21]. In this
framework, the domain metamodel must be close to the presentation metamodel too,
but larger freedom is allowed, and the transformation approach can, to a degree, be
combined with the static mapping approach. There are also plans to use the Fujaba
[22] transformation language in the MOFLON framework [23].

A detailed analysis of the two approaches and their strengths and weaknesses has
been done in the paper “Building Tools by Model Transformations in Eclipse” [24].
This paper concentrates on a thorough description of the technical solutions
developed in order to implement the fully transformation-driven tool building
platform METAclipse. METAclipse is partly being developed within the project
“New Generation Modeling Tool Framework,” which is funded by ERDF (2006–
2008). Within this project, another tool implementing similar ideas, GrTP [25], is also
being developed, however with a different profile: its aim is to handle various tasks
related to the semantic web.

180 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 180LURaksti733-datorzin.indd 180 2008.03.31. 15:06:452008.03.31. 15:06:45

In METAclipse there are no restrictions on the correspondence between the
domain and presentation metamodels. The mappings are defined dynamically by
transformations in the model transformation language MOLA [26]. METAclipse is
implemented as an Eclipse plugin and reuses the basic Eclipse components such as
EMF and GEF, as well as parts of the GMF runtime [14]. METAclipse obeys
traditional Eclipse style and behavior guidelines and therefore can be integrated in
other eclipse-based development environments. Also, it is possible to integrate other
Eclipse technologies like model-to-text generation. An overview of the platforms
architecture and the rationale behind the METAclipse framework will be presented in
section 2.

The main distinguishing feature of METAclipse is an appropriately built
presentation metamodel, which is discussed in detail in section 4. It enables a clear
separation of responsibilities between the METAclipse presentation engines, which
handle all the low-level presentation and layout-related tasks, and transformations,
which create and maintain only the domain and the logical structure of presentation.

Section 5 provides a brief sketch of transformations in METAclipse, however, they
are not the main topic of this paper. The emphasis of this paper is on the structure and
functionality of the METAclipse framework itself.

METAclipse is already proven to be useful in practice by creating an editor for the
MOLA language itself (MOLA is a graphical model transformation language, thus
being a remarkable example of a DSL). This editor is successfully being used in the
European IST 6th framework project ReDSeeDS [27]. All figures containing class
diagrams in the paper have been created with the MOLA metamodel editor.

2 Overall METAclipse Architecture

A graphical modeling tool must deal with many complex tasks, such as proper
domain element representation; intuitive and standardized element editing; correct
model modifications in response to the graphical editing events; providing a
convenient way of navigating through models and a clear way of model element
property representation; etc. The most complex and time consuming tasks are the ones
concerned with the graphical representation and user interface handling. Luckily, a
number of these tasks are common to all graphical tools (i.e., they are domain-
independent) and can be handled at the tool-building platform framework level.

2.1 Basic Principles of the METAclipse Framework

In METAclipse, a well-defined framework is provided for the tool builders. The top-
level view of the METAclipse architecture is very simple (see Fig. 1). METAclipse
itself consists of a set of Eclipse plugins that define the framework of the tool
building platform and comprise several so-called presentation engines, each of which
deals with a particular set of graphical editor tasks (project tree engine, element
property engine, etc.). Each of these engines will be discussed later in this paper in
section 4.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 181

LURaksti733-datorzin.indd 181LURaksti733-datorzin.indd 181 2008.03.31. 15:06:452008.03.31. 15:06:45

METAclipse plugins contain all the common functionality needed for the tools and
relieves the creator of the tool from the need to worry about many technical user
interface issues. The part that defines a concrete tool and that must be written by the
toolsmith is the transformation library containing all the necessary model
transformations that change the model according to the user actions in the tool.

Fig. 1. High-Level view of the METAclipse architecture

In METAclipse the toolsmith must start with the creation of the domain metamodel
and proceed with wiring the domain metamodel to the presentation metamodel
through writing the model transformations. Thus the only items the toolsmith builds
for a concrete tool are the domain metamodel and the transformation library defining
the functionality. In the paper the combined metamodel of presentation and domain
metamodels will be referred to as METAclipse metamodel. Accordingly, the
combination of domain and presentation models will be called simply model.
Manipulations with the domain model are completely the responsibility of the
transformation writer. METAclipse framework provides no support for the domain
model modifications.

Every framework engine exposes its features to the transformations through a
strictly defined metamodel that serve as an interface between the transformations and
editors. Metamodels of the engines will be discussed in more detail in later sections of
this paper. Part of each engine’s metamodel is also the available set of commands that
could occur as a result of user actions. Commands are used to trigger the
transformations and a single command instance represents one atomic user action,
which constitutes the smallest piece of work in the framework. All actions that make
purely graphical changes are handled directly by METAclipse framework. Only
semantic actions (actions causing domain model changes or any changes in the
presentation model that are specific to a concrete tool) are transformed into the
commands and passed to the transformations for execution.

Together metamodels of all engines form the presentation metamodel of
METAclipse. Each element displayed in the tool, created using METAclipse,
corresponds to a presentation model element (an instance of some presentation
metamodel class). Presentation model as well as domain model (model on which the
tool actually operates) are stored in the model repository and are changed by the

182 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 182LURaksti733-datorzin.indd 182 2008.03.31. 15:06:452008.03.31. 15:06:45

transformations as a reaction to the user triggered events. Every semantic user action
in METAclipse results in the following sequence of actions:

� The presentation engine that gets some user action writes the command
corresponding to the action taken (right click on a project tree node, creation of an
element, drawing a link between elements, etc.) to the model repository and
invokes the main transformation (steps 1 and 2 in Fig. 1);

� The main model transformation recognizes the command written and makes the
necessary changes to the presentation and/or domain models (step 3 in Fig. 1);

� Presentation engines read the model changes and react accordingly: show context
menu, show newly created element or edge, etc. (step 4 in Fig. 1).

Such top-level view of METAclipse architecture can be compared to the traditional
MVC approach: the role of the controller is played by transformations; the repository
serves as the model, and the presentation engines act as the view. It must be noted that
METAclipse leverages the abstraction level of the MVC approach: the controller
(transformations) receives only the semantic actions.

In order to make the METAclipse architecture and functionality more clear, an
example state of the project tree engine is given in Fig. 2. A visual representation of
the project tree engine is given on the left. In the middle, a part of the simplified
project tree engine metamodel is shown. Here one can see how the visual editor
elements are represented to the transformations: ProjectTreeNode class represents one
node in the project tree. The ShowMenuCommand class represents a right-click event
on the tree node and expresses user request to show the context menu.

Fig. 2. Example of a project tree engine and its metamodel and model states

Let us imagine that one has right-clicked the node called “menu” in the tree and the
project tree engine has written the ShowMenuCommand instance to the repository
(step 1 in Fig. 1). At the right side of Fig. 2 the presentation model part is given,
showing the instances involved in the handling of the right-click event. As the next
step in event processing, the engine will invoke the transformation (step 2 in Fig. 1).

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 183

LURaksti733-datorzin.indd 183LURaksti733-datorzin.indd 183 2008.03.31. 15:06:452008.03.31. 15:06:45

The transformation will find that ShowMenuCommand has been written in the
repository and will create presentation metamodel instances (not shown in the Fig. 2)
comprising the needed context menu (step 3 in Fig. 1). No domain model changes are
needed in this example. At last, Eclipse will get back the control and presentation
engines will be notified of the model elements changed. The menu engine will see
that a menu has been created, so it will show the context menu for the project tree
node called “menu.”

2.2 Solutions Chosen for the METAclipse Implementation

METAclipse is built on top of Eclipse technologies and is packaged in the form of
several Eclipse plugins. Eclipse was chosen as a mature and widely appreciated
platform, providing a large number of frameworks covering many needs of the tool
developers. Eclipse is also a very popular choice of a wide variety of leading
production-quality software development platforms that could potentially gain from
integration of modeling and DSL editor tools.

The transformation language MOLA [26, 28], developed by LU IMCS, was chosen
for the implementation of transformations. MOLA has a rich set of language elements
and it had already proven its performance and stability in practice, so it was a natural
choice. The current implementation of MOLA is compiled to a Windows DLL file
and works against the repository MIIREP (codenamed “OUR” in the paper “Towards
Semantic Latvia” [29]), also developed by LU IMCS. Therefore, the choice of the
repository was also clear. However, to make METAclipse more flexible, it was
decided to make the access to transformations and the repository transparent so that it
would be possible to switch to other transformation languages and/or repositories.
The repository access solution will be described in Section 3.

As discussed in the previous section, every METAclipse presentation engine
exposes its features to the transformations through its metamodel. What is actually
displayed in the editor is a visual representation of the engine metamodel instances,
i.e., models. In Eclipse, Java code needs to access this model information. To
accomplish this, physical in-memory model storage is needed. The framework fitting
these purposes already exists and is called EMF [12]—Eclipse Modeling Framework.
EMF is being used in many Eclipse-based tool building platforms as the model
repository.

EMF was also chosen for implementation of the METAclipse model repository, as
it has several features that fit the framework needs. EMF provides a generator for the
creation of Java classes that correspond to the model elements. This eases the creation
of the runtime model classes. Another important feature of EMF is the model change
notification mechanism implemented through model listeners that allow easy and
dynamic model change transfer to various presentation engine parts. There are also
some aspects of the EMF that are currently less important for METAclipse, which
however could turn useful in time: XMI import/export, OCL implementation, etc.

This leads to the presentation model in METAclipse being stored in the EMF
repository. Transformations, however, also need to operate on this model. As
transformations work on an external repository, a challenge rises to synchronize the

184 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 184LURaksti733-datorzin.indd 184 2008.03.31. 15:06:462008.03.31. 15:06:46

EMF model instances with information in the MIIREP. More details on the non-
trivial solution will be given in Section 3.

The EMF framework is not the only Eclipse framework used in METAclipse. For
various METAclipse needs, others are used as well:

� The property engine uses the tabbed properties framework for dynamic generation
of the element property sheets (see Section 4.5 for detailed description of the
property engine);

� The project tree engine (described in Section 4.3) uses the navigator framework;
� The graph diagram engine (described in Section 4.6) uses the Graphical Editing

Framework GEF [13] and parts of the Graphical Modeling Framework GMF [14]
runtime.

3 Interaction with the Repository and Transformations

As already stated before, editor interaction with the repository and transformation
invocation was intended to be made as generic as possible in order to maintain the
possibility to change the implementation of repository or transformations if necessary.
To achieve such independence, two problems had to be solved. First of all, an
interface to the set of external repository operations used in METAclipse (such as find
object, store object, change object property etc.) had to be defined. Transformation
invocation is also part of this interface, as transformations are always related to a
particular repository. Secondly, a generic mechanism to transfer the repository data to
EMF object instances had to be developed in order to allow the handling of repository
objects in Eclipse as if they were normal EMF objects, thus giving the access to the
entire infrastructure provided by EMF.

3.1 Repository Interface

The repository interface itself is nothing special; it is a regular Java interface
containing all the operations required by METAclipse. The interface contains the
following sets of operations:

� Metamodel (object type) manipulations, such as creating a class, adding a class
attribute, finding classes, creating associations, etc.

� Model (object) manipulations, such as finding an object of a certain class, creating
objects and setting object attributes, etc.

� Transformation invocation. Only one function for this is required, as
transformations have just one entry point in the METAclipse architecture.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 185

LURaksti733-datorzin.indd 185LURaksti733-datorzin.indd 185 2008.03.31. 15:06:462008.03.31. 15:06:46

Fig. 3. MIIREP repository interface implementation

MOLA transformations currently are compiled against the MIIREP repository,
which is developed in C++ and released as a Windows DLL file. MOLA
transformations themselves are also compiled to a DLL file, which directly accesses
the MIIREP DLL loaded in memory. This implies that the MIIREP repository
interface implementation currently used in METAclipse (see Fig. 3) uses a JNI (Java
Native Interface) wrapper for the repository operations (see [30] for information on
JNI). The wrapper delegates all repository access operations (model and metamodel
manipulations) to the appropriate MIIREP repository API functions and the
invocation of transformations to the transformation library.

3.2 The Link Between Eclipse and the Repository: “Wise” Objects

As stated before, all presentation engines (Eclipse plugins) developed work with EMF
runtime objects in order to gain all the benefits the EMF framework is offering.
Transformations, on the other hand, work with the external repository, so
synchronization between the repository and EMF is required.

The task of integrating the external repository seamlessly into the Eclipse EMF
framework was quite challenging. Simple interface did not satisfy the requirement to
keep Java-side code unaware that anything other than EMF is used, which is why the
“wise” object mechanism was created. The main reason for such a requirement was
the wish to keep the possibility to switch to a clean EMF implementation in the future
(meaning that no external repository would be used, with EMF itself serving as the
repository), as well as to be able to use clean EMF infrastructure.

Another aspect that had to be taken into account was performance. As every little
action in the editor results in changes in the repository through the invocation of the
transformation, a complete re-read of all repository data after each operation is
unacceptable. Only the “dirty” or changed information has to be transferred back to
EMF object instances.

To comply with the given requirements, a special mechanism was developed,
consisting of alternative EMF runtime objects that conform to the EMF interfaces and
externally look like normal EMF objects, but internally do all the synchronization
with the repository. These objects were named “wise” objects, as they show certain

186 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 186LURaksti733-datorzin.indd 186 2008.03.31. 15:06:462008.03.31. 15:06:46

“intelligence”: though from the interface perspective they look like normal EMF
objects and support all EMF framework operations, internally they know when and
how it is necessary to read or write some information to the repository. The standard
EMF notification mechanism is used to notify any changes occurring in the
repository. “Wise” objects can be considered the second level of repository
abstraction, which introduces the caching mechanism, conforms to the EMF object
interfaces and uses first level abstraction—repository interface—to read and write
data to the repository.

ECore, the core metamodel in EMF, is very similar to the EMOF (Essential MOF),
a subset of the MOF model [9]. In fact, there are just some small, mostly notational,
differences between these two. According to the MOF hierarchy, ECore is at the M3
layer, the same as MOF itself. The code generation facility provided by EMF can be
used to generate Java runtime classes for a particular metamodel (M2 layer) defined
by ECore. Instances of the generated runtime classes then correspond to the M1 layer
in MOF.

ECore metamodel classes (ECore base classes) define the class hierarchy that
forms the basis for the Java runtime. All EMF runtime classes generated for a
particular metamodel extend these base classes. ECore base classes provide all the
functionality to the generated classes and allow using them in EMF infrastructure by
providing all the EMF framework features. Therefore, base classes are the best place
where the repository synchronization should be implemented.

“Wise” Objects as an EMF Extension

Base ECore classes were extended and a set of “wise” object base classes was defined
(see Fig. 4). By analogy to ECore classes, base “wise” object classes, together with
some helper classes comprising the whole “wise” object concept, were called WCore.
In WCore, the methods inherited from ECore for getting and setting the properties are
extended with functionality of reading and writing data from and to the repository
through the repository interface described in the previous section. For performance
considerations, “Wise” objects keep track of the state of every object property and
cache the data from the repository in the object instance, so the consequent reads of
the same property will result only in one read of the property from the repository.

The fact that the parent of all ECore classes is a single class—EObject (see [12] for
complete ECore structure)—simplified the extension of ECore. For “wise” object
needs it was enough to extend just two ECore classes, EObject and EFactory, with the
corresponding WObject and WFactory classes. WObject contains all the caching and
synchronization logic and, as it is the superclass of all the other framework classes,
the logic is available all across the framework. The WFactory extension of the factory
class was needed, as some initialization of the “wise” object on its creation was
required.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 187

LURaksti733-datorzin.indd 187LURaksti733-datorzin.indd 187 2008.03.31. 15:06:462008.03.31. 15:06:46

WCore Base Classes
ECore Base

Classes

„Wise” ObjectsEMF Standard Objects

ewdkjq

wev

ewrvw

„Wise” Object
Runtime Classes

ewdkjq

wev

ewrvw

EMF Runtime
Classes

EMF
Dynamic

Templates

„Wise”
Object

Dynamic
Templates

Fig. 4. “Wise” object dependencies

To put the WCore classes in action, the EMF generator also had to be extended so
that it produced “wise” objects extending WCore base classes. The EMF framework
uses the so-called dynamic code templates (using another Eclipse framework for the
code generation—JET [31]) during the generation process of the runtime classes. The
EMF generator reads the serialized form of the metamodel and then, using the set of
templates, generates the runtime classes (see Fig. 4). Default templates producing
EMF runtime classes were extended so that they would generate the code using
WCore instead of ECore.

The complete set of classes comprising the WCore can be seen in Fig. 5. The
above-mentioned extension of getter and setter methods of ECore is divided into two
classes. Reading of the attributes from the repository was easiest to implement in the
WObjectImpl class itself, in the inherited getter methods. Writing the attributes,
however, was easier to move to a separate class WObjectChangeObserver, which
implements the EMF change listener and is attached to every instance of WObject.
The change observer listens to any changes done to the WObject from the engine side
and if any occurs, writes the data to the repository.

188 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 188LURaksti733-datorzin.indd 188 2008.03.31. 15:06:462008.03.31. 15:06:46

Fig. 5. WCore class diagram

To be able to read and write the repository data, “wise” objects need to have a
possibility to map the classes, attributes and associations to the corresponding
repository objects. Such mapping can be defined only at M2 level and thus it is
necessary to have the WCore class and feature mapping to the repository metadata at
the M2 layer. As it is inefficient to read these mappings every time any object is
accessed, class metadata mappings are cached. The WRepositoryMetadata object
represents the class metadata. The map of WCore class to repository metadata
mappings is held in the WRepositoryController object and the mappings are attached
to every WObject instance for convenience when instantiating it (as a reference to the
cached mappings).

Repository Change Notification in METAclipse

Extending the ECore base classes covers the synchronization needs only from the
METAclipse perspective, i.e., if changes to the model are done from the engines.
However, the most intense model changes happen on the other side—in the
transformations. Therefore, another missing piece is a change notifier back from the
transformation, which would trigger the EMF change events for all objects that have
been changed in the repository. In WCore, the WRepositoryController class takes care
of this. There, a special method is defined for change detection, which has to be
invoked after each transformation execution.

Transformation change notification is not a trivial task, as it is also constrained
with tight performance requirements. It is very inefficient to detect the changes
already after transformation execution, as it means inspection of all object instances in
the repository. This means that a support from the side of the transformations is
required in order to make an efficient implementation of the change notification. This
is why WRepositoryController change notification method is designed in a way that it
calls special functions of the repository interface in order to get the lists of the
changed or deleted objects. Functionality of tracking changes is left to the

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 189

LURaksti733-datorzin.indd 189LURaksti733-datorzin.indd 189 2008.03.31. 15:06:482008.03.31. 15:06:48

implementation of the interface. When changed or deleted object lists are read from
the repository, WRepositoryController issues the corresponding EMF notifications
and the changed features of the object instances that have changed are set “dirty,” so
that they are once again read from the repository instead of using the cached values
from the WObject instances. The concept of “wise” objects is not trivial and is best
understood on a concrete example. One such example is provided in Section 4.2.

In case of the repository and transformations currently used in METAclipse, it was
very easy to track object deletions, as the MIIREP repository itself has the
functionality to track such changes. However, the tracking of the changes to the
existing objects had to be incorporated in the transformations. For this reason, a
special class “Changes” was introduced in the presentation metamodel. Each
transformation is responsible not only for making the actual changes, but also for
adding a link from the “Changes” singleton object to the objects actually changed.
See Section 4.1 for more information on the “Changes” object and the singleton
concept.

Of course, it would be more convenient to have also detection of changes to the
existing objects automated and incorporated at the repository level, but unfortunately
MIIREP does not provide such a possibility. In case of MOLA, as its transformations
are compiled, it is also possible to add special functionality in the MOLA compiler
that automatically adds the “Changes” link. However, at the moment such
functionality is not implemented.

4 Presentation Engines

As already stated before, METAclipse consists of several presentation engines.
Although there are some additional smaller helper parts in METAclipse, four main
presentation engines can be named that together comprise the whole tool building
platform (in Fig. 6 all of them can be seen in action).

1. Project tree engine, responsible for organization of projects, models and model
elements in a hierarchical tree structure;

2. Graph diagram engine: the main engine of METAclipse, providing editing
capabilities to the graph diagrams;

3. Property engine: provides property editing capabilities for other engines (like
properties for a selected item in the project tree or a selected diagram element);

4. Menu engine: used by other engines for the displaying of context menus (like by
project tree engine for showing context menus of the tree nodes or by graph
diagram engine for showing context menus on the diagram elements).

Besides these four engines, additionally there are some less important components
in METAclipse responsible for common functionality like drag-and-drop, clipboard,
METAclipse perspective; utility functions; transformation control etc. These will not
be discussed here. In the following sections the focus will be put on the interaction
between the engines and transformations, and special attention will be paid to the
description of all the presentation metamodels, as they form one of the most important
aspects describing the METAclipse functionality.

190 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 190LURaksti733-datorzin.indd 190 2008.03.31. 15:06:482008.03.31. 15:06:48

The look and feel and general operation principles in METAclipse engines were
adopted from Eclipse standard editors so that the editors would fit smoothly in the
Eclipse environment. This means that some eclipse standards were obeyed. For
example, METAclipse does not use dialogs for the diagram element creation. Instead,
all element properties are assigned default values, which can later be changed to the
desired values through the properties view. Properties are displayed in one single
view for all editors, implying that just one editor is in focus at all times.

Fig. 6. METAclipse presentation engines in action

In the development of the presentation engines, one simple rule drove the splitting
of functionality between the engine and transformations:

� Every task that needs any information read from the domain model, i.e., that is
domain-specific, has to be done by transformation;

� All tasks that do not require any knowledge of the domain have to be done by the
engines.

So, for example, the right click on the project tree node for showing the context
menu needs the knowledge of what kind of node it is in order to know what menu
options to offer. This means that this is a task for a transformation. Another
example—the move of a diagram element within the borders of the same parent—
does not require any knowledge of the domain. Such operation requires only changing
of some presentation model attributes, thus it can be carried out by the engine itself.
If, in contrast, the diagram element was dragged out of the borders of the parent
element (for example, dragged from one sub-diagram to another), this again would
require some domain model changes and thus it is a semantic operation that has to be
performed by transformations.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 191

LURaksti733-datorzin.indd 191LURaksti733-datorzin.indd 191 2008.03.31. 15:06:492008.03.31. 15:06:49

4.1 Presentation Metamodel Structure

The transformation library is the changing part in METAclipse from one tool
implementation to other. That is why transformation creation must be made as easy as
possible in order to make METAclipse useful and convenient for the toolsmiths. In
order to accomplish this there are several prerequisites to be met:

� A well-established set of base transformations common to all or at least most
editors must be provided. This would form the base framework for transformations
to be created by the toolsmith. This would allow the toolsmith to concentrate on
semantic tasks for mapping of domain elements to presentation elements and
would remove the need to worry about some tasks that could be done by the
framework (for example, handling of the element styles, parts of copy and paste
logic, building of standard menus, etc.);

� A set of helper transformations must be provided, so that the transformation creator
has decent artillery at hand for handling of different kind of tasks (utility
functions);

� It is very important to create a good interface to the presentation engines. In this
case engine metamodels compose this interface. A proper presentation metamodel
is extremely important for the transformation creators to make work with the
editors easy and convenient.

A very short overview on the solutions provided by METAclipse for the first two
will be given in Section 5. The focus in this paper however is on the last—proper
design of the presentation metamodel. A large amount of effort and time was invested
in the design of this metamodel to make it best usable from transformations. The
following few sections will give a thorough description of various parts of it, i.e., of
various presentation engine metamodels.

The presentation engines rely heavily on various Eclipse frameworks. Therefore,
the metamodels of the engines could be partially extracted from them. It must be
noted, however, that none of the used Eclipse frameworks had a metamodel already
defined. Metamodel of every engine had to be synthesized from the corresponding
framework API. Then it had to be amended with the METAclipse-specific classes
needed for the engine.

As the metamodel is an interface between two parties, transformations and Java
code, it has to be conveniently usable from both sides. However, more importance
must be given to the transformation requirements for the metamodel. It was decided
to adopt the naming and structuring standards of classes from the Java coding
standards, keeping in mind not to make any transformation tasks complicated. As it
turned out, it is very convenient for both sides if the metamodel is structured in
strictly hierarchical and logically split packages. The whole presentation model
contains the following packages:

� the general package contents include the base classes used by the presentation
metamodel, classes common to all engines and various types used across the
presentation metamodel;

192 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 192LURaksti733-datorzin.indd 192 2008.03.31. 15:06:492008.03.31. 15:06:49

� the project package contains all the classes needed for project handling in
METAclipse and classes for steering the project tree engine (see section 4.3 for the
description);

� the menu package contains classes for steering the menu engine (see section 4.4 for
the description);

� the properties package contains classes for steering the properties engine (see
section 4.5 for the description);

� the graphDiagram package contains classes for steering the graph diagram engine,
excluding the classes for palette organization (see section 4.6 for the description);

� the palette package contains classes for creation of the editor palettes. This was
created as a separate package, because palettes may be required not only by graph
diagrams. Palette elements could be reused also if another kind of editor engine
were created.

The Common Part of the Presentation Metamodel (general Package)

The general package defines the core classes of the METAclipse presentation
metamodel (see Fig. 7). In this and following figures a special color-coding will be
used. Normal metamodel classes will be shown in white. Light gray color will
represent the command classes. For more information on what a command is, see
Sections 2.1 and 4.1, as well as descriptions of METAclipse presentation engines. The
dark gray classes will denote the singletons. The description of the term “singleton” is
given below.

Fig. 7. The general part of the presentation metamodel

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 193

LURaksti733-datorzin.indd 193LURaksti733-datorzin.indd 193 2008.03.31. 15:06:492008.03.31. 15:06:49

As the metamodeling practice shows, and also as the preliminary experience of
METAclipse technology evaluation proved, it is very convenient to have one
superclass for all classes in the metamodel and to organize all classes in strict
hierarchies. Just as Java has a superclass of all classes, “Object”, the METAclipse
presentation metamodel also includes such a superclass, JRObject. One example of
how the introduction of such a superclass helps is the case when there is a need to
define a very general association to any kind of object. This can be done only if there
is a superclass for every object needed to be referenced. In the general package this is
used to model the concept that any presentation model element can be displayed in
the project tree engine as a node: association between PresentationElementNode and
JRObject (see Fig. 7).

A concept used across all metamodels by engines for finding the starting points of
various parts of models is singletons. Singletons are classes that have exactly one
instance. This fact is used by the presentation engines to find the only instance just by
knowing the class name. Singleton classes are used in METAclipse engines
everywhere where there is a need for an entry point in the model. In the general
package one example of singletons is the Changes class. This class is an important
singleton, which is used to find all the changed or deleted objects after the execution
of a transformation.

As discussed in Section 3.2, for wise objects to work there is a need for change
tracking after each transformation invocation. Current implementation of the MIIREP
repository and MOLA transformations does allow automatic tracking of deletions;
however changes must be tracked by each transformation manually. The Changes
singleton instance must be linked through “changes” association to every presentation
model object changed by the transformation. Engines will then use the singleton
nature of the Changes class to find the only instance and read the list of the changed
model objects.

The general package also contains the supporting and base classes for one of the
backbones of METAclipse, namely, the command infrastructure. Commands have
already been discussed before. A command in a presentation metamodel corresponds
to a possible user action in the editor that requires some reaction from the engine, i.e.,
the invocation of a transformation. Command class in the metamodel is the superclass
for all the command classes. Command base class defines the “context” association:
every command can have links to some JRObject instances that form the context of
the command. All commands are structured in a strict class hierarchy: for every
logical set of commands, an additional superclass is defined (as GeneralCommand
and ClipboardCommand in Fig. 7). This opens diverse command parsing possibilities
in transformations.

The sequence of command execution in METAclipse is described in Section 2.1.
After any user action, a corresponding command is written to the repository.
CommandStack singleton instance is linked to the written command. Transformations
then seek the command to execute by querying the “command” link of the
CommandStack singleton. Currently this link points to at most one instance of a
command. After execution, the transformation may write back some results to the
executed command by setting some attributes or links. Finally, engines read the
command after the transformation execution in order to get the transformation results,
if needed.

194 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 194LURaksti733-datorzin.indd 194 2008.03.31. 15:06:492008.03.31. 15:06:49

The rest of the general package classes shown in Fig. 7 are common classes used
by many presentation engines. This includes some common command classes and the
clipboard-supporting classes. NavigateCommand is used as a response to double-
clicking on some project tree node or diagram element. Such action would result in
opening a diagram in the editor and possibly selecting some diagram element (or
multiple elements), if the element under the cursor were a diagram or diagram
element. Transformations must return the diagram to open or diagram elements to
select by setting the navigationTargets link. It will be queried by the engines after the
execution of the transformation to find the objects to open / select.

SelectCommand is executed if any object is selected. It must be used by
transformations to generate the property sheets corresponding to the selected object.
See section 4.5 for more information about the properties engine. Command
DefaultDeleteCommand is executed if the delete button is pressed on any of the
selected objects. As the name suggests, transformations should carry out the default
delete action when processing this command. Such a command is especially useful for
diagrams—usually it is possible to delete an element from the diagram while retaining
the domain element or to delete both the diagram and the model element. Different
tools require different default logic on such operation.

For clipboard operations, the Clipboard singleton and two commands for copying
and pasting are defined. The Clipboard singleton contains links to the copied or cut
objects (through “contents” association); the deleteAfter flag is used to distinguish the
copy and cut operations. Copy command is executed when the selection is copied.
Selected objects are linked to the command through the “context” association. Paste
command is executed when users executes the paste operation in the engines.

Fig. 8. General type part of the presentation metamodel

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 195

LURaksti733-datorzin.indd 195LURaksti733-datorzin.indd 195 2008.03.31. 15:06:492008.03.31. 15:06:49

Finally, the last set of classes found in the general package consists of the various
types used across the entire METAclipse presentation metamodel. These include
definitions of enumerations like Alignment, ShapeType, Orientation, etc., as well as
some type classes like Color, Font and Point.

4.2 Interaction between the Transformations and Engines

The mechanism of the interaction between the engines and transformations has
already been outlined. Now, as all the concepts of the components involved in
METAclipse (engines, wise objects, repository, transformations and presentation
metamodel) have been introduced, it is time to put it all together. This section will
give an example of how all of the METAclipse components fit together before
proceeding to the detailed descriptions of the separate engines in the sections to
follow. See Fig. 9 for a detailed operation schema of the opening of a new diagram
from the project tree. Solid lines in the figure represent the control flow; dashed lines,
simple operations like creation of objects.

Fig. 9. Opening a new diagram from the project tree:
an example of the METAclipse component interaction

Let us imagine that a user has double-clicked a node in the project tree that
represents a graph diagram. This results in invocation of the project tree engine
(discussed in more detail in section 4.3). This engine must react so that a
corresponding diagram is opened. Such operation includes the following steps:

� 1: The project tree engine asks WRepositoryController to find the singleton
instance of the CommandStack class (see previous section for information about
singletons, repository controller, and command stack).

196 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 196LURaksti733-datorzin.indd 196 2008.03.31. 15:06:502008.03.31. 15:06:50

� 2: If this is the first time CommandStack singleton is used, WRepositoryController
searches the repository for the single instance of the class with the name
“CommandStack.” As it is a singleton, there will be exactly one instance. The
repository controller loads the CommandStack wise object instance and caches it,
so that the next time the CommandStack is queried, it would be retrieved from the
cache.

� 3: The CommandStack wise object is returned to the project tree engine.
� 4: The project tree engine creates a new instance of NavigateCommand wise object

and links it to the project tree node wise object, on which the double-click was
performed (not shown in the figure). As the NavigateCommand has not been yet
saved to the repository, for the time being no synchronization with repository is
carried out.

� 5: The project tree engine links the newly created command to the CommandStack.
At this moment CommandStack wise object notices that a new link has occurred.
As the linked object is not yet saved to the repository, it asks the
NavigateCommand instance to save itself to the repository (5A). Then the
CommandStack wise object links the repository instance of CommandStack to the
newly created instance of NavigateCommand (5B).

� 6: Now, when the command is written to the repository, the transformation library
is invoked.

� 7: Transformation detects the NavigateCommand instance linked to the
CommandStack and finds which project tree node was double-clicked. Then it
searches for the corresponding diagram to be opened.

� 8: Transformation links the Diagram instance found to the NavigateCommand as a
result of the execution. Additionally, it puts a link from the Changes singleton (see
previous section) to the NavigateCommand in order to signal that
NavigateCommand instance has changed.

� 9: Control is given back to the project tree engine.
� 10: The project tree engine calls the WRepositoryController in order to invoke the

repository change notification process and synchronize the wise object state with
the repository.

� 11: WRepositoryController reads the Changes singleton to detect that the wise
object instance of NavigateCommand has changed. It then notifies the
NavigateCommand wise object that it must read its contents from the repository
instead of its cached data (11A). This also causes the instantiation of the linked
Diagram object (11B).

� 12: Control is given back to the project tree engine.
� 13: Finally, the project tree engine delegates control to the graph diagram engine

and passes the Diagram wise object to be displayed. Graph diagram engine then
uses the Diagram object as the root for reading all the contents to be displayed on
the diagram.

All engines operate similarly and the wise object technology is used throughout all
METAclipse for synchronization with the repository. This ensures consistent
interaction with the transformations. It must be noted that only one transformation at a
time can be executed. This, however, does not cause any problems, because in the
graphical editors the user makes just one action at a time and actions are sequential.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 197

LURaksti733-datorzin.indd 197LURaksti733-datorzin.indd 197 2008.03.31. 15:06:502008.03.31. 15:06:50

We could continue describing property generation for the element that is currently
selected. However, the operations for that would be very similar to the ones already
described. The only additional operation for building of the properties would be the
querying and modification of the domain model. This, however, is hidden from the
METAclipse framework, as only transformations are responsible for the operations
with it and only transformations can access the domain model.

4.3 Project Tree Engine

Every graphical tool needs some means of organizing the model objects in a
hierarchical tree structure to enable the navigation through models—similarly to how
files and folders are organized on the computer hard drive. At the minimum, it is
required to display the diagrams as a list, so that the user could choose the one he/she
desires to edit.

Eclipse defines the notion of “project” as the highest level of organization.
Different tools built on Eclipse provide different kinds of projects: for example, Java,
C++, GMF and others. METAclipse also defines a separate kind of project, the
METAclipse project. A METAclipse project corresponds to one repository instance,
which is created together with the project. All elements of the project model are
stored in this repository, e.g., if there are several diagrams in one METAclipse
project, they all will be stored in the same repository instance.

For organization of project artifacts, Eclipse provides the so-called navigator
framework, which provides a view for displaying of items in a tree. The METAclipse
project tree engine is built using this framework and implements its own view (see
Fig. 6, part 1). The Eclipse navigator framework already provides all the functionality
required to manage the project tree. The only thing needed to implement a specific
project tree is the implementation of Navigator interfaces for the retrieving of the
model data (or the so-called provider-interfaces, which is a concept used also in other
Eclipse frameworks). This is an easy task, as the interfaces require an implementation
of a few very simple methods like one for getting the children of a given node and
another for getting the parent of a given node. METAclipse provides the
implementations of these interfaces for reading the project tree data from the
repository. This implementation was very easy to create: just about 100 LOC was
required, which was clearly less than would be needed if all functionality had to be
created from scratch.

198 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 198LURaksti733-datorzin.indd 198 2008.03.31. 15:06:502008.03.31. 15:06:50

Fig. 10. Project part of the presentation metamodel

Fig. 10 shows the metamodel of the project tree engine. When a METAclipse
project is opened, first the Project singleton is used to find the ProjectNode instance,
which then is interpreted as the root of the project tree. Every METAclipse project
will always have exactly one ProjectNode. Project is a singleton that represents the
METAclipse project opened in the platform (recall that there is one-to-one
correspondence between a METAclipse project and a repository instance).

The ProjectTreeNode class is the superclass of all kinds of tree nodes, ProjectNode
included. This class allows defining the hierarchical structure of the tree through the
parent-children association. Every instance of one of its subclasses will appear in the
project tree engine as a separate node with the given text and icon and ordered by the
relativePosition. Transformations are free to define any kind of project tree structures,
using the ProjectTreeNode building blocks. There are five kinds of nodes at their
disposal, each with a slightly different support from the engine’s side:

� ProjectNode. Interpreted by the engine as the root project node;
� ModelNode. Interpreted as the node defining the boundaries of one model. The

model term is introduced to allow further grouping of project items in smaller
pieces of work. On possible use of the ModelNode and Model classes could be for
the demarcation of the nodes that correspond to the packages in the domain or, if
the domain metamodel provides the term of model (like UML domain model [10]),
to the models;

� DiagramNode. Interpreted as a node that can be opened and represents a diagram.
Transformations must make sure that tree nodes of this kind are linked to a
corresponding Diagram instance;

� PresentationElementNode. Interpreted as a node that represents some diagram
presentation element. Can be used for navigation;

� DomainElementNode. Interpreted as a node that corresponds to an element from
the domain model.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 199

LURaksti733-datorzin.indd 199LURaksti733-datorzin.indd 199 2008.03.31. 15:06:502008.03.31. 15:06:50

ProjectTreeNode is the only class that represents the original metamodel of the
Navigator framework according to its API. METAclipse project tree engine also does
not really need all the various subclasses of the ProjectTreeNode. The subclasses have
been introduced in order to ease the creation of the transformations.

There are only two commands specific to the project tree engine that can occur.
One is CreateProjectCommand, which is invoked when a METAclipse project is
created. It must be interpreted by transformations to initialize the models with some
startup data—for example, to initialize the singletons, to set up the default context
menus and property editors, to initialize styles, etc. Second is OpenProjectCommand,
which is invoked when the project is opened in METAclipse. It can be interpreted by
the transformations to carry out some initialization routines required for the opening
of the project.

4.4 Menu Engine

The menu engine is the simplest engine of all and provides just the functionality
needed for the creation of context menus (see Fig. 6, part 2). It uses the standard
Eclipse infrastructure for the generation of the menus. Therefore the implementation
of the menu engine in METAclipse was even easier than the implementation of the
project tree engine.

The menu engine metamodel defines one singleton class, RootMenu (see Fig. 11),
which points to the root of the active menu through the “menu” association. If the
RootMenu instance does not have this property set, it means that no menu will be
displayed. Menu structure is defined by the Menu and MenuItem classes. The Menu
class is interpreted by the engine as a menu container (like the root of the context
menu or any submenu popping out when an item containing the submenu is selected).
Menu consists of menu MenuItem classes, which correspond to the items displayed in
the menu. Submenus are shown by the engine only for those MenuItem instances that
have the submenu property set.

Fig. 11. Menu part of the presentation metamodel

Only two specific commands can occur in the menu engine. ShowMenuCommand
is invoked when the user right-clicks any node in the project tree or any element in
the diagram. Selected JRObject instances (whether tree nodes or diagram elements)

200 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 200LURaksti733-datorzin.indd 200 2008.03.31. 15:06:512008.03.31. 15:06:51

will be linked to the ShowMenuCommand through the context association defined in
the general Command class. Transformations must react to this command by building
the context-sensitive menu (using the context information from the context
association) and setting the RootMenu singleton “menu” association to it. The menu
engine then will consult the RootMenu singleton to read the menu to be shown.

ChooseMenuItemCommand is written to the repository if the user chooses an item
from the menu. Then transformations must carry out the corresponding action. Action
can be anything necessary for the chosen menu item, starting from creation of some
element up to very complicated tasks like model simplification, compiler invocation
for visual DSL languages and so on.

4.5 Properties Engine

A very important part of the tools is the properties editor. This editor is used to
display and edit various properties of elements displayed in editors. For example, in
the UML class diagram editor there is a need to edit the properties of a class or
association. In Eclipse property editing is done through a special properties view,
which is common to all editors and can be seen at all times (see Fig. 6, part 3). Any
time the selection in Eclipse changes, the contents of the properties view are also
updated to reflect the properties of the currently selected item. Properties can be
arranged in the so-called tabs for better structuring.

The properties view is driven by yet another Eclipse framework, the tabbed
properties framework [32], which is used by the properties engine of METAclipse.
When the development of METAclipse began, the tabbed properties framework did
not provide all the capabilities needed for the tool building platform. Particularly, it
was not possible to define the structure of the property sheets at runtime. The
framework allowed only definition of what should be displayed in the property sheets
during the time of development, and this information had to be compiled in the
released plugins.

Because of this, in the beginning the tabbed properties framework was extended to
add this functionality. Later, however, the functionality of the framework was
widened to include the possibility to define the property sheets dynamically at
runtime. This allowed switching to a clean tabbed properties framework without the
need to extend its classes. Tabbed properties with dynamic property support will be
released in Eclipse 3.4 M3, which is not yet available at the time of this writing.
However, Eclipse 3.4 M2 nightly builds already include the new dynamic tabbed
property capabilities, so this is what is being used for the time being.

General Part of the Properties metamodel
In METAclipse transformations are responsible for building of the property sheets.
The select command is issued by editors so that transformations could carry out this
task (already introduced in Section 4.1 and shown in Fig. 7). The main part of the
property engine metamodel can be seen in Fig. 12.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 201

LURaksti733-datorzin.indd 201LURaksti733-datorzin.indd 201 2008.03.31. 15:06:512008.03.31. 15:06:51

Fig. 12. Property part of the presentation metamodel: main classes

The properties singleton is queried every time after the selection of any element
and execution of the SelectCommand to read the current state of the properties view.
Through this singleton the whole structure describing the contents of the property
page can be read. The title and icon attributes of the Properties singleton are used for
the title of the properties view. The class Tab represents one property sheet tab and is
linked to the Properties singleton through the “tabs” link. The attribute name is the
title shown on the tab and is used to name the contents of the tab. For example, both
properties views in Fig. 13 consist of three tabs: “General,” “Attributes,” and “Style.”

Every tab in the tabbed properties framework consists of the so-called sections.
Sections group the properties shown in the tab in logical groups. The corresponding
class in the metamodel is the abstract Section class. The Tab class has a composite
association with Section. As many section implementations as necessary could be
provided in Eclipse. Two implementations turned out to be most useful in practice:

� A data grid that shows the properties in the form of a table with headers. Such a
section can be used for the representation of properties that have one-to-many
relationship with the element owning them. An example could be the list of
attributes for a class in the UML class diagram (see Fig. 13, bottom);

� A group of key-value pairs that can be used for the representation of properties that
have one-to-one relationship with the element owning them. An example
application of this can be seen in Fig. 13, at the top, where the “General” tab of the
class properties contains various values describing the class—such as “abstract”
flag, name of the class, etc.

202 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 202LURaksti733-datorzin.indd 202 2008.03.31. 15:06:512008.03.31. 15:06:51

Fig. 13. KeyValueGroup properties section implementation (at the top) and

DataGrid implementation (at the bottom) in action

These two kinds of section are implemented as part of the properties engine in
METAclipse. DataGrid and KeyValueGroup classes in the metamodel (see Fig. 12)
correspond to the data grid and key-value pair group section implementations,
respectively. Both section implementations use the same metamodel structure for the
description of their contents. This turned out to be particularly useful for the
development of transformations, as it allowed a uniform design of the property-
building transformations.

The structure used for the two section implementations consists of three main
classes: GridColumn, GridRow, and RowElement. In case of the DataGrid section
implementation, GridColumn corresponds to the table column. The title attribute will
be shown as the header of the table. Attribute inplaceEditorType denotes the kind of
editor that will be used for editing of the data found in the column. Possible values are
defined by the InplaceEditorType enumeration and include such editors as text field,
combo-box, checkbox, radio group etc. A special kind of editor is
CUSTOM_EDITOR, which means that an external dialog has to be shown instead of
in-place editor. This will be discussed in more detail below. For editing of the combo-
box or radio group fields, additionally a set of possible values must be defined. This is
done through the possibleValues association from the GridColumn class to the
ValueVariant class.

The GridRow class corresponds to one row in the grid. The DataGrid class will
hold an ordered reference to all row classes through “rows” association. Actual data
of the table cells is represented by the RowElement class. The association “column”
of this class will define what column the row element belongs to, while the
association “row” will indicate in which row it should be displayed.

As stated before, the KeyValueGroup section implementation uses the same model.
To understand how the structure is applied to the KeyValueGroup implementation,
we can imagine that this implementation is nothing more than DataGrid with one row,

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 203

LURaksti733-datorzin.indd 203LURaksti733-datorzin.indd 203 2008.03.31. 15:06:512008.03.31. 15:06:51

which is displayed vertically instead of horizontally. So, there will be exactly one
GridRow instance and each GridColumn instance will correspond to the label of one
key-value pair in the KeyValueGroup section (for example, “name” or “abstract” at
the property view shown at the top of Fig. 13). RowElement instances correspond to
the value part of key-value pairs, i.e., the values of the properties that can be edited.

Property Editors and Commands
Not all properties can be edited directly in the properties view—some require more
advanced editing capabilities. For example, editing of a property denoting a color or a
font requires a proper color dialog to be shown. Also properties that must be chosen
from a list with lots of entries are inconvenient to be edited with a simple combo-box.
The metamodel of the properties engine contains an additional set of classes for the
definition of external editors (see Fig. 14).

Fig. 14. Property part of the presentation metamodel: editor classes

Theoretically it would also be possible to create a universal dialog engine, so that
any kind of dialogs could be constructed. However, it would require very large effort
to build such engine. Therefore, it was decided to build concrete dialogs for different
tasks. In the metamodel, a common superclass PropertyEditor is introduced for all
dialogs. Three implementations are provided by the engine: the FontEditor class
representing the font dialog, the ColorEditor class representing the color dialog and
the ChooseFromListEditor representing the dialog for showing large lists.

If an external dialog is needed for a particular column, the inplaceEditorType
attribute of the GridColumn instance must be set to CUSTOM_EDITOR. The engine
will then display a button for invoking the external editor. If the button is pressed, the
ShowEditorCommand (see Fig. 15) will be invoked and transformations will have to
construct the dialog to be shown. The editor constructed then has to be linked to the
CurrentPropertyEditor singleton, because the engine will consult this singleton to find
which editor to show.

204 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 204LURaksti733-datorzin.indd 204 2008.03.31. 15:06:522008.03.31. 15:06:52

Fig. 15. Property part of the presentation metamodel: command classes

After showing the dialog and having the user choose something, the corresponding
command is executed, containing the information about user actions in the dialog.
Thus, for the font dialog, ChooseFontCommand is executed with the chosen font
attached through the font association. Similarly, ChooseColorCommand is executed
after choosing any color from the color dialog and ChooseFromListCommand, after
choosing some list item from the list dialog.

The remaining commands not yet discussed are ChangePropertyValueCommand,
which is invoked when any of in-place property editors is used to change the value of
some property; MoveRowCommand, which is used to change the order of the
DataGrid rows; DeleteRowComand, which deletes DataGrid rows; and
AddRowCommand, which creates new DataGrid rows.

4.6 Graph Diagram Engine

The most important of all engines is the graph diagram engine. This engine is used for
visual graph diagram editing (see Fig. 6, part 4). Eclipse technologies used for the
graph diagram engine are the Graphical Editing Framework GEF [13] and the
Graphical Modeling Framework GMF [14]. GMF is the most popular metamodel-
based graphical tool building platform for Eclipse. GMF utilizes EMF (Eclipse
Modeling Framework) and GEF (Graphical Editing Framework) technologies. EMF
is used for model management and GEF, for graphical user interface.

GMF uses a static-mapping-driven approach. It defines a set of metamodels:
graphical (presentation), tooling and mapping metamodels. In addition, it uses ECore
as the domain metamodel. The graphical metamodel defines the graphical element
types. The tooling metamodel defines the palette and menus. The mapping metamodel
defines the mapping possibilities between the models. To build an editor in GMF, the

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 205

LURaksti733-datorzin.indd 205LURaksti733-datorzin.indd 205 2008.03.31. 15:06:522008.03.31. 15:06:52

domain, graphical, tooling and mapping models are defined, then generation is
performed and manual code in Java added. An analysis of the GMF and a comparison
of the static-mapping-driven approach as such to the transformation-driven approach
described here are given in the paper “Building Tools by Model Transformations in
Eclipse” [24].

The graphical (presentation) metamodel is well adapted to the generation step in
GMF, but cannot be used directly by the transformation approach. The same situation
is true for the tooling metamodel. Therefore, nothing of the GMF definition part can
actually be reused in the proposed METAclipse approach. As a consequence, there
are no explicit graphical element types to be used by transformations.

Fortunately, the GMF runtime [34] uses another metamodel—the notation
metamodel. This metamodel describes graphical instances in the runtime—nodes,
edges, compartments and labels (exactly, the layer required by transformations to
build graphical objects dynamically). In fact, the GMF runtime is a graphical engine
for Eclipse, significantly extending GEF in the direction required for diagram
building. This allows at least partial reuse of the GMF runtime in METAclipse.

The created graph diagram engine does not fall back from professional Eclipse-
based tools like RSA [35] in its diversity of features and graphical quality. The
developed metamodel, presented further, allows relatively simple control of quite
advanced graphical structures and behavior. Although the graph diagram engine was
the most difficult to implement, the reuse of GMF runtime and GEF components
allowed keeping the required effort for building it reasonably low.

The General Part of the Graph Diagram Engines Metamodel

The main part of the graph diagram engines metamodel in METAclipse is quite
similar to the GMF notation metamodel. However, it is not the same. It has been
made more accessible for the transformations and more easily usable in various
contexts of METAclipse (see Fig. 16).

The root element corresponding to the actual diagram is the Diagram class. It
consists of DiagramElement class instances, which can be either Node or Edge. Node
class instances correspond to the graph diagram nodes and Edge instances correspond
to edges. Note that Diagram itself is also a kind of node. This allows the use of sub-
diagrams. The Diagram element defines the general attributes of all elements, such as
line style and width. Node defines the general attributes of all kinds of nodes. The
Edge class defines the routing of the edges via the routing style attribute and
association with Bendpoint instances. Routing style defines how the line should be
laid out on the diagram and Bendpoint instances define the layout constraints.

Besides Diagram itself, the nodes are divided into two categories—SimpleNode
and CompositeNode. SimpleNode denotes the nodes that may not contain any
children. CompositeNode, on the other hand, may contain children. Theoretically,
Diagram also is a composite node. However, because of its specific nature, it is not in
the class hierarchy of the composite nodes.

206 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 206LURaksti733-datorzin.indd 206 2008.03.31. 15:06:522008.03.31. 15:06:52

Fig. 16. Graph diagram part of the presentation metamodel without commands and palette

There is just one kind of SimpleNode type—the Label class. Labels are static text
elements that may also display an icon. CompositeNode is not abstract, thus it may be
instantiated itself, but there is also one special type of the composite node, i.e.
Compartment. Compartment is a kind of grouping, used, for example for class
diagrams in UML [10].

Just as an example, let us consider the UML class Diagram (like the one in Fig.
16). Diagram itself is represented with the Diagram class instance. It consists of
CompositeNode-s, which in turn consist of one label for class icon and name, one
compartment with labels for attributes, and one compartment with labels for
operations (operations not shown in the figure). Associations are edges with different
sets of attribute values for different kinds of associations. These are the bricks for
building class diagrams in the METAclipse framework.

In Fig. 17 the command part of the graph diagram engines metamodel is shown.
There are just four commands specific to the graph diagram engine:

� CreateEdgeCommand, used for creation of the edges;
� CreateNodeCommand, used for the creation of the nodes;
� MoveNodeCommand, used for the semantic moving of the nodes (in case the node

is dropped in another node, for example);
� RedirectEdgeCommand, used for relocating the edge start or end to a different

node.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 207

LURaksti733-datorzin.indd 207LURaksti733-datorzin.indd 207 2008.03.31. 15:06:522008.03.31. 15:06:52

Fig. 17. Graph diagram command part of the presentation metamodel

Additionally, there are some already discussed common commands accessible in
graph diagram engine, like NavigateCommand, SelectCommand, etc. These are used
for the tasks that are common to more than just one METAclipse engine.

Palette Part of the Graph Diagram Engines Metamodel

The metamodel for description of the palettes has been separated from the graph
diagram metamodel as it could be reused also for other diagram kinds. Fig. 18 shows
the palette part of the graph diagram engines metamodel.

Fig. 18. Palette part of the presentation metamodel

The structure of the palette metamodel represents the possibilities to build palette
in Eclipse. The Palette class represents the palette itself. It consists of
AbstractPaletteElement instances. There are four kinds of palette elements that can be
used:

208 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 208LURaksti733-datorzin.indd 208 2008.03.31. 15:06:522008.03.31. 15:06:52

� PaletteElement—a simple palette element with an icon and an label;
� Separator—a separating line;
� PaletteElementGroup—a container for similar palette elements grouped together.

Groups cannot be nested and may be shown or hidden on user request;
� PaletteElementVariantGroup—a special kind of palette element group used for

displaying the variants of the same palette element. Visually this group is shown as
a normal palette element; however, it allows the switching to another palette
element variant upon user request.

5 Transformation Structure

Describing the transformation part of the framework is not the objective of this paper.
Therefore transformations will be discussed very briefly. As already stated,
transformations in METAclipse are written in the MOLA model transformation
language [28]. The MOLA compiler uses another model transformation language
developed at UL IMCS, i.e. Lx language series [33]. Lx then is compiled to efficient
C++ code, which is able to work with large models in fractions of a second. Only by
accomplishing such performance is it possible to satisfy all needs of METAclipse, as
every semantic user operation results in non-trivial transformations.

Fig. 19. Example of a MOLA transformation: a small excerpt of command handling procedure

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 209

LURaksti733-datorzin.indd 209LURaksti733-datorzin.indd 209 2008.03.31. 15:06:532008.03.31. 15:06:53

In METAclipse there is only one entry point for the transformations, i.e., it is
always the same transformation that gets called when executing a command. It is then
the task of the transformation to call different procedures that implement model
transformations that correspond to the particular command. In Fig. 19, one small part
of the command parsing or main transformation is shown. It serves as an example of
what MOLA transformations look like visually and at the same time displays how the
single main transformation calls the sub-transformations in order to react to particular
commands.

The transformation library is actually the key component that finally defines a
concrete DSL tool created with METAclipse. Different tools built in METAclipse
will have different transformation libraries. In order to build a tool, the toolsmith must
first define the domain metamodel. Then he/she must link the domain metamodel to
the presentation metamodel described in the previous section through model
transformations. The presentation metamodel may be augmented for the
transformation needs with new links or attributes. The only restriction is that existing
classes, attributes and associations must remain intact. Finally, if necessary, the
toolsmith must implement various functions through transformations that are needed
for a particular tool.

6 Future Work

Currently METAclipse already has all the functionality needed for successful building
of rich DSL editors. So, for example, the MOLA editor, built with METAclipse, has
proved to be a powerful tool for editing MOLA transformations and is being
successfully used. There is still a lot of work to be done in order to make the creation
of transformations easier, so that tools could be built with much less effort. This
would include generalization of common transformations, creation of reusable
transformation frameworks (small frameworks for properties, styles, etc.),
incorporation of the static mapping approach, definition of helper-functions, etc.
Analysis of the transformation part, however, is beyond the scope of this paper.

Of course, there are also tasks to be done in order to make the METAclipse
presentation framework (engines) more convenient and easier to use. Additional
features could be implemented to enable more functionality for the tools. Some of
these tasks are:

� Creating a more advanced property engine in order to allow building of more
customized property pages. Currently the layout and contents of property sheets are
very rigid and only a limited number of various controls can be used. There are
cases when it is necessary to have richer property editors;

� Introducing the possibility for transformations to impact the engines, meaning that
some special commands could be issued from transformations, which then would
be interpreted by engines. This would be necessary, for example, to provide
interactive debugging support for DSL editors.

� Adding possibilities to include animations. This would also be particularly useful
for debugging.

210 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 210LURaksti733-datorzin.indd 210 2008.03.31. 15:06:532008.03.31. 15:06:53

� Implementing XMI import/export for domain part of the models. EMF already has
the functionality needed for serialization and de-serialization of the models to
XMI, however, currently only the presentation model is loaded via wise objects.

� Enhancement of the current graph diagram engine to allow more advanced
constructs, such as swimlanes and pins used in UML activity diagrams.

� Creation of new engines for editing of other kinds of diagrams.

The named tasks represent just several areas in which it is already thought of to
extend the METAclipse framework. The effort needed to implement the features
listed above is relatively small compared to what has been already invested to provide
the basic functionality of METAclipse, and all these tasks can be considered as
“extras.” Of course, the number of new features that could be added and that could be
useful for the toolsmiths, as well as for tool users, is virtually unlimited.

References

1. Smolander, K., Martiin, P., Lyytinen, K., Tahvanainen, V-P.: Metaedit—a flexible
graphical environment for methodology modeling. Springer-Verlag, 1991.

2. Ebert, J., Suttenbach, R., Uhe, I.: Meta-CASE in Practice: a Case for KOGGE.
Proceedings of the 9th International Conference, CAiSE'97, Barcelona, Spain, 1997, pp.
203–216.

3. DOME Users Guide, http://www.htc.honeywell.com/dome/support.htm
4. Karsai G.: A Configurable Visual Programming Environment: A Tool for Domain-

Specific Programming, IEEE Computer Society Press, pp. 36–44, 1995.
5. MetaEdit+, http://www.metacase.com/
6. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom,

G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment. Workshop on
Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.

7. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-Modeling and Graph Grammars for
Multi-Paradigm Modeling in AToM3. Software and System Modeling, 3(3), 2004, pp.
194–209.

8. Steven Kelly, Kalle Lyytinen, Matti Rossi: MetaEdit+ A fully configurable multi-user and
multi-tool CASE and CAME environment Lecture Notes in Computer Science, Volume
1080, Proceedings of the 8th International Conference on Advances Information System
Engineering, pp. 1–21, Springer-Verlag, 1996.

9. Meta-Object Facility (MOF), http://www.omg.org/mof/
10. OMG, Unified Modeling Language: Superstructure, version 2.0,

http://www.omg.org/docs/formal/05-07-04.pdf
11. Celms, E., Kalnins, A., Lace, L.: Diagram definition facilities based on metamodel

mappings. Proceedings of the 18th International Conference, OOPSLA’2003, Workshop
on Domain-Specific Modeling, Anaheim, California, USA, October 2003, pp. 23–32.

12. Eclipse Modeling Framework (EMF, Eclipse Modeling subproject),
http://www.eclipse.org/emf/

13. Graphical Editor Framework (GEF, Eclipse Tools subproject),
http://www.eclipse.org/gef/

14. Graphical Modeling Framework (GMF, Eclipse Modeling subproject),
http://www.eclipse.org/gmf/

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 211

LURaksti733-datorzin.indd 211LURaksti733-datorzin.indd 211 2008.03.31. 15:06:532008.03.31. 15:06:53

15. N. Zhu1, J. Grundy and J. Hosking. Pounamu: a meta-tool for multi-view visual language
environment construction. Proc. IEEE Symposium on Visual Languages and Human
Centric Computing (VLHCC’04), pp. 254–256, 2004.

16. The Generic Eclipse Modeling System (GEMS), http://www.eclipse.org/gmt/gems/
17. S. Cook, G. Jones, S. Kent and A. C. Wills. Domain-Specific Development with Visual

Studio DSL Tools. Addison-Wesley, 2007.
18. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based Design of

Visual Languages using Tiger. Proceedings of GraBaTs'06, 2006, pp. 12.
19. I. Rath, D. Varro. Challenges for advanced domain-specific modeling frameworks. Proc.

of Workshop on Domain-Specific Program Development (DSPD), ECOOP 2006, France.
20. Taentzer, G: AGG: A Graph Transformation Environment for Modeling and Validation of

Software. Application of Graph Transformations with Industrial Relevance (AGTIVE’03),
Vol. 3062, Springer LNCS, 2004.

21. Visual Automated Model Transformations (VIATRA2), GMT subproject, Budapest
University of Technology and Economics,
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2/index.html

22. Fujaba. Universitat Paderborn, Institut fur Informatik.
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf

23. C. Amelunxen, A. Königs, T. Rötschke, A. Schürr: MOFLON: A Standard-Compliant
Metamodeling Framework with Graph Transformations. Model Driven Architecture—
Foundations and Applications: Second European Conference, Lecture Notes in Computer
Science, Vol. 4066, pp. 361–375, Springer 2006.

24. Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building Tools
by Model Transformations in Eclipse. Proceedings of DSM’07 workshop of OOPSLA
2007, Montreal, Canada, Jyväskylä University Printing House, 2007, pp. 194–207.

25. Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins, R.,
Sprogis, A.: GrTP: Transformation Based Graphical Tool Building Platform. Proceedings
of MODELS 2007, MDDAUI 2007 workshop, Nashville, Tennessee, USA,
September 30–October 5, 2007, pp. 4.

26. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA.
Proceedings of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62–76.

27. ReDSeeDS. Requirements Driven Software Development System. European FP6 IST
project. http://www.redseeds.eu/, 2007.

28. UL IMCS, MOLA pages, http://mola.mii.lu.lv/
29. Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,

Podnieks, K.: Towards Semantic Latvia. Proceedings of Seventh International Baltic
Conference on Databases and Information Systems, Communications, Vilnius, Lithuania,
O. Vasileckas, J. Eder, A. Caplinskas (Eds.), Vilnius, Technika, 2006, pp. 203–218.

30. Java Native Interface Specification,
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html

31. Eclipse Model To Text project,
http://www.eclipse.org/modeling/m2t/

32. The Eclipse Tabbed Properties View,
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html

33. Lx Transformation Language Set, http://Lx.mii.lu.lv/, 2007.
34. R. Gronback, Build Better Graphical Editors with the Graphical Modeling Framework,

Slides, Eclipseworld 2006,
http://wiki.eclipse.org/images/0/08/Gronback_EclipseWorld2006_GMF.ppt.zip

35. Rational Software Architect (RSA),
http://www-306.ibm.com/software/awdtools/architect/swarchitect/

212 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 212LURaksti733-datorzin.indd 212 2008.03.31. 15:06:532008.03.31. 15:06:53

