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Abstract. The implementation of the model transformation language MOLA 
compiler to the L3 language is described in the paper. It is shown that L3 is a 
suitable low-level model transformation language for efficient implementation 
of pattern matching in MOLA. A rationale for the chosen compiler architecture 
is offered. The detailed description of mappings from MOLA to L3 is also 
given. Some general approach to the graphical language compiler development, 
such as model-driven compiling and debugging, is also sketched. 
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1   Introduction 
 
Model transformations play an important role in the Model-Driven Software 
Development (MDSD) [1]. The main idea of MDSD is a systematic use of models as 
primary software engineering artefacts throughout the software development 
lifecycle. Model-Driven Development refers to a range of development approaches 
that are based on the use of software modelling. A model expresses a particular aspect 
of a software system in a certain level of detail. A code of the software system is 
generated from models built by a system developer. The generated code varies 
ranging from a system skeleton to a complete product. It depends on the abstraction 
level of models used as a source for the generator. If the created models are at high 
level of abstraction, then model transformations are applied to create more detailed 
models that can be used for code generation. The model transformation is the 
automatic generation of a target model from a source model, according to a 
transformation definition [2]. Model transformation languages are used to define 
model transformations. Models that are used by model transformations must conform 
to metamodels. A metamodel defines a language which specifies a model. A model 
transformation language uses metamodels to define the model transformation. A 
meta-language specifies the metamodels. The general architecture of model 
transformations is shown in Fig.1. 
The best known Model-Driven Software Development initiative is the Object 
Management Group (OMG) [3] Model-Driven Architecture (MDA) [4], which is a 
registered trademark of OMG. The OMG has developed the set of standards related to 
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MDA, including the Meta-Object Facility (MOF) [5] (a meta-language), Object 
Constraint Language (OCL) [6], Unified Modelling Language (UML) [7] (a software 
development language), and MOF Queries/Views/Transformations (MOF-QVT) [8] 
(a model transformation language). 
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Fig. 1 Model transformation

The MDA approach defines system functionality using a platform-independent 
model (PIM) that is written in an appropriate modelling language (for example, 
UML). Then the PIM is transformed to one or more platform-specific models (PSMs), 
which include platform- or language-specific details. For example, the UML Profile 
for Java [9] can be used to specify the PSM. Then the PSM is translated to the code 
written in the language appropriate to the PSM.  

Today the application area for model transformation languages is much broader. 
One such area is generic meta-model-based modelling tool building. The model 
transformation languages can be used (and are used [10, 11, 12]) as a much more 
effective domain specific substitute for the general purpose languages that are used 
for tool building up to now. This paper shows that model transformation languages 
also become appropriate facilities for compiler building. Thus, domains for 
applications of model transformation languages are quite different, but the typical 
language constructs used for model processing in all these domains are quite similar. 

The OMG was the first to state precisely the requirements what should be a model 
transformation language [13]. The MOF-QVT language, which is an answer by OMG 
itself to these requirements, becomes the OMG standard for model transformations 
[8]. In MOF-QVT source and target meta-models conform to the MOF. There are two 
variants of MOF defined – the EMOF (Essential MOF) and the CMOF (Complete 
MOF). The MOF can be viewed as a general standard to write metamodels, but, more 
specifically, EMOF is used for metamodel definition in MOF-QVT. The MOF-QVT 
standard defines two languages of transformation development – the Relations and the 
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Operational Mappings. The Relations language is at the highest level of abstraction 
and uses patterns and a declarative transformation definition style whenever possible. 
This language has two semantically equivalent concrete syntaxes – a graphical and a 
textual one. The Operational Mappings language is an imperative textual language. 
The syntax of the Operational Mappings provides constructs commonly found in 
imperative languages (loops, conditions, etc), while the management of model 
elements is based on extended OCL constructs. Actually, the MOF-QVT specification 
[8] also contains the third language – the Core. The role of this language is to serve 
for semantic definition of the first two OMG languages and also for possible 
implementation of these languages. There are several realizations of the MOF-QVT 
language. The Relations textual language is implemented in the medini QVT [14]. The 
Operational Mappings language is implemented in the SmartQVT [15], several less 
complete implementations are also available. 

There are many other model transformation languages which also satisfy the OMG 
requirements. There are textual model transformation languages – ATL [16], 
VIATRA2 [17], the Lx language family (L0-L3) [18] and also graphical model 
transformation languages – Fujaba [19], GReAT [20], MOLA [21]. In fact, model 
transformation languages existed even before the OMG coined this concept. These 
were the graph transformation languages, which were used to transform a source 
graph to a target graph in a rule-based manner. The structure of both graphs was 
defined by means of graph grammars which, in fact, are the same metamodels. There 
are several such graph transformation languages that are now being used as the model 
transformation languages, for example, AGG [22] and PROGRES [23]. 

Most of the model transformation languages rely on an EMOF-compatible meta-
language for defining metamodels. For example, Fujaba and GReAT use class 
diagram notations close to EMOF, and ATL uses KM3 [24] (a certain extension of 
EMOF). Sometimes meta-languages are used that are much more expressive than 
EMOF, for example, VTML [25] for the VIATRA2 language. An implementation of 
a metamodelling language is closely related to the specific repository used for storing 
models. 

An efficient implementation of model transformation languages is still a topical 
issue. There are several possibilities of implementation. A direct compilation to a 
general purpose programming language is a common approach (AGG, Fujaba, 
GReAT). The result of the compilation contains invocations of the API of the 
repository used to manage models and the corresponding metamodel. Another 
possibility is a compilation to an intermediate “very low-level” transformation 
language, for example, ATL uses the so called ATL byte-code [26]. It is also possible 
to build a direct interpreter of a model transformation language, as it is done for the 
VIATRA2 language. 

The model transformation language MOLA is developed by the University of 
Latvia, Institute of Mathematics and Computer Science. This paper describes the 
implementation of the MOLA compiler. The MOLA compiler uses a different 
approach by compiling MOLA to L3, which is a lower-level textual model 
transformation language, but still has features typical of a transformation language. 
The L3 language is an imperative language which also includes imperative facilities 
for pattern definition; therefore, the compilation of declarative patterns in MOLA is 
the only complicated part of MOLA to L3 compiler realization. The L3 language is 
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efficient regarding implementation [27], and it is also developed by UL, IMCS. The 
L3 language is also used for the development of MOLA compiler. In other words, the 
compiler itself is built as a model transformation. Therefore, the chosen 
implementation is relatively simple and at the same time guarantees efficiency of 
implementation. 

A brief introduction to the MOLA language is given in chapter 2. The experience 
gained in building the previous MOLA realizations is described in chapter 3. The 
language family Lx is introduced in chapter 4. The general architecture of the MOLA 
compiler and a brief overview of the model-driven compiling are given in chapter 5. 
Mappings from MOLA to L3 are described in details in chapter 6. Chapter 7 contains 
MOLA environment problem descriptions and possible solutions that are not directly 
related to the compiling process. 
 
2   MOLA Language 
 
MOLA is a graphical model transformation language, which is used for transforming 
an instance of a source metamodel (the source model) into an instance of the target 
metamodel (the target model). A transformation definition in MOLA consists of the 
source and target metamodel definitions and one or more MOLA procedures. 
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Fig. 2. The metamodel of the MOLA metamodelling language 
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Source and target metamodels are jointly defined in the MOLA metamodelling 
language, which is quite close to the OMG EMOF specification [8]. These 
metamodels are defined by means of one or more class diagrams, packages may be 
used in a standard way to group the metamodel classes. Actually, the division into 
source and target parts of the metamodel is quite semantic, as they are not separated 
syntactically (the complete metamodel may be used in transformation procedures in a 
uniform way). Typically, additional mapping associations link the corresponding 
classes from source and target metamodels; they facilitate the building of natural 
transformation procedures and document the performed transformations. The source 
and target metamodel may be the same – that is the case for in-place model update 
transformations. The MOLA metamodelling language is defined formally in the 
Kernel package of the MOLA metamodel (see Fig. 2). 

MOLA procedures form the executable part of a MOLA transformation. One of 
these procedures is the main one, which starts the whole transformation. MOLA 
procedure is built as a traditional structured program, but in a graphical form. 
Similarly to UML activity diagrams (and conventional flowcharts), control flow 
arrows determine the order of execution of MOLA statements. Call statements are 
used to invoke sub-procedures. However, the basic language statement of MOLA 
procedures is specific to the model transformation domain – it is the rule. Rules 
embody the pattern match paradigm, which is typical of model transformation 
languages. Each rule in MOLA has the pattern and the action part. Both are defined 
by means of class-elements and -links. A class-element is a metamodel class, 
prefixed by the element (“role”) name (graphically shown in a way similar to UML 
instance). An association-link connecting two class-elements corresponds to an 
association linking the respective classes in the metamodel. A pattern is a set of class-
elements and -links which are compatible to the metamodel for this transformation. A 
pattern may simply be a metamodel fragment, but a more complicated situation is also 
possible – several class-elements may reference the same metamodel class – certainly, 
their element names must differ (these elements play different roles in the pattern, 
e.g., the start and end node of an edge). A class-element may also contain a constraint 
– a Boolean expression in a simplified subset of OCL. The main semantics of a rule is in 
its pattern match – an instance set in the model must be found, where an instance of 
the appropriate class is allocated to each class-element so that all required links are 
present in this set and all constraints evaluate to true. If such a match is found, the 
action part of the rule is executed. The action part also consists of class-elements and 
links, but typically these are create-actions – the relevant instances and links must be 
created. An end of a create-link may also be attached to a class-element included in 
pattern. Assignments in class-elements may be used to set the attribute values of the 
instances. Instances may also be deleted and modified in the action part. Thus a rule 
in MOLA typically is used to locate some construct in the source model and build a 
required equivalent construct in the target model. If several instance sets in the model 
satisfy the rule pattern, the rule is executed only once (on an arbitrarily chosen 
match). Such a situation should be addressed by another related construct in MOLA – 
the loop construct. In addition, the reference mechanism (a class-element may be a 
reference to an already matched or created instance in a previous rule) is used to 
restrict the available match set. Thus, rules are typically used in MOLA in situations 
where at most one match is possible. Certainly, there may be a situation when no 
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match exists – then the rule is not executed at all. To distinguish this situation, a rule 
may have a special ELSE-exit (a control flow labelled ELSE), which is traversed 
namely in this situation. Thus, a rule plays in MOLA the role of an if-then-else 
construct as well. 

Another essential construct in MOLA is the loop (more concretely, for-each loop). 
The loop is a rectangular frame, which contains one special rule – the loophead. The 
loophead is a rule which contains one specially marked (by a bold border) element – 
the loop variable. The semantics of a for-each loop is that it is executed for all 
possible matches for the loophead, which differ by instances allocated to the loop 
variable (possible variations for other loop head elements are not taken into account). 
In fact, a for-each loop is an iterator which iterates through all possible instances of 
the loop variable class that satisfy the constraint imposed by the pattern in the 
loophead. With respect to other elements of the pattern in the loop head, the 
“existential semantics” is in use – there must be a match for these elements, but it 
does not matter whether there are one or several such matches. Thus a for-each loop is 
the main MOLA construct, which is used to code a situation: “for each instance of . . . 
which satisfies . . . perform the following transformation. . . ”. Namely such situations 
in informal descriptions of model transformations are frequently called transformation 
rules, but in MOLA they must be formalised as for-each loops. In addition to the 
loophead, a loop typically contains the loop body – other MOLA statements whose 
execution order is organised by control flows. The loop body is executed for each 
iteration of the loop. Since the loop head is a rule, it may also contain create actions, 
thus simple transformations of source model elements may be coded in MOLA by 
loops consisting of the loop head only. For nested loops the main organising feature is 
the possibility to reference the loop variable (and other elements) of the main loop in 
the pattern of the nested loop head, thus specifying an iteration over all related 
instances (to the current instance in the main loop). 

There also are other available constructs in MOLA procedures. Procedures may 
have parameters (of type of a metamodel class or a primitive type) and local 
variables (also of both types). These elements may be used in MOLA rules, in 
addition, text-statements (consisting of a constraint and assignments) may be used to 
process these elements more directly. For primitive-typed variables the text statement 
is the only option. A text statement containing a constraint (a Boolean expression) 
may also have an ELSE-exit and serve as an if-then-else construct (in addition to rule). 
Besides MOLA procedures, external (coded in an OOPL) procedures can also be 
invoked; this feature is used for low-level data processing (e.g., model data import). It 
should be noted that MOLA has no built-in UI support (MOLA is oriented towards 
behind-the-scenes transformations), therefore diagnostic messages and similar 
situations should be addressed via a library of external procedures. All MOLA 
procedure elements are defined formally in the MOLA package of the MOLA 
metamodel (see Fig. 3). 
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Fig. 3. The metamodel of the MOLA procedure elements 
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The execution of a MOLA transformation on a source model starts from the main 
procedure. A loop is executed while there are instances to iterate over, then the next 
construct according to the control flow is executed. If a rule without a valid match is 
to be executed, and this rule has no ELSE-exit, then the current procedure is 
terminated (if this occurs outside a loop) or the next iteration of the loop is started 
(within a loop body). When the main procedure reaches its end, the transformation is 
completed. 
 
3   Previous Realizations of MOLA 
 
The most critical part of the implementation of a pattern-based transformation 
language is the implementation of the pattern matching. It has been already shown 
[28] that an efficient MOLA pattern matching implementation is possible. This 
realization is based on only few specific low-level operations needed to iterate over a 
model. They are: 

� getNext(Class Cl) – returns the next instance of a metaclass Cl upon 
each call. There is also an initialization for it – 
initializeGetNext(Class Cl) 

� getNextByLink(Association as, Cl1 inst, Class Cl2) – 
returns one by one instances of a metaclass Cl2 that can be reached by links 
corresponding to association as from a fixed instance inst. There is also 
an initialization for it, with similar parameters – 
initializeGetNextByLink(Association as, Cl1 inst, 
Class Cl2) 

� checkLink(Cl1 inst1, Cl2 inst2, Association as) – 
checks whether a link of the required type is between these instances 

� eval(Cl inst, Expr exp)  – evaluates a local constraint on 
attributes 

 
Thus, the target language of the MOLA compiler or the API of a repository that is 
used for realization of the MOLA interpreter (Virtual Machine) must contain similar 
operations. This approach requires the implementation of the pattern matching 
algorithm using such low-level constructs. That is a sufficiently complicated task. 
Another approach that can be used for pattern matching is to rely on some powerful 
high-level pattern matching language and build mappings from MOLA to it. An 
appropriate model repository must also be chosen. 

The previous realization of MOLA [29] used SQL queries as a pattern matching 
language and a relational database as the model repository. A fixed database schema 
had been defined in the most natural way by storing the metamodel in tables which 
correspond to the EMOF metamodel classes. The storage of model elements – 
instances of metamodel classes, associations, and attributes was completely 
straightforward in the corresponding tables. A MOLA program was also naturally 
stored in tables according to the MOLA metamodel. The main idea was to map a 
MOLA pattern to a single SQL statement. SQL queries generated by this realization 
were large self-join queries that are non-typical of standard database applications. The 
database engines were performing efficiently for queries if the number of class 
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elements in a MOLA pattern did not exceed a certain number. Experiments and 
benchmark tests had shown that the implemented MOLA Virtual Machine performed 
satisfactorily and MOLA is a suitable transformation language for typical MDSD 
tasks. However, for an industrial usage of MOLA a special in-memory repository and 
a compiler/interpreter that implements the principles described in [28] is required. 

The next step in the realization of the model transformation language MOLA was 
to search for a solution which satisfies the requirements mentioned above.  
 
4   Lx Language Family 
 
The search for a suitable solution for the MOLA realization revealed that an 
appropriate language and also a repository could be found nearby. The model 
transformation languages Lx [18] (the so called Lx language family) fulfil the 
requirements mentioned in the previous chapter. Textual model transformation 
languages Lx contain the base transformation language L0 and its related 
transformation languages L0’, L1, L2 and L3. Each of these languages is based on the 
previous language of this family by adding some extra features.  

The model transformation language L3 has been chosen as a target language for the 
MOLA compiler. A more detailed description of the Lx language family is available 
in [32] and [27]; however, a brief overview of all these languages is given in this 
chapter in order to make this paper understandable without reading the papers 
mentioned above. 
 
4.1   Lx Metamodelling Facilities 
 
The Lx language family, as any other model transformation language, uses some sort 
of metamodelling language. It is quite close to the OMG EMOF specifications. The 
main difference is that multiple generalization is not allowed and there are no 
packages in this metamodelling language. The metamodel of this language is shown 
in Fig. 4. 

 
Fig. 4. The metamodel of Lx metamodelling language 
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Classes and binary associations are core elements of this language. Classes can have 
attributes which can be primitive or enumeration-typed. There are four pre-defined 
primitive types – String, Integer, Boolean, and Real. There are no possibilities to 
define new ones. 
The basic commands (constructs for a textual definition of a metamodel) of the Lx 
family metamodelling language are the following: 

o class <className>; – defines class with a given name. 
o attr <className>.<attrName>:<ElementaryTypeName>; – defines 

attribute with a given name and type.  
o assoc 

<className>.{ordered}<card><roleName>/<roleName><card>{or
dered}. <className>; – defines association with corresponding 
properties. 

o compos 
<compositeClassName>.{ordered}<card><roleName>/<roleName
><card> {ordered}.<partClassName>;  – defines compositions 
with corresponding properties.  

o rel <subClassName>.subClassOf.<superClassName>; – defines a 
generalization relationship between given classes. 

o enum <enumName>:{ <enumLiteral1> , < enumLiteral2>,  … }; – 
defines enumeration with given elements. 

 
4.2 Language L0 
 

An elementary unit of L0 transformation is a command (an imperative statement). L0 
transformation contains several parts: 

� global variable definition part; 
� native subprogram (function or procedure) declaration part (used C++ library 

function headers); 
� L0 subprogram definition part. Exactly one subprogram in this part is the 

main. The main subprogram defines the entry point of the transformation. 
An L0 subprogram definition also consists of several parts: 

o Subprogram header 
� procedure <procName>(<paramList>); Subprogram 

header, the (formal) parameter list can be empty. 
Parameter list consists of formal parameter definitions 
separated by “,”. A parameter definition consists of its 
name, the parameter type (the type can be an elementary 
type or a class from the metamodel), and the passing 
method (parameters can be passed by reference or by 
value). If the parameter is passed by reference, its type 
name is preceded by the & character. 

� function <funcName>(<paramList>): <returnType>; – 
return type name can be an elementary type name or class 
name. 

o Local variable definitions  
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� pointer <pointerName> : <className>; – defines a 
pointer to objects of class <className>. 

� var <varName> : <ElementaryTypeName>; – defines a 
variable of elementary type. <ElementaryTypeName> is 
one of elementary types.  

o Keyword begin – starts subprogram body definition 
o Subprogram body definition 
o Keyword end - ends subprogram body definition. 

 
The subprogram body definition may contain the following commands: 
1. return;  – returns execution control to caller procedure or function.  
2. call <subProgName>(<actPrmList>); – calls a subprogram. Actual parameters list 

can be empty. Actual parameter list consists of binary expressions separated by 
“,”. 

3. label <labelName>; – defines a label with the given name. 
4. goto <label>; – unconditionally transfers control to <label>. <label> should be 

located in the current subprogram. 
5. first <pointer> : <className> else <label>; – positions <pointer> to an arbitrary 

object of <className>. Typically, this command in combination with the next 
command is used to traverse all objects of the given class (including subclass 
objects). If <className> does not have objects, <pointer> becomes null, and 
execution control is transferred to the <label>. The <className> in this command 
must be the same as (or a subclass of) the class used in pointer definition. If it is a 
subclass, then the pointer value set is narrowed (for the subsequent executions of 
next). 

6. first <pointer1> : <className> from <pointer2> by <roleName> else <label>; – 
similar to the previous command. The difference is that it positions <pointer1> to 
an arbitrary class object, which is reachable from <pointer2> by the link 
<roleName>. Similarly, this command in combination with the next command is 
used to traverse all objects linked to an object by the given link type. 

7. next <pointer> else <label>; – gets the next object, which satisfies conditions, 
formulated during the execution of the corresponding first and which has not been 
visited (iterated) with this variable yet. If there is no such object, the <pointer> 
becomes null, and execution control is transferred to <label>. 

8. addObj <pointer>:<className>; – creates a new object of the class 
<className>. 

9. addLink <pointer1>.<roleName>.<pointer2>; – creates a new link (of type 
specified by <roleName>) between the objects pointed to by the <pointer1> and 
<pointer2> , respectively. 

10. deleteObj <pointer>; – deletes the object, which is pointed to by <pointer>. 
11. deleteLink <pointer1>.<roleName>.<pointer2>; – deletes link whose type is 

specified by <roleName> between objects pointed to by <pointer1> and 
<pointer2>, respectively. 
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12. setPointer <pointer1>=<pointer2>; – sets <pointer1> to the object which is 
pointed to by <pointer2>. Instead of <pointer2> the null constant can be used.  

13. setVar <variable> = <binExpr>; – sets <variable> to <binExpr> value. 
<binExpr> is a binary expression consisting of the following elements: elementary 
variables, subprogram parameters (of elementary types), literals, object 
attributes, and standard operators (+,-,*,/,&&,||,!). 

14. setAttr <pointer>.<attrName>=<binExpr>; – sets the value of attribute 
<attrName> (of the object,  pointed to by <pointer>) to the <binExpr> value. 

15. type <pointer> == <className> else <label>; – if the type of the pointed object is 
identical to the <className>, then control is transferred to the next command, 
else control is transferred to <label>. Instead of the equality symbol == an 
inequality symbol != can be used. This command is used for determining the exact 
subclass of an object. 

16. var <variable>==<binExpr> else <label>; – if the condition is true, then control is 
transferred to the next command, else control is transferred to <label>. Instead of 
equality symbol other (<, <=, >, >=, !=) relational operators compatible with 
argument types can be used. 

17. attr <pointer>.<attrName> == <binExpr> else <label>; – if the condition is true, 
then control is transferred to the next command, else control is transferred to 
<label>. Other relational operators (<, <=, >, >=, !=) can be used too. 

18. link <pointer1>.<roleName>.<pointer2> else <label>; – checks whether there is a 
link (with the type specified by <roleName>) between the objects pointed to by 
<pointer1> and <pointer2>, respectively. 

19. pointer <pointer1>==<pointer2> else <label>; – checks whether the objects 
pointed to by <pointer1> and <pointer2> are identical. Instead of <pointer2> null 
constant can be used. The inequality symbol (!=) can be used too. 

It is easy to see that the language L0 contains only the very basic facilities for 
defining transformations [32]. 
 
4.3   Languages L0’ – L3 
 
Language L0’ – model transformation language L0’ is based on the language L0. 
The new feature of L0’ is the possibility to make long arithmetic expressions (in L0, 
only unary and binary expressions were allowed). 
Language L1 – is supplemented with an imperative pattern matching feature, so that 
it is possible to search for instances that match some condition. Any L1 pattern can 
contain conditions on values of variables or attributes, links between instances and 
other. In fact, all L1 commands can be used to specify pattern condition. 
The textual syntax for the pattern (such-that block) is as follows: 
suchthat 
begin 
<L1Co
end; 

mmands> 
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The condition holds if it is possible to successfully [27] reach the end of the block 
(i.e., successfully execute its last command). The “conditional” commands in L0 
(commands that have an else branch) may be used without the else branch in the such-
that block. If in such a command the undefined else branch is to be executed, then the 
condition defined by the pattern fails. 
The such-that block may be used with first and next commands. 
Language L2 – has the possibility to make loops. A special command exists in L2 
with which it is possible either to visit all instances of the specified class or just those 
instances of the class that match the given pattern. The textual syntax for the loop is 
as follows: 
foreach <pointerName1> : <className> [ from 
<pointerName2> by <roleName> ] [ suchthat 
begin 
 
end ] 

<L2Commands> 

do 
begin 
 <L2Commands> 
end; 

Language L3 – has the branching command – a standard if-then-else construct can be 
used. The textual syntax of the branching command is as follows: 
if 
begin 

<L3Commands> 
end 
then 
begin 

<L3Commands> 
end 
[ else 
begin 

<L3Commands> 
end ]; 
The L3 metamodel (the Lx language family metamodel) is shown in Fig. 5. 
 

4.4   MOLA and L3 
 
The main reasons why the Lx model transformation language family and the L3 
language, particularly, have been chosen are described in this section. 

One of the main requirements that must be met is the compatibility of 
metamodeling languages. In our case metamodelling languages are EMOF-based for 
both MOLA and Lx language family. There are no significant differences between 
both languages, but such minor issues like absence of packages in Lx family 
metamodeling language can be resolved using name prefixes for class names. Thus, 
we can claim that MOLA and Lx metamodeling languages are fully compatible. 
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Fig. 5. The metamodel of L3 language 
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It has already been shown [28] that MOLA language can be implemented 
efficiently using a set of low-level operations for patterns. There is a direct mapping 
from the required operations to the commands of Lx model transformation family. 

� initializeGetNext(Class Cl)and getNext(Class Cl) 
operations can be mapped to first c:Cl and next c commands. These 
commands return all instances of a given meta-class. In the beginning the 
first c:Cl command must be called to initialize the iteration through required 
instances and afterwards the next c must be called to iterate through. 

� initializeGetNextByLink(Association as, Cl1 inst, 
Class Cl2) and getNextByLink(Association as, Cl1 
inst, Class Cl2) operations can be mapped to the first c:Cl2 from 
inst by as and next c commands. These commands return all instances of a 
given meta-class navigable by links of the given type from a fixed instance. 
The iteration must be done similarly to the previous case. 

� checkLink(Cl1 inst1, Cl2 inst2, Association as) 
operation can be mapped to the link inst1.as_rolename.inst2 command. The 
semantics of this command is the same as the semantics of this operation – 
check the existence of a link of the given type between two fixed instances. 

� eval(Cl inst, Expr exp) operation is an expression interpreter and 
the MOLA realization to L3 must implement a generator of sequences of L3 
commands that interprets the given expression. The core elements of such 
expressions are attribute or variable value checks. These operations can be 
mapped to attr inst.<attrname><relation><expression> and var 
<varname><relation><expression> commands accordingly. Arithmetic 
expressions can be mapped to expressions introduced by the L0’ language. 
Constraints that are complex (Boolean) expressions where conjunction, 
disjunction and negation are used can be mapped to a sequence of commands 
which interprets the given expression. 

 
MOLA operations that create update and delete instances and links can be mapped 

to addObj, addLink, setAttr, deleteObj, deleteLink commands. The control flows 
in MOLA can be mapped to label and goto commands in L3 language. L3 language 
as well as MOLA has such concepts as procedure, parameter, variable, sub-
procedure call. These concepts can be mapped directly from MOLA to L3 language. 
Thus L3 language provides all necessary features that allow us to build an efficient 
MOLA compiler.  

These basic features are included in the L0’ language, but commands introduced in 
the following languages L1-L3 (pattern matching, looping, and branching commands) 
allow much easier implementation of the MOLA compiler. That is possible because 
these commands are at an abstraction layer much closer to MOLA concepts, such as 
for-each loop and rule, than basic, L0 and L0’, commands. 

A detailed description of the mapping from MOLA to L3 is given in chapter 6 of 
this paper. 
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5   Architecture of MOLA Compiler 
 
This chapter describes the general architecture of the MOLA compiler. It includes the 
chain of compilers from MOLA to L3, L3 to L0, L0 to C++, and C++ to executable 
code. An introduction to the model-driven compiling is also included in this chapter. 
 
5.1   Implementation of the Lx Language Family 
 

An efficient compiler has been already built [18] for the Lx language family. 
Actually, an efficient realization of the L0 language has been built, and a compiler for 
each next language is built using the bootstrapping method [30]. It means that the 
previous language in the family is used to build the compiler for the next one (L0 for 
L0’ compiler, L0’ for L1 compiler, and so on). 

The metamodel-based in-memory repository [31] developed by the UL IMCS has 
been chosen to store metamodel and its instances for the implementation of L0 
language. This repository has an appropriate low-level API implemented as a C++ 
function library. Therefore, the intermediate result of the L0 compilation is a C++ 
program. The final result of the L0 compilation is a dynamic link library (DLL file) 
that can be executed over a repository instance which contains the appropriate 
metamodel and model and must be loaded into memory. The experiments have shown 
that the repository itself and the selected way of compilation to the API [32] are 
efficient for the implementation of a model transformation language. 

The bootstrapping method used to build compilers for the rest of the Lx family 
languages requires that programs written in L0’ to L3 must be stored in the repository 
that is used by L0 language. Thus, the metamodel of the L3 language is required. All 
other languages of the Lx family are described by the same metamodel because each 
next language is derived from the previous one by adding some new features; 
therefore, the metamodel of the last language in the chain (L3) also describes all the 
previous languages.  

The first step in the compilation of an L3 program is to obtain a model – an 
instance of the L3 metamodel. It is a representation of the L3 program in the 
metamodel-based repository. This step is a separate step in the whole process of the 
compilation which requires parsing of the text file and building a model. It is 
implemented using a traditional programming language (C++). Obtained lexemes [33, 
chapter 3] are stored in the repository as a very simple lexeme model [27]. Next, the 
transformation language L0 is used to obtain the L3 program model from the lexeme 
model. 

When a program model has been built, the actual compilation is being performed. 
The L3 (also L2, L1, L0’) compiler actually is a model transformation. In this case, an 
in-place transformation is used – the L3 program model is overwritten by the 
semantically equivalent L2 program model (also L2 by L1, etc.). The final result of 
the chain of compilation steps is an L0 program model which is semantically 
equivalent to the initial L3 program given as the input file. The chain of compilation 
steps (from L3 to L0) can be treated as one step (the corresponding transformations 
are invoked one after another). 

The last step in the compilation process is the code generation (a model to text 
transformation). An L0 language text file is generated. This step is also carried out 
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using the L0 language extended with native functions for file handling written in C++. 
Actually, only one write to file function is needed. 
 
5.2   MOLA Compiler 
 
Since the whole L3 compilation process has been divided into three separate steps, 
there is a possibility to start with any step if the appropriate model has been prepared. 
This fact is used by MOLA to L3 compiler – MOLA program is being compiled 
directly to an L3 model. This allows to decrease significantly the complexity of the 
implementation of MOLA to L3 compiler. Actually, it allows to use transformation 
language L3 to build MOLA to L3 compiler. 

The first MOLA Transformation Definition Environment (MOLA Editor) [34] was 
built on the basis of Generic Modelling Framework [35] – a domain-specific 
modelling framework, developed by the UL IMCS together with the company Exigen 
Services DATI. The models (MOLA program and metamodel) were stored in a 
compatible format to the repository used by the L0 language. Thus, the input for the 
MOLA to L3 compiler, a model of a MOLA transformation, already could be 
obtained. In fact, no other natural representation of a MOLA program than a model 
can be obtained because MOLA is a graphical transformation language. The most 
appropriate way to implement MOLA compiler to any suitable language is by using 
model transformations. Thus, the first MOLA compiler was implemented using L3 
language. 

Since the MOLA Editor required more sophisticated features than the GMF domain 
specific modelling framework could offer, the next MOLA Editor – MOLA2 Tool – 
has been built. MOLA2 Tool uses the METAclipse framework [10], which is based 
on Eclipse platform [36] and model transformations. It should be noted that 
METAclipse uses the same repository as the L0 realization. Therefore it was possible 
to develop transformations for MOLA2 Tool using MOLA itself and the first MOLA 
compiler. The second version of MOLA to L3 compiler has been built for MOLA2 
Tool, also using L3 language. 

Although there are two implementations of MOLA to L3 compiler, there are no 
significant differences in the architecture and general ideas of the implementations of 
both compilers. The main difference between these two implementations is the 
MOLA metamodel. The MOLA metamodel for MOLA2 Tool was improved by 
eliminating metamodel restrictions enforced by GMF and making it more suitable for 
compilation. The experience and a significant part of the code from the first version of 
MOLA to L3 compiler is reused in the second version. This paper is based on the 
second version of MOLA to L3 compiler. 

Compilation of a MOLA transformation is divided into four steps. Each of them is 
performed by a separate component – compiler. These components are: 

� MOLA to L3 compiler,  
� L3 to L0 compiler, 
� L0 to C++, 
� C++ to executable file. 

The general architecture of MOLA compiler is shown in Fig. 6. 
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Fig. 6. The general architecture of MOLA compiler 
A question may arise – why such a large number of compilers are used? Why do 

not use direct compilation from MOLA to C++? The answer is in the low complexity 
and reusability of each step. Each compiler transforms a higher-level language to a 
lower-level language. It is much easier to build compiler to a language that is at a 
closer abstraction level to the source language. Especially it is so if the general 
concepts of both languages are similar. This is the reason why L3 (and not L0) is used 
as the target language for MOLA. Another issue is the reusability. The compiler of L3 
language was already built and this implementation was efficient. The efficiency of 
the generated code does not suffer if MOLA compiler is built on top of the compiler 
chain. In addition, if we will decide to implement MOLA on another EMOF 
compatible repository, for example, EMF [37] or Gralab [38], then only L0 compiler 
must be rewritten. Even less, only the actual code generator in L0 compiler must be 
rewritten – the lexical and syntax analyzers can be reused. The last compiler (L0 to 
code) is dependent on the programming language that implements the API of the 
model repository, but for most programming languages it is already built and free, or 
open-source versions are available. For example, there are free compilers for Java 
[39] and C++ [40]. The only disadvantage of a long compiler chain is longer 
compilation time, but it is not a significant problem in areas where transformation 
languages are used. 
 
5.3   Model-Driven Compiling 
 
The usage of models and transformation languages in the process of compilation is 
not new. The ATL model transformation language [16] has already been used to 
compile CPL to SPL [41] and FIACRE to LOTOS [42]. The ATL language itself is 
also compiled using a domain-specific language created only for this purpose – ACG 
(ATL Code Generation language) [43]. All of these are textual languages and the 
model-to-model transformation is used for actual compilation similarly to the way it 
was used in the example of the L3 to L0 compilation [27]. A similar idea is also used 
in the SmartQVT [15] implementation. The QVT code is parsed to obtain the model 
representation of a QVT transformation, and the actual compilation to the Java file is 
performed using this model. 

A similar pattern of compilation is used in all examples. Three basic steps are 
performed: 

� parse an input program and obtain the model of it, 
� compile the model of the input program to the model of an output program, 

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 157

LURaksti733-datorzin.indd   157LURaksti733-datorzin.indd   157 2008.03.31.   15:06:332008.03.31.   15:06:33



� generate the code of the output program from the model. 
This approach may be called model-driven compiling – models are used as core 
elements of the compilation process (see Fig. 7). 

Lang1Lang1 Lang2Lang2

Lang1 
MM
Lang1 
MM

Lang2 
MM
Lang2 
MM

Lang2Lang2Lang1Lang1
 

Fig. 7. Model-driven compiling – general architecture 

These steps are similar to the phases of compilation in the traditional compilation 
technique [33, chapter 1]. The lexical and syntactical analyses are performed by the 
parser. The semantic analysis, intermediate code generation (target program model), 
and optimization are performed by compiler (model transformation). The code 
generation is done in the last step. The model of a source program is stored according 
to the language metamodel. Actually, the parse trees used in the traditional 
compilation technique can be treated as sort of models. Thus, the similarity is 
obvious. 

All three steps of the model-driven compiling require appropriate metamodels 
already built for both input and output languages and transformation written using a 
model transformation language suitable for the compilation tasks. Actually, text-to-
model (T2M), model-to-model (M2M), and model-to-text (M2T) languages are 
needed. An exporter or importer written in the general purpose programming 
language can be used instead of the T2M and M2T transformations. Certainly, the 
choice of the programming language depends on the repository used to store models. 

The model-driven compiling is even more appropriate for graphical languages such 
as MOLA. Since programs of graphical languages are stored as models, the first step 
can be omitted – the model-to-model transformation that implements a compiler can 
be applied directly. 
The main advantages of using model-driven compiling: 

� The higher level of abstraction that is provided by model transformation 
languages allows reducing the complexity of compiler implementation.  

� This is the most appropriate way to compile graphical languages because 
they are mostly implemented using some metamodel [37] or graph-based 
[38] repository. Actually, programs (diagrams) of such languages are models 
and the usage of a model transformation language is the most natural 
approach. 
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� If the concrete syntax of the input language is based on some general 
“coding” language, like XML [44], then model transformations can be 
applied to obtain the model of the program from its “coding”. In this case, a 
standard parser can be used to obtain the model of the “coding”. Next, the 
model transformation can be used to obtain the model conforming to the 
input language metamodel. A similar approach is also applicable for the 
output language. 

� Since attribute grammars have been used to specify the semantics of 
programming languages [45], a precise definition of the model 
transformation between source language and target languages can be used to 
define the semantics of the source language in even more readable way. 

The first experience in using model-driven compiling was quite promising. The 
MOLA to L3 and L3 to L0 [27] compilers have been developed. The implementation 
of both compilers has shown that using transformation language for compilation tasks 
reduces the complexity of the implementation. However, the best practice of model-
driven compiling has yet to be developed, and comparison to the traditional 
compilation techniques [33] must be drawn. 
 
6   Mapping from MOLA to L3 
 
This chapter contains detailed description of the mapping from MOLA to L3. That 
includes mapping of metamodeling language constructs and mapping of MOLA 
procedure and its elements to constructs of the L3 language. 
 
6.1 Mapping of Metamodelling Languages 
 
Both MOLA metamodelling language and the Lx family metamodelling language are 
based on EMOF. So the mapping is straightforward. For the description of this 
mapping, we will use the meta-class names from MOLA and Lx family 
metamodelling language metamodels shown in Fig. 2 and Fig. 4. The MOLA related 
meta-class names are prefixed by the Kernel prefix, but the Lx related meta-class 
names are prefixed by the Lx prefix. 

� Each Kernel::Class instance is transformed to Lx::Class with the same 
name, but since there are no packages in Lx, the Lx::Class name is prefixed 
by all parent package names. For example, the Kernel::Class “Lifeline”, 
which is owned by the package  “Interactions”, which is in package “UML”, 
is transformed to Lx::Class named “UML::Interactions::Lifeline” 

� Both languages have pre-defined primitive types. All the primitive types that 
are in MOLA – String, Integer, Boolean – are also in Lx.  

� Each Kernel::Enumeration instance is transformed to Lx::Enumeration 
instance and each Kernel::EnumerationLiteral instance is transformed to 
Lx::EnumerationLiteral instance owned by the appropriate enumeration. 

� Each Kernel::Generalization instance is transformed to Lx::Generalization 
instance. Of course, general and specific links are set to the appropriate 
classes. This implementation of the L0 does not allow multiple 
generalization; thus, it cannot be used in MOLA either.  
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� Each Kernel::Association instance is transformed to Lx::Association, and 
appropriate association ends that are represented as Kernel::Property 
instances linked by memberEnd link to the association are transformed to 
Lx::AssociationEnd instances. They are linked to the appropriate class 
instances. Multiplicity, ordering and composition information of association 
ends are also transformed directly to Lx. 

� Each Kernel::Property instance that is an attribute is transformed to an 
Lx::Attribute instance. Since MOLA allows only primitive or enumeration-
typed attributes, the correspondence is direct.  

An example of the transformation is given in Fig. 8. 

 

class Kernel::Classifier; 
class Kernel::Class; 
class Kernel::Property; 
enum VisibilityKind : {public,private,package}; 

        compos Kernel::Class.[0..1]class/ 
               ownedAttribute[*].Kernel::Property; 

attr Kernel::Classifier.isAbstract:Boolean; 
attr Kernel::Property.isDerived:Boolean; 
attr Kernel::Property.isReadOnly:Boolean; 
attr Kernel:: 
        Property.AggregationKind:AggregationKind; 
attr Kernel::Property.VisibilityKind:VisibilityKind; 
rel Kernel::Class.subClassOf.Kernel::Classifier; 

 

Fig. 8. An example of MOLA to Lx metamodelling language 
 
6.2   Mapping of the Procedure Headers 
 
MOLA procedures form the executable part of a MOLA transformation. The L3 
language also has procedures. Both MOLA and L3 procedures may have parameters 
that may be in (passed by value) or in-out (passed by reference). Both languages may 
have variables declared. In L3, the class-typed variables and parameters are called 
pointers and have a different syntax, so compiler must distinguish class-typed 
variables from enumeration and primitive-typed variables. Each non-reference class-
element that is used in rules in a MOLA procedure is transformed to a pointer 
declaration. Actually, the transformation of procedure header is straightforward and 
does not need detailed description. An example of the transformation of a MOLA 
procedure header is shown in Fig. 9 (the L3 code in all examples is used to better 
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illustrate the result of compilation. Actually, the compiler produces instances of the 
model of an L3 program) 

 

 

 

main procedure ExampleProcedure 
 ( Param:String, Param1: 
&Interactions::Lifeline); 
 

 

var Var:Enumeration1; 
pointer Var1:Interations::Message; 
pointer ClElem:Interactions::Message; 
 

Fig. 9. Procedure header to L3 
 
6.3   Mapping of the Execution Control Flows 
 
The basic statements of MOLA are rule and for-each loop. There also are other 
MOLA statements – text-statement, call-statement, etc. Control flows are used to 
determine the order of execution of MOLA statements within one MOLA procedure. 

There is exactly one start-statement in a MOLA procedure. It defines the entry 
point of the MOLA procedure. Other statements may pass the execution control to 
another statement or terminate the execution of the procedure. End-statements are 
used to terminate the execution of the procedure. They define the exit points of the 
MOLA procedure. The execution of the procedure may also be terminated by a text-
statement or a rule if the corresponding control flow is not present. Actually, a text-
statement and a rule are used as traditional branching constructs (they may have two 
outgoing control flows, one of them labelled ELSE). A for-each loop contains nested 
MOLA statements (loop-body) that are executed during each iteration. It has a special 
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statement – loop header (rule-based loophead), which defines the entry point to the 
loop-body. There may be any other MOLA statement in the loop (except start-
statement) – nested loops are also allowed. A statement that has no outgoing control 
flow terminates the current iteration of the loop. A branching statement may also 
terminate the current iteration of the loop if one of outgoing control flows is not 
present. Other statements (call-statement, etc) just pass the execution control to the 
next statement. Control flows in MOLA procedure may connect statements in an 
almost arbitrary way, there are only few restrictions. Incoming control flows are not 
allowed to the start-statement and loophead. Outgoing control flows are not allowed 
from end-statements. It is not allowed to “jump” into a loop from an outside statement 
either (it is allowed to “jump” out). 

Control flows and MOLA statements form a directed graph, where some nodes 
(loops) may contain a nested graph. This graph is the control flow graph (CFG) of a 
MOLA procedure. The control flow graph is a data structure used by traditional 
compilers for analysis and optimization of program execution [33, chapter 10]. 

The most natural way to code the control flow graph in a textual language is to use 
a labelled block of code for every node and a “jump” command for every edge. Thus 
each node of the MOLA control flow graph will compile to the block of L3 code. The 
block of code must start with a label command that unambiguously identifies the 
block. The execution control is passed to another code block using a goto command. 
If the execution of the MOLA procedure must be terminated, then a return command 
is used. 
According to the different types of statements described above, we can distinguish 
five types of nodes in the control flow graph of the MOLA procedure and define the 
mapping to L3 language for these types: 

� Entry node (start-statement) is a unique and mandatory node. Here we do a 
little optimization – no L3 code block is created for start-statement. The 
outgoing control flow determines the first MOLA statement that in turn 
determines the first code block of the procedure. 

� Exit node (end-element) is compiled to the following code block (in what 
follows, a simple template language is used – L3 keywords are bolded, other 
parts of code are shown in angular braces containing an intuitive 
description): 

label <label name>; 
return; 

� Simple node (call-statement) may not have an outgoing ELSE control flow. 
It is compiled to a simple code block – a sequence of commands depending 
on the actual type of MOLA statement and the goto command to the label 
command of the code block that is created from the MOLA statement 
connected by the outgoing control flow. 

label <label name>; 
<sequence of commands>; 
goto <next label name>; 

� Branching node (rule, text-statement) may have two outgoing control flows, 
where one of them may be an ELSE control flow. It is compiled to an if-
then-else command. The if-block contains the condition, then-block contains 
the action part of the MOLA rule or text-statement and else-block contains a 
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goto command to the label command of the code block that is created from 
the MOLA statement connected by the outgoing ELSE control flow. The last 
command in the main code block is the goto command to the label command 
of the code block that is created from the MOLA statement connected by the 
other (non-ELSE) outgoing control flow. 

label <label name>; 
if  

begin 
<condition commands>; 

end 
then  

begin 
<action commands>; 

end 
else 

begin 
goto <next else label name>; 

end; 
goto <next label name>; 

� Loop node (for-each loop) contains a nested control flow graph. Since a loop 
and its loophead can not be used separately, a common L3 code block is 
created for both nodes. A loop is compiled to a foreach command. The such-
that block contains the condition, the do block contains the action part of the 
loophead. The do block also contains a goto command to the label command 
of the code block that is created from the MOLA statement connected by the 
outgoing from the loophead control flow. The last command in the do block 
is a label command. This label is used to receive back the execution control 
from the code blocks that terminate an iteration of the loop. Thus, a MOLA 
statement which terminates the execution of the current iteration of the loop 
passes the execution control to this label command instead of terminating the 
execution of the whole procedure. In fact, the execution control is passed 
away from the do block of a foreach command, but it is received back just at 
the end of an iteration. Thus, the code blocks that are created from MOLA 
statements within the loop body are included in the corresponding L3 loop 
body indirectly – using goto and label commands. The last command in the 
main code block is a goto command to the label command of the code block 
that is created from the MOLA statement connected by the outgoing control 
flow of the loop. 

label <label name>; 
foreach <loop variable name> suchthat 

begin 
<loophead condition commands>; 

end 
do 

begin 
label <loophead label name>; 
<loophead action commands>; 
goto <loophead next label name>; 
label <loop iteration end label name>; 

end 
goto <next label name>; 
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The complete code of the procedure is assembled using code blocks obtained in the 
way just described. The first code block is determined by the start-statement. All other 
code blocks may be added to the procedure in an arbitrary order because the order of 
execution is determined only by label and goto commands – not by the order in which 
command blocks are added to the procedure. 
The result will be likely a sort of “spaghetti code” [46], but this causes no danger 
because the L3 code is just an intermediate code which is compiled further. This code 
is not read by a transformation developer. The wide usage of the goto commands does 
not cause any loss in the overall performance. 
 
6.4   Mapping of MOLA Statements 
 
The control structure aspect of the mapping of MOLA statements to L3 commands 
has already been described in the previous section. This section contains a detailed 
description of the mapping for each MOLA statement including data processing and 
pattern matching aspects. 
The mapping for start and end statements has already been described. The start-
statement is used to determine the first MOLA statement and end-statement is 
transformed to the return command. 
 
6.4.1   Call-Statement 
 
The call-statement is transformed to the call command. Since the mapping from a 
MOLA procedure to L3 procedure is one-to-one, the called L3 procedure is the same 
that is mapped from the MOLA procedure called by the MOLA call-statement. The 
L3 language allows only binary expressions to be used as actual parameters of the call 
command. MOLA allows arbitrary expressions (of appropriate type) to be used as 
actual parameters (the same problem is for calling functions in an expression). Our 
solution is to use temporary variables or pointers (depending on the actual type of a 
parameter) and setVar or setPointer commands to calculate the values of 
expressions. These commands must be executed before the call command. If the 
actual parameter is a MOLA variable, parameter, or class element identifier, then a 
temporary variable is not used. An example of the compilation is shown in Fig. 10. 
 

 

var temp_var1:String; 
var temp_var2:Integer; 
begin 
… 
label id_lab1; 
setVar temp_var1=”constant”; 
setVar temp_var2=564+c.intAttr:Integer; 
call test(a,temp_var1,temp_var2); 
goto id_labx; 
… 

Fig. 10. The compilation of the call-statement 
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6.4.2   Text-Statement 
 
As it was described before, the text-statement is transformed to the if-then-else 
command. MOLA text-statement has two main parts – a condition (constraint), which 
is expressed using OCL-style expression, and a list of assignments. The condition 
holds if the expression evaluates to true. The condition is compiled to the if block of 
the if-then-else command. Assignments are compiled to the then block of the if-then-
else command. 

Assignments are used in the text statement to assign values to elementary variables 
and pointers. The L3 commands that are used for this task are setVar and setPointer. 
In MOLA the value that is being assigned is expressed using a simple expression of 
an appropriate type. A simple expression of Integer type may contain Integer-typed 
variable, parameter or attribute specifications, Integer constants, pre-defined functions 
(size, indexOf, toInteger) and arithmetic operations (addition, subtraction, 
multiplication). A simple expression of String type may contain String-typed variable, 
parameter or attribute specifications, String constants, pre-defined functions (toLower, 
toUpper, substring, toString), and a concatenation operation. A simple expression of 
Boolean type may contain Boolean-typed variable, parameter or attribute 
specifications, Boolean constants (true and false), or pre-defined function (isTypeOf, 
isKindOf, toBoolean). A simple expression of enumeration type may contain 
enumeration-typed variable, parameter or attribute specification, enumeration literals 
or a pre-defined function toEnum. A simple expression of class type may contain a 
class-typed variable or parameter specification (pointer), null constant or typecast. 

In L3 similar expressions are allowed, but there are a few differences: there is no 
direct typecast of a pointer, actual parameters in a function call may be only a binary 
expression of an appropriate type. The list of pre-defined functions in L3 does not 
match all the pre-defined functions of the MOLA language either. The solutions to 
these problems are rather simple. In addition, some kinds of expressions in L3 allow 
more features than in MOLA, but these features are not relevant for MOLA compiler. 
The complete table of correspondence is shown in Table 1. 
 
Table 1. Correspondence of elements used in expressions in MOLA and L3 
 

MOLA L3 

String, Integer, Boolean, enumeration-
typed constants, NULL constant + 

elementary variables, pointers + 
attribute specification + 
+,-,*,concatenation + 
direct typecast (class-typed) temporary variable and extra 

setPointer command used 
function call temporary variables and extra 

setVar commands for complex 
parameters used  
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pre-defined functions extended library of native functions 
used 

toEnum, toInteger, toString, toBoolean + 
indexOf, toLower, toUpper extended library used 
size, substring + 
isTypeOf, isKindOf temporary variable and type 

command used 
The left column describes features used in MOLA expressions and the right column 
shows the correspondence in L3. The plus sign (+) means that the mapping is direct. 
If there is no direct mapping, the basic principles of a solution are shown. It may be 
the usage of a temporary variable (typecast and function call) or the usage of an 
extended library of native functions (indexOf, toLower, toUpper functions). 

Though L3 expressions allow Boolean operations, they cannot be used with 
relations. Relational operators (<, >, etc) may be used only in var and pointer 
commands. That makes the compilation of Boolean expressions used in MOLA more 
difficult. 

In MOLA the simplest condition is a simple expression of the Boolean type. Then it 
is compiled using a temporary variable and a var command in the following way: 

Condition: 
 
<simple boolean 
expression> 

if 
begin 

[<extra commands>] 
setVar temp_var=<simple boolean expression>; 
var temp_var==true; 

end… 
Usually a condition also contains a relation (>, <, >=, <=, =, <> operators can be 

used). Since the left and the right operands may be arbitrary expressions of the same 
type, the value of each expression is computed and stored in a temporary variable. 
Then these variables are compared using a var or pointer command depending on the 
type of expressions. 

Condition: 
 
<expression1><relation> 
<expression2> 
 

if 
begin 

[<extra commands>] 
setVar/setPointer temp_var1=<expression1>; 
[<extra commands>] 
setVar/setPointer temp_var2=<expression2>; 
var/pointer temp_var1<relation>temp_var2; 

end 
... 

A condition in MOLA may also contain Boolean operations – conjunction (and), 
disjunction (or), and negation (not) – together with relational operators. The L3 has 
no such features, but it is shown [18, chapter 4] that it is possible to construct L3 code 
that implements the Boolean operations. The algorithm implemented in MOLA to L3 
compiler uses the same principles. 

Our template language will be used to explain this algorithm. An extension of the 
template language is required – let us define a function 
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PrintBooleanExpression(variable_name,boolexpression) that returns the block of L3 
code that calculates the value of the Boolean expression boolexpression and stores it 
in the variable whose name is passed by the parameter variable_name. The use of this 
function means that the code block returned by the function replaces the function call. 
We will also need an auxiliary procedure CreateBooleanVariable(varname), which 
adds the declaration of a new Boolean variable whose name is passed by the 
parameter varname. Variable and label names having a prefix unique are considered 
to be unique within the procedure.  

If the parameter boolexpression is a simple expression of type Boolean or a 
relation, then the function PrintBooleanExpression will return the following code: 

boolexpression=<simple 
boolean expression> 

[<extra commands>] 
setVar variable_name = 
     <simple boolean expression>; 

boolexpression= 
<expression1><relation> 
<expression2> 
 

setVar variable_name =false; 
[<extra commands>] 
setVar unique_temp_var1=<expression1>; 
[<extra commands>] 
setVar unique_temp_var2=<expression2>; 
var unique_temp_var1<relation>  
unique_temp_var2  else unique_label; 
setVar variable_name =true; 
label unique_label; 

If the parameter boolexpression contains Boolean operators and, or, not, then the 
function will return the following code 

boolexpression= 
boolexpression1 or 
boolexpression2 

CreateBooleanVariable (“unique_temp_var1”) 
CreateBooleanVariable (“unique_temp_var2”) 
PrintBooleanExpression(“unique_temp_var1”, 
     boolexpression1) 
PrintBooleanExpression(“unique_temp_var2”, 
     boolexpression2) 
setVar variable_name=true; 
var unique_temp_var1==false else unique_label; 
var unique_temp_var2==false else unique_label; 
setVar variable_name=false; 
label unique_label; 
 

boolexpression= 
boolexpression1 and 
boolexpression2 

CreateBooleanVariable (“unique_temp_var1”) 
CreateBooleanVariable (“unique_temp_var2”) 
PrintBooleanExpression(“unique_temp_var1”, 
     boolexpression1) 
PrintBooleanExpression(“unique_temp_var2”, 
     boolexpression2) 
setVar variable_name=false; 
var unique_temp_var1==true else unique_label; 
var unique_temp_var2==true else unique_label; 
setVar variable_name=true; 
label unique_label; 
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boolexpression= not 
boolexpression1 

CreateBooleanVariable (“unique_temp_var1”) 
PrintBooleanExpression(“unique_temp_var1”,  
     boolexpression1) 
setVar variable_name=true; 
var unique_temp_var1==true else unique_label; 
setVar variable_name=false; 
label unique_label; 

An example of the compilation of a MOLA text-statement is shown in picture Fig. 11. 

 
 

if begin 
setVar _mvar_6=false; 
setVar _mvar_9=s; 
setVar _mvar_10="Star"; 
var _mvar_9==_mvar_10 else 
_mlabel_8; 
setVar _mvar_6=true; 
label _mlabel_8; 
setVar _mvar_7=false; 
setVar _mvar_12=par; 
setVar _mvar_13=0; 
var _mvar_12>_mvar_13 else 
_mlabel_11; 
setVar _mvar_7=true; 
label _mlabel_11; 
setVar _mvar_4=false; 
var _mvar_6==true else _mlabel_5; 
var _mvar_7==true else _mlabel_5; 
setVar _mvar_4=true; 
label _mlabel_5; 
var _mvar_4==true; 

end then begin 
setVar _mvar_14= 
c.name:String+"Star"; 
setVar s= toUpper(_mvar_14); 
setVar par= Length(s)+1; 

end else begin 
return; 

end; 
 

Fig. 11. The compilation of the text-statement 
 
6.4.3   Rule 
 
Another, and the most important, decision statement in MOLA is a rule. It is also 
compiled to the if-then-else command. The condition of the rule is expressed using a 
pattern. The implementation of pattern matching typically is the most demanding 
component to implement and also the key factor determining the implementation 
efficiency. The efficiency of the implementation of the pattern matching is not the 
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central theme of this paper. The chosen realization of the pattern matching 
implements some ideas that have been already described in [28]. This approach 
guarantees sufficient efficiency of the pattern matching for typical MOLA use cases. 

The basic elements of the pattern are class-elements and association-links. A class-
element represents the instance of the particular class. There are several types of 
class-elements, but only normal and delete class-elements are used to specify a 
pattern. Let us call them pattern elements. In addition, only normal and delete 
association-links are used to specify a pattern. Let us call them pattern links. Pattern 
elements and pattern links form the pattern graph. Pattern elements that are linked by 
pattern links form the pattern fragment (connected component of the pattern graph). 
A pattern may contain several pattern fragments that can be treated as separate 
patterns. All pattern fragments must match for the whole pattern to match. The main 
goal of the pattern matching is to find particular instances that match the given 
pattern. The sought instances are represented by non-reference pattern elements. The 
pattern links, reference class elements, and constraints on class elements form the 
pattern constraint. Actually, such a set of instances is sought that matches the pattern 
constraint. 

The pattern is compiled to a block of L3 code which is placed in the if block of the 
if-then-else command. Several pattern fragments are compiled to separate L3 code 
blocks following each other. Natural constructs in L3 language that implement 
patterns are first-suchthat and first-from-by-suchthat commands. A pattern 
fragment is thus compiled to a nested first-suchthat or first-from-by-suchthat 
command. 

To achieve this goal, the pattern graph must be traversed and appropriate 
commands built. The classical graph traversing techniques are used – a recursive 
algorithm that marks already traversed nodes and edges [47]. 

The first task is to decide which pattern element will be processed first – let us call 
it a root node. This is an important task because this decision affects the overall 
performance of the pattern matching. The main idea is to reduce the number of 
instances that must be examined to match or fail the pattern. If the pattern fragment 
contains a reference element, then the traversing of the pattern graph must be started 
from this element. This version of MOLA language also allows to denote the root 
element manually, using special compiler-related annotations. 

The algorithm starts the processing of the graph with the root node: 
� root node – is marked as traversed.  

o If it is a non-referenced class-element, then the first-suchthat 
command is created. The such-that command block of the 
command is selected as the current command block. L3 commands 
that are obtained from the local constraint of the class-element are 
placed in the such-that block of the created command.  

o If it is a referenced class element, then L3 commands that are 
obtained from the local constraint of the class element are placed in 
the if block of the if-then-else command. 

o All nodes connected by adjacent edges (pattern links that have not 
yet been traversed) are processed. 

� Other (non-root) nodes are processed in the following way – the edge which 
is used to reach this node is marked as traversed. 
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o If the node has been already traversed, then a link command is 
added to the current command block. 

o If the node has not been traversed, then it is marked as traversed. 
� If it is a reference class-element, then a link command is 

added to the current command block. L3 commands that 
are obtained from the local constraint of the class element 
are placed in the if block of the if-then-else command. 

� If it is a non-reference class-element, then the first-from-
by-suchthat command is added to the current command 
block. The such-that command block of the this command 
is selected as the current command block. L3 commands 
that are obtained from the local constraint of the class 
element are placed in the such-that block of the created 
command. 

� All nodes connected by adjacent edges that have not yet 
been traversed are processed. 

The local constraints of pattern elements are processed in the same way as the 
condition of the text-statement. 
An example of the compilation of a pattern is given in Fig. 12. 

 
 

if begin 
first p:Kernel::Property from c 
by ownedAttribute suchthat  
begin 

setVar _mvar3=p.name:String; 
setVar _mvar4=”value”; 
var _mvar3==_mvar4; 
first t:Kernel::Type from p by 
type; 

end; 
end 
then 
…. 
 

Fig. 12. The compilation of the rule-pattern 
Actually, the algorithm described above realizes the principles of MOLA Virtual 

Machine described in [28]. This algorithm builds an efficient L3 code if MOLA 
language constructs are used in a natural way. The practical usage of MOLA compiler 
has also shown that the natural use of MOLA constructs leads to an efficient pattern 
matching. Thus, the current implementation is sufficient enough for typical tasks 
(MDA, tool building). However, the algorithm can be enhanced in order to achieve a 
better performance in less typical situations. For example, if the pattern does not 
contain a reference pattern-element or annotated pattern-element, then a more detailed 
analysis of the pattern graph should be performed. The multiplicities of the 
associations that correspond to the association-links used in the pattern could be 
analyzed. The direction of traversing the graph should be chosen so that the “going” 
along an association in the direction of ‘*’ multiplicity is minimized. More 
complicated algorithms for the pattern matching have been used typically in rule-
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based transformation languages, for example, VIATRA [48]. This problem (the 
pattern matching efficiency) is not the main topic of this paper; therefore, it is not 
discussed in-depth. 

The action part of a rule consists of class-elements, association links, and attribute 
assignments that are included in class elements. The create and delete class-elements 
are used to create and delete particular instances. The create and delete association-
links are used to create and delete links. The assignment is used to assign the value of 
the attribute of a particular instance. The value is specified by using expressions that 
have been already described in previous sections. The correspondence between 
MOLA and L3 constructs is shown in Table 2. 
 
Table 2. Correspondence of constructions used in the action part of the rule 
 

MOLA L3 

create, delete class-elements addObj, deleteObj commands 
create, delete association-links  addLink, deleteLink commands 
attribute value assignments  setAttr commands 

 
The L3 code that is created for the action part of the rule is placed in the then block 

of the if-then-else command. An example of the compilation of the action part of a 
rule is shown in Fig. 13. 

 
 

If begin …end 
then begin 

addObj pr:Kernel::Property; 
addLink pr.type.c; 
setAttr c.name="Student"; 
setAttr pr.name="attendant"; 
deleteLink 
c.owningPackage.pack; 
deleteObj pack; 

end else 
… 
 

Fig. 13. The compilation of the rule – action part 
 
 
6.4.4 For-each loop 
 
The last MOLA statement described in this chapter is the for-each loop. The 
implementation of a loop is one of the crucial issues in the implementation of the 
MOLA compiler. An incorrectly chosen search structure may cause serious efficiency 
problems.  
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The condition of a loop is expressed by using the pattern of the loophead, which 
contains a special class-element – the loop variable. The iteration is performed over 
all instances that correspond to the loop variable. 

The loop is compiled to the foreach command. The condition of the loop is 
compiled to the such-that block of the foreach command. The compilation of the 
loophead pattern is similar to the compilation of the rule pattern. The pattern match 
starts from the loop variable (it is chosen as the root node). Usually there is a 
restriction-path – a path from a referenced class element to the loop variable where 
all multiplicities of the corresponding associations are ‘0..1’ or ‘1’. Then for this path, 
first-from-suchthat commands are created and added to the code block before the 
foreach command. The loop variable is used as the loop variable in the foreach 
command. All nodes and edges that have been already processed (appropriate 
commands built for the loop variable and class-elements in the restriction path) are 
marked traversed, and the algorithm used for the compilation of a rule is executed. 

This algorithm is not the most optimal either, but it is suitable for most of typical 
examples – usually there is a restriction path. Further optimization of the algorithm is 
not addressed in this paper. 

The action part of the loophead is compiled in the same way as the action part of a 
rule. The created code is added to the do block of the foreach command. Fig. 14 
illustrates an example of the compilation of a loop. 

 

 

foreach p:Kernel::Property from c 
by ownedAttribute suchthat 
begin 

first type:Class from p by 
type; 

end do begin 
setAttr p.name=c.name:String 
+ type.name:String; 
goto _mlabel_10; 
label _mlabel_9; 

end; 
goto _mlabel_23; 
... 
label _mlabel_10; 
call test(type); 
goto _mlabel_9; 
... 
 

Fig. 14. The compilation of the loop 
 
The mapping of the most important MOLA constructs to L3 has been defined in this 
chapter. 
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7   The surrounding of the MOLA compiler 
 
This chapter introduces the problems that have been discovered during the 
implementation of the MOLA compiler. The compiler is the most important part of 
the implementation of a programming or transformation language. However, there are 
other parts needed in a proper development environment. 
 
7.1 Error handling in MOLA 
 
The compiler detects syntax errors in a program. Usually a development environment 
of a textual programming language provides the possibility to navigate to errors in a 
code. A list of errors is shown and the appropriate “problematic” line of code is 
highlighted. Similar requirements can also be applied to the MOLA development 
environment. Since MOLA is a graphical language, there are no “lines of code”, as it 
is in textual languages. Each element that has a visual representation (MOLA 
statement, class-element, etc) can be treated as a “line of code”. The MOLA compiler 
must detect errors in a program and point to the appropriate element. Actually, 
MOLA compiler does not “know” anything about the visual representation of a 
MOLA element. Thus, the visualization of an error is done by the development 
environment. 

Our solution is to store the error information in the error model. The error 
metamodel is very simple (see Fig. 15). 

 
Fig. 15. The error metamodel 

 
In fact, there is only one class (ErrorMessage). It represents a particular error. There 
are two attributes – the attribute text contains the textual information and type 
determines whether it is a warning or an error. The association element represents an 
“error pointer” to the appropriate element in a MOLA transformation (any MOLA 
element inherits from the Kernel::Element, see Fig. 3). The MOLA compiler deletes 
the existing error model and creates a new one in the process of compilation. The 
MOLA2 Tool reads the error model and visualizes it. An example of the error 
visualization is shown in Fig. 16. 
The list of errors is shown in the properties tab. It is possible to navigate to the 
corresponding MOLA procedure from there. The elements pointed by the compiler 
are highlighted. This is an adequate way to treat the error handling problem in a 
graphical language. 
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Fig. 16. The visualization of errors in a MOLA procedure. 

 
7.2 Structuring a program in MOLA 
 
Another feature provided by modern development environments is the possibility to 
compile only part of the code if the whole program has already been compiled. This is 
needed for large programs, when a compilation takes a significant amount of time. To 
achieve this goal, the program has to be structured. The most common approach is to 
use code units. Each unit is compiled to a separate object. Next, a linker is used to 
obtain a single executable. 

A similar idea is also used in the MOLA2 Tool. Packages are used to structure a 
MOLA program. A package may be defined as a MOLA unit. It means that all MOLA 
procedures that are contained by the unit are compiled to a separate L0 unit. This 
allows using L0 compiler as a linker that assembles all L0 units into one C++ project. 
Thus, model transformations (MOLA and L3-L0’compilers) can work with smaller 
models that helps to improve the overall performance of the compilation process. 
 
7.3 Debugging in MOLA 
 
If a program is successfully compiled, it means that it is syntactically correct, but it 
does not mean that the program is semantically correct. Testing is a common 
approach used by a program developer. If a bug is found, then it must be fixed. This 
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process is called debugging. The debugging process requires a tool support to ease 
this process. Tools used for debugging are called debuggers. 

Typically, debuggers offer functions such as running a program step by step and 
pausing the program to examine the current state of the program to track the values of 
some variables. Some debuggers have the ability to modify the state of the program 
while it is running. The importance of a good debugger is very high. The existence of 
such a tool can often be the deciding factor in the use of a language, even if another 
language is more suited to the task. 

However, a debugger for the MOLA2 Tool has not yet been developed. There are 
examples of a debugger of a graphical language, for example, the UML Model 
Debugger [49]. There are differences between the debugger of a textual language and 
the debugger of a graphical language. The main difference is in the representation of 
the single-stepping approach. Since graphical languages are usually represented in 
diagrams, an animation of the program execution is required. Other representations 
could also be used, but they would be rather far from the concepts of the language.  

An interpreter or instrumentation by an additional code in the compilation result 
may be used for the debugging purposes. The execution of a single MOLA statement 
could be considered as one step in the step-by-step debugging process. The result of 
the compilation of a MOLA program is L3 code. Since this code consists of code 
blocks that correspond to one MOLA statement, these blocks could be supplemented 
with a debugging code in a rather simple way. 

There is another widely used but not so sophisticated way of the debugging. The 
trace (log) files can be used to trace the execution of a program. The current version 
of the MOLA compiler uses the L0 debugging feature – the L0 trace file. It logs an 
execution of every L0 command. However, the L0 tracing operates with L0 concepts. 
Therefore, a tracing that is at a closer abstraction level to the MOLA is needed. 
 
8   Conclusions and Future Work 
 
A sufficiently efficient implementation of the MOLA to L3 compiler has been 
described in this paper. The MOLA compiler has already been used practically in the 
area of tool building. The transformations that are used for implementation of the 
MOLA2 Tool within the METAclipse framework are developed using the MOLA to 
L3 compiler. The MOLA2 Tool that includes the second version of the MOLA 
compiler is successfully being used in the European IST 6th framework project 
ReDSeeDS [50]. Traditional MDA tasks are being implemented in MOLA there. 
These tasks include transformations from formalized software requirements to an 
architecture model of the system to be built and then to a detailed design model. Thus, 
the efficiency of the chosen architecture has been approved by practical usage. In both 
cases, non-trivial MOLA transformations have been developed and applied to 
sufficiently large models. 

On the one hand, the future work is related to the problems discussed in chapter 7. 
The practical usage of MOLA has shown that the problem of debugging is quite 
significant. It should be noted that building both a user-friendly and sufficiently high-
level debugger for model transformation languages, especially for graphical ones, is 
quite a challenging task. On the other hand, improvements in the implementation of 
the MOLA compiler are also expected – a more advanced algorithm of pattern 
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matching for MOLA will be developed. These improvements should ensure more 
efficient execution for less typical MOLA transformations. In addition, the model-
driven compiling briefly sketched in this paper also deserves a more detailed research. 
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